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Abstract

This thesis investigates the feasibility of using reconfigurable computers for

scientific applications. We review recent developments in reconfigurable high

performance computing. We then present designs and implementation details

of various scientific applications that we developed for the SRC-6 reconfig-

urable computer. We present performance measurements and analysis of the

results obtained.

We chose a selection of applications from bioinformatics, physics and

financial mathematics, including automatic docking of molecular models into

electron density maps, lattice gas fluid dynamics simulations, edge detection

in images and Monte Carlo options pricing simulations.

We conclude that reconfigurable computing is a maturing field that may

provide considerable benefit to scientific applications in the future. At present

the performance gains offered by reconfigurable computers are not sufficient

to justify the expense of the systems, and the software development environ-

ment lacks the language features and library support that application devel-

opers require so that they can focus on developing correct software rather

than on software infrastructure.
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Chapter 1

Introduction

This thesis investigates the feasibility of using reconfigurable computing tech-

nology for performing scientific computations. In this introduction, we pro-

vide a brief background and motivation for this investigation, provide details

of the objectives of the thesis, and outline the contents of the thesis.

1.1 Background

The past four decades has seen an exponential rise in the speed of processors.

Moore’s Law, a prediction made by Gordon Moore of Intel in 1965, has

proven surprisingly accurate — the number of transistors on processors has

doubled nearly every 24 months since Moore’s prediction that this would be

the case. The ability to fabricate chips with more transistors has resulted in

proportionate speed increases.

However, during the past 3 years, microprocessor manufacturers have

been experiencing difficulty in dramatically increasing the performance of

their processors. Clock speed increases have all but come to a halt due to

limitations with present fabrication technology, which has resulted in manu-

facturers seeking alternative means to providing consumers with greater per-

formance. Unfortunately no revolutionary architectural changes have been

forthcoming, so the manufacturers have instead simply opted to build mul-
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ticore chips.

Power consumption on present microprocessors has also become a con-

siderable issue, besides the problems that power dissipation causes with at-

tempts to increase performance. Large high performance computing centres

often consume megawatts of power, leading to electricity being a considerable

operating expense1. Thus there is also an economic motivation to investigate

lower power technologies.

Field Programmable Gate Arrays (FPGAs) have long been used in digi-

tal signal processing (DSP) applications, where relatively simple algorithms,

involving primarily integer operations, are performed on large quantities of

data. Over the past decade, several projects have been initiated to investi-

gate the use of FPGAs for general-purpose scientific computation [4, 5, 6].

This ideal led to its natural extension — the development of hybrid com-

putational machines that use both traditional microprocessors and FPGAs.

Such hybrid architectures, known as reconfigurable computers have recently

been introduced commercially by vendors such as Cray, SRC and SGI.

Figure 1.1: A generic reconfigurable computer architecture.

Successes with current reconfigurable computers have largely been lim-

1The National Center for Supercomputing Applications at the University of Illinois

currently uses more than 3MW of power. The planned National Science Foundation

petaflop supercomputer may require upwards of 20MW.
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ited to specific signal processing applications or other specialized algorithms.

However, it is certainly possible [6] that reconfigurable computers may be-

come important technology for more general high performance computations,

and in particular scientific simulation and computation.

1.2 Objectives

In this thesis we aimed to investigate the state-of-the-art in reconfigurable

computing, and analyze the ability of current reconfigurable computing tech-

nology to perform scientific computations. Methodology for developing soft-

ware for reconfigurable computers was also to be investigated.

These overall objectives are now described in more detail.

1.2.1 Investigate the State-of-the-art in Reconfigurable

Computing

A sizeable number of academic and commercial projects have been attempted

over the past decade, with the intention of furthering the use of FPGAs, and

more generally reconfigurable computers, in computationally intensive envi-

ronments outside of signal processing. Academic projects include SPLASH

from the early 1990s [4], the MIT FPGA-based Cellular Automata Machine

from the mid-1990s, the Berkeley Emulation Engine (BEE) and its succes-

sor, BEE2 [6], and Brigham Young University and Boston University’s ef-

forts, amongst others. Commercial offerings now include those from Cray2,

SGI, SRC, Nallatech and Linux Networx. Xilinx, the world’s leading FPGA

manufacturer, has also recently demonstrated its own compiler efforts for a

high-level language for programming its FPGAs.

One of the broader aims of this thesis was to survey the current state-of-

the-art in reconfigurable computing, to look for key differences between the

2The current understanding in the industry is that Cray is discontinuing its XD1 line

of reconfigurable computers, but may licence to third parties the technology it acquired

from Octigabay that led to the development of the Cray XD1.
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available technologies, and provide a review of what a researcher new to the

area needs to know.

1.2.2 Implement Scientific Computing Algorithms on

Reconfigurable Computers

A core aim of the thesis is the implementation of several scientific computing

codes on a reconfigurable computer. We aimed to identify several scientific

computing problems that are computationally intensive, and of interest to re-

searchers in South Africa, and rewrite them for execution on a reconfigurable

computer. This, of course, implies the need to investigate how to develop

software for reconfigurable computers.

The specific problems we chose to implement are: Monte Carlo Simula-

tions; Cellular Automata Simulations; Edge Detection (Image Processing)

and Macromolecular Docking.

1.2.3 Analyze the Performance of Scientific Applica-

tions on Reconfigurable Computers

For each problem implemented on a reconfigurable computer, we aimed to

analyze the performance of the implementation on the reconfigurable ver-

sus its performance on a classic x86 microprocessor architecture. We also

aimed to investigate how performance on reconfigurable computers scales.

Finally, we aimed to analyze the performance and available resources to de-

termine which aspects of current reconfigurable computers are performance

bottlenecks.

1.2.4 Provide Guidance on the Methodology for De-

veloping Software for Reconfigurable Computers

During the implementation of algorithms on a reconfigurable computer, we

expected to find some effective method for parallelizing and porting code.
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We also expected to encounter a series of technical difficulties, given the

immature nature of the technology, and aimed to provide a brief reference in

this thesis that gives our solutions to common problems one might encounter

when porting code.

1.3 Motivation for Problems Studied

As we have mentioned, we implemented four different types of algorithm on

reconfigurable computers during our study. These were Monte Carlo Simu-

lations; Cellular Automata Simulations; Edge Detection (Image Processing)

and Macromolecular Docking.

In selecting algorithms to implement, one of our broad objectives was to

pick those that would be of interest to researchers in South Africa. The first

three problems that we selected are very broad, and naturally satisfy this

criterion: Monte Carlo simulations are used in a wide variety of scientific

computing areas, including computational chemistry and physics, as well as

financial mathematics. Cellular automata are less widely used than Monte

Carlo simulations, but have equally broad application, as Wolfram [10] has

demonstrated. Image processing algorithms, including edge detection, are

also widely used in industry in South Africa, and there are several research

groups in academia and industry that work extensively with such algorithms.

Macromolecular docking is a far more specific application than the pre-

ceding three. It is under active study as part of the National Bioinformatics

Network research programme, and is an important research topic in experi-

mental techniques for structural biology.

In selecting the algorithms to implement, we also aimed to pick a set

of algorithms that were dissimilar, so that we could observe how different

types of algorithms performed on reconfigurable computers. In our study

of Monte Carlo simulations, we implemented a simple estimator of π that

wasn’t very floating-point calculation intensive, and a financial options pric-

ing simulation, which was quite floating-point calculation intensive. Neither
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of these applications were data intensive. The cellular automata models we

implemented were both discrete, and did not involve any floating-point cal-

culations. Relatively large amounts of data did, however, need to be handled.

The edge detection algorithm was also data-intensive, and involved only in-

teger arithmetic. Its advantage was that is performance on FPGAs and on

microprocessors is fairly well known, so it provides a good basis for compar-

ison. Finally, the docking problem involves a large amount of floating-point

calculation, a significant amount of data processing, and is a fairly compli-

cated algorithm. The complexity of the problem tests the feasibility of using

current reconfigurable computing systems to speed up such large problems.

1.4 Thesis Outline and Summary

This thesis is organized in the following manner:

Chapter 2 provides an overview of the use of FPGAs for solving scientific

computing problems, from SPLASH through to the current state-of-the-art

in projects such as BEE2 and SRC’s MAPstation. We briefly explore why

FPGA-based computation may be more efficient than that with regular mi-

croprocessors, going into the benefits of spatial parallelism in FPGAs, and

the higher computing intensity afforded by FPGAs because computing en-

gines are hard-wired for the problem being solved.

Chapter 3 presents our development of Monte Carlo simulation applica-

tions on a reconfigurable computer. Specifically, we present an implementa-

tion of a parallel pseudorandom number generator, and its use in two Monte

Carlo simulations: one that is an estimator of π, and a second that performs

an options pricing simulation from financial mathematics.

We found that methods for parallelizing pseudorandom number genera-

tion that have been used on other high performance parallel architectures

(such as the Percus-Kalos implementation for the NYU Ultracomputer [24],

6



and the de facto standard random number generation library for clusters,

SPRNG [23]) can be applied to reconfigurable computers.

Our simulation to estimate π involves only a few floating-point calcula-

tions beyond the generation of random numbers, and our most optimized

design and implementation on the SRC-6 MapStation was able to deliver a

6x speedup over the same code running for the same number of iterations on

just the MAPstation’s CPU (i.e. no FPGA acceleration). This 6x gain was

achieved by running 30 simultaneous ‘processing engines’3 over two Virtex II

Pro FPGAs.

Our options pricing simulation was necessarily far more floating-point cal-

culation intensive, and was a more complicated algorithm, and performance

suffered as a result. Only one engine could be fully fit in a single FPGA

design, with two engines fitting and functioning correctly only if the clock

frequency of the FPGA was reduced. Performance on the reconfigurable com-

puter was 5x worse than that of the MAPstation’s CPU for a single process-

ing engine running on a single FPGA. We determined that even if timing

requirements could be met without lowering the clock rate, the performance

of the reconfigurable computing implementation, using two FPGAs, would

only approach parity with the pure microprocessor implementation.

Chapter 4 presents our development of Cellular Automata simulations

on a reconfigurable computer. We begin with a discussion of the design to

implement Conway’s Game of Life, a simple cellular automaton. Cellular

automata have been successfully parallelized on cluster computers, and we

show in this chapter that the data parallelization strategy can be successfully

employed on a reconfigurable computer. We note that when implementing

data parallelization, or indeed implement any data-intensive computation on

a reconfigurable computer, the program should be carefully designed to allow

3A processing engine can be thought of as an individual part of an FPGA design that

collectively, with other processing engines, provides the parallelism that is used to obtain

speedups.

7



quick, concurrent access to the data by multiple processing engines.

A Game of Life simulation on a grid that could fit into FPGA Block

RAM was speed up by a factor of 4x on the reconfigurable computer, us-

ing approximately 70% of the resources available on a single FPGA. Five

processing engines were placed in this design. Compiler issues, elaborated on

in this chapter, hindered development, but the performance results indicate

that performance scales well with the number of processing engines.

The Game of Life codebase was used as a starting point to implementing

the more complicated FHP-III [36] lattice gas automata simulation algo-

rithm. Lattice gas automata models allow us to model fluid dynamics on a

lattice using a discrete model. The state transitions are more complicated

than for Conway’s Game of Life — each lattice point has seven state para-

meters instead of just one — and hence significantly more logic is required to

implement the cellular automata rules for lattice gas. Five processing engines

were fitted onto a single FPGA, using up 57% of the FPGA’s slices, and this

implementation yielded a 1.7x speedup.

Chapter 5 presents our implementation of a simple edge detection al-

gorithm, from the digital image processing domain. We note that the 2D

convolution used in Sobel Edge Detection [41] can be implemented in a way

that is quite similar in some respects to the implementation of the Game

of Life cellular automaton. Our implementation of edge detection on a sin-

gle image results in a 2.1x slowdown on a reconfigurable computer versus a

standard microprocessor. However, there is a large overhead in loading the

FPGA design and transferring data between the CPU and FPGA. When

comparing just the compute time of a reconfigurable computer versus that

of a microprocessor, we saw a 1.67x speedup, using three processing engines.

Chapter 6 presents our implementation of an algorithm for automati-

cally docking macromolecular structure models into electron density maps

acquired using cryo-electron microscopy [46]. We analyze the algorithm, and
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devise a suitable parallelization scheme and partitioning of the algorithm be-

tween the CPU and FPGA. We provide an account of our efforts to port this

fairly sizeable application code to the reconfigurable computing platform,

and note the major pitfalls encountered.

Chapter 7 is the conclusion and reflects on the current state of reconfig-

urable computing hardware and software, with analysis done based on the

investigations carried out during this thesis. We also comment on the present

state of reconfigurable computing software tools, and look at where improve-

ments to the compilers and libraries may result in a software stack that is

usable to application scientists without in-depth hardware knowledge.
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Chapter 2

An Introduction to

Reconfigurable Computing

Reconfigurable computing is a broad area of study that involves the investi-

gation of the use of hybrid FPGA-CPU architectures to speed up computa-

tionally intensive algorithms and problems [1]. The use of field programmable

gate arrays (FPGAs)1 in conjunction with microprocessors allows reconfig-

urable computers to offer much of the flexibility of a general-purpose com-

puting architecture, but at the same time provide many of the performance

benefits of having an algorithm implemented in a hard-wired chip.

In this chapter we provide a brief overview of the state-of-the-art in the

field, as it presently stands. We can recommend Compton and Hauck’s review

article [1] to readers interested in finding out about the field in more depth.

Reconfigurable computing has existed as an active field of study since

the early 1990’s, although the idea of using reconfigurable hardware to build

a high performance, general purpose2 computing device has existed since

1FPGAs can be thought of at the most basic level as arrays of logic gates that can

be rewired in software. This is a very large simplification though — modern FPGAs are

highly complex devices that incorporate not only arrays of lookup tables and logic, but

also onboard memory and in the Xilinx Virtex family, even Power PC microprocessor

cores!
2Here ‘general purpose’ is used in the sense that the device is not designed for a specific
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Estrin et.al. suggested it in 1963 [2].

2.1 Reconfigurable Computing Hardware

Reconfigurable computing hardware relies fundamentally on technology that

already exists: FPGAs and microprocessors. The design of the hardware for

a reconfigurable computing system is currently a process of selecting which

FPGAs and microprocessors to use, and designing an interconnect to join

them. The term ‘reconfigurable computer’ is sometimes used for systems

that barely even involve microprocessors, and are just collections of FPGAs,

such the Berkeley Emulation Engine [3].

The pioneering reconfigurable computing hardware projects were SPLASH

[4] and SPLASH 2 [5]. These projects showed the feasibility of building gen-

eral purpose computing platforms using FPGAs, coupled with microproces-

sors. One of the major impediments to the adoption of reconfigurable com-

puters is not the hardware, but rather the software environment. Although

the present hardware is somewhat lacking in its capability to support scien-

tific computations, as we will see later in this thesis, one of the motivating

factors behind reconfigurable computing is that FPGA hardware is predicted

to improve far faster than microprocessor technology [6]. Figure 2.1 shows

how the computational density of FPGAs has been growing compared with

that of Intel microprocessors.

application alone, as is the case with an ASIC, but rather that it can adequately run any

number of different programs. ‘General purpose’ here does not mean that the device is

likely to find use in the average computing scenario.
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Figure 2.1: Computational density of FPGAs and Intel microprocessors. Im-

age from ref. [6].

2.1.1 Where do reconfigurable computers get their speed

from?

FPGAs typically run at clock speeds that are an order of magnitude, or more,

slower than high-end microprocessors3. At first glance it seems counterin-

tuitive that FPGA-based devices can offer a computational advantage over

microprocessors.

A reconfigurable computer can obtain a speed advantage over a micro-

processor system primarily due to three factors:

1. Intensity. CPUs can, at best, perform an integer operation every

two clock cycles [7]. This is in the best case, when there are no cache

issues, the pipeline is working as it should, and so on. The worst case is

significantly worse. FPGAs only need to implement the functionality

that is needed for the particular aplication at hand, which results in

3For example, in the SRC-6 reconfigurable computer, the FPGAs are clocked at

100MHz, and the microprocessor in the system is clocked at 2.8GHz.
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far less complicated logic (for example, there is no need for a Control

Unit, fully-functional ALU, etc.).

2. Low latency. Memory on and near the FPGA can be accessed in just

a few clock cycles, and with an FPGA you have a far more fine-grained

control over where your data in memory is located than you do with

a CPU. The low latency of memory access is one of the contributing

factors to increased intensity, since the FPGA spends less time waiting

for data during computations, on average, than a CPU will.

3. Spatial parallelism. We can generate one small, special-purpose

pipeline for performing a particular computation, and then replicate

it across the FPGA chip.

When designing programs for reconfigurable computers it is important to

consider these factors, to make sure that a design exploits the advantages of

FPGAs where possible.

2.2 Reconfigurable Computing Software

The principle drawback of using FPGAs for general-purpose computation

has traditionally been the lack of software support. Design tools for FPGAs

have been created with hardware design engineers in mind, not software ap-

plication developers. However, in the past decade a large amount of work has

been done on developing compiler techniques to convert high level language

code (such as C code) into efficient hardware description language code.

In 1995, Gokhale and Schott [8] ported the data parallel C language to the

SPLASH reconfigurable platform. A variety of research projects have since

started that have investigated how to translate high level language code that

is typically written with a serial architecture in mind to the intrinsically

parallel hardware description languages VHDL and Verilog.

Several high level languages and compilers are now available from in-

dustry vendors, many of them as offshoots of the initial academic efforts.
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They include SRC’s MAPC language and compiler, Handel C, Impulse C

and Mitrion C, amongst others.

In this thesis we develop software primarily for the SRC-6 reconfigurable

computer using the MAPC language and Carte development environment.

2.3 Measuring Performance in Reconfigurable

Computing Systems

The measurement of performance of a reconfigurable computing system run-

ning a particular software program does not yet have a standard interpre-

tation. This leads the performance results that various groups and vendors

release to be non-comparable.

The problem arises because the total amount of time taken to run an

application on a reconfigurable computer is not the same as the amount

of time it takes for the computation to complete on the FPGA. Figure 2.2

illustrates this.

Figure 2.2: Measurement of processing time for an application running on a

reconfigurable computer. Image from ref. [9].

For short computations, the amount of time it takes to load the FPGA

design and transfer data into the FPGA, and then transfer data back to

the CPU, may be non-negligible. In this thesis we always report the overall

application time unless otherwise noted.
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2.4 Conclusion

In this chapter we have provided an overview of what reconfigurable com-

puting is, where it has come from and why it shows promise for the future.

We have also explained why reconfigurable computers can offer performance

advantages over traditional microprocessor architectures for some problems.

We have mentioned the brief history of software technology for reconfigurable

computers, and have explained how we measure the performance of reconfig-

urable computing applications throughout this thesis.
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Chapter 3

Monte Carlo Methods on

Reconfigurable Computers

Monte Carlo methods have been an extremely useful and important tool for

computational scientists since the birth of computational science in the 1940’s

and 1950’s [11]. Today Monte Carlo methods are used to solve computational

problems in physics, biology, chemistry, finance and operations [12], amongst

other fields.

In Appendix A we provide a self-contained review of Monte Carlo methods

that includes all the material required to follow what we have done in our

investigations of Monte Carlo methods on reconfigurable computers.

In this chapter we present our development of two Monte Carlo simulation

applications for the SRC-6 MapStation reconfigurable computer. We also

report our performance results, with comparisons to performance on a regular

microprocessor architecture.

3.1 Monte Carlo Methods

Monte Carlo methods provide a computational complexity advantage over

deterministic numerical methods by sampling randomly from a state space

R of dimension d, whereas a deterministic method will typically sample uni-
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formly from R, and the number of samples it requires will necessarily grow

with the dimension d [15]. The simplest expression of this can be seen in the

evaluation of the following integral:

I =

∫
R

f(x)dx,

Monte Carlo integration will draw random samples x(1), ...,x(N) from R,

and from these an estimate of I, Î can be made:

Î =
1

N
{f(x(1)) + · · ·+ f(x(N))} =

1

N

N∑
i=1

f(x(i))

Now in the limit N →∞, as a result of the Law of Large Numbers [12],

Î → I:

lim
N→∞

1

N

N∑
i=1

f(x(i)) = I.

The error in the estimate Î is O( 1√
N

). i.e. The error depends only on

the number of samples drawn, not on the dimension of the region that was

being sampled from. The error in estimates using deterministic methods

does depend on d, so high-dimensional problems are often best solved using

Monte Carlo methods.

The essence of Monte Carlo methods is the sampling of values from a

uniform distribution. Implementation of Monte Carlo methods clearly relies

on the ability of a program to generate random numbers from a uniform

distribution, and then perform simple arithmetic operations on them.

3.2 Monte Carlo Estimation of π

Our first Monte Carlo simulation is merely a proof-of-concept: we aimed to

build a simulation that would estimate the value of π. This is a standard

example of Monte Carlo that is routinely used to introduce the required

concepts, which avoids the need for any specialist domain knowledge. The
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Monte Carlo π estimator, however, requires all the infrastructure that is

needed to tackle more complex problems.

We note that if we draw (x, y) pairs randomly from [0, 1]2, then there is

a relationship between the values drawn and the value of π. Specifically, if

we consider each (x, y) pair as a point on a cartesian plane, and we draw a

quarter circle on the plane (with the circle’s origin at (0, 0), and radius 1),

then the ratio of the points that have fallen inside the quarter circle to the

total number of points drawn (when this number is large) is related to the

value of π as follows:

H

N
=

π

4
,

where N is the total number of pairs drawn, and H is the number of pairs

(x, y) where x2 + y2 < 1.

Figure 3.1: Scatter plot of (x, y) pairs randomly sampled from [0, 1]2.
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Given this knowledge, we can form an estimator of π as follows:

π̂ = 4 · H

N
.

If we let N →∞, then π̂ → π. Thus in order to estimate the value of π,

we simply need to draw a large number of samples from [0, 1]2 and count the

number H that fall within the quarter circle with radius 1.

3.2.1 Implementation of a Parallel Pseudorandom Num-

ber Generator

Clearly we need to have a way to generate random samples from [0, 1]. More

specifically, we need to be able to generate uncorrelated samples from [0, 1]

in parallel. That is, we would like to have multiple ‘streams’ of random

numbers being generated in parallel.

Appendix A provides an overview of the theory of parallel pseudorandom

number generation. We use the fact that it is possible to generate numbers

on a deterministic machine that can pass statistical tests for randomness,

even though by definition such numbers cannot be random. In our imple-

mentation, we use one of the oldest and most popular pseudorandom number

generators, the linear congruential generator (LCG) [21]. Furthermore, we

implement a parallelisation of the LCG that is implemented in the cluster

computing random number generation library, SPRNG [23].

We wish to generate a sequence of random numbers (Xn)n∈N. A linear

congruential generator is defined by the recurrence relation

Xn = (aXn−1 + b) mod m

and the parameters X0 (the seed), the multiplicative constant a, the ad-

ditive constant b and the maximum period m. If m is a power-of-two, then

we can define a set of additive constants
{
b(i)
}
, where b(i) are pairwise rel-

atively prime, so that if i = 1, . . . , N , then we can generate N independent

sequences indexed by i,
(
X

(i)
n

)
n∈N

where
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X(i)
n =

(
aX

(i)
n−1 + b(i)

)
mod m.

Design and Implementation

We designed a program that implements these recurrence relations in par-

allel on an FPGA. Each recurrence relation, with its particular parameter

b(i), is implemented as a separate piece of logic in the FPGA, and operates

independently of the others. This is shown in Figure 3.2.

Figure 3.2: Processing engines in the FPGA, each independently generating

pseudorandom numbers.

We implemented this setup both on the SRC-6 MapStation using the

Carte environment, and with Mitrion-C. The Mitrion IDE provides a full

clock-accurate simulator. Figure 3.3 shows the data dependency graph during

simulation for three parallel generators, each running 10000 iterations. In this

particular instance, the seed X0 is set to 3157 for all three engines.
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Figure 3.3: Simulation of a set of 3 parallel pseudorandom number generators.

Each processing engine has a for loop, which is implementing the LCG

recurrence relation, as shown in the detail in figure 3.4.

Here m = 264 = 18446744073709551616, and the variable x stores the

value corresponding to Xn in the recurrence relation.

We implemented the parallel pseudorandom number generator on the

SRC-6 MAPe module, which contains two Xilinx Virtex II Pro FPGAs. Each

processing engine is created in MAPC code using the #pragma src parallel

sections directive. After successfully implementing 15 processing engines

on the first FPGA, we modified our design to use both FPGAs. Figure 3.5

shows the top-level view of the design. Since DMA memory transfers can

only be made from CPU memory into the primary FPGA, we pass all 30

b(i) parameters to the first FPGA, which then transfers the 15 parameters

needed by the 15 processing engines in the secondary FPGA over the bridge

between the two FPGAs. Since we wish to reduce the number of clock cycles

required per loop iteration as much as possible, the parameters in onboard

memory are moved to static variables (which are implemented in the FPGA

fabric). The reason for doing this is twofold — firstly, we would like each

processing engine to operate independently, and having each engine access

the onboard memory every iteration will result in contention for the memory,

forcing some engines to wait while one reads its value from memory. Secondly,
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Figure 3.4: The operation of a single processing engine.
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reads to onboard memory (and indeed even Block RAM) are relatively costly.

However, reads to static variables implemented in the fabric require only 1

clock cycle. Thus by storing the parameters in static variables, we reduce

the latency as much as possible.

Figure 3.5: Top-level design for random number generators on two FPGAs.

Since we are just generating random numbers and there are no results

being computed, we have nothing to send back to the CPU. However, when

we implement a Monte Carlo simulation that uses this PRNG design as its

basis, we will be able to transfer results from the second FPGA to the first

over the bridge, and from the first FPGA to the CPU using a DMA transfer.

Results

In addition to the MAPC implementation, we created a standard C imple-

mentation of the random number generator for execution on an x86 CPU.

We used this implementation to check the correctness of the MAPC imple-
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Table 3.1: Results of statistical tests for quality of a pseudorandom sequence

generated by 15 processing engines.

Test Result

Entropy 7.999704 bits per byte

χ2 value 1231.02

χ2 test p-value 0.0001a

Arithmetic Mean 127.4234

Error in estimation of π 0.17%

Serial Correlation Coefficient 0.017665

aThis means that the χ2 value would be exceeded randomly 0.01% of the time.

mentation, by executing both and verifying that both produced identical

results.

A high quality random number sequence is essential for Monte Carlo al-

gorithms, so we tested to make sure that the sequences we generated passed a

set of standard tests for randomness. Specifically, we used Walker’s Ent pack-

age [20], which implements Knuth’s tests [21] for randomness. An overview

of the methods for assessing the quality of pseudorandom number sequences

is available in Appendix A, which includes discussion of Knuth’s serial cor-

relation, χ2 and entropy tests.

A sequence of 3000000 bytes, generated using 15 processing engines (i.e.

15 parallel streams), was analyzed with Ent, and the results are shown in

Table 3.1. These results indicate a very favourable analysis of the randomness

of the data generated. More information on what each test does, and how to

interpret the results, is given in Appendix A.

24



3.2.2 Design and Implementation of the Monte Carlo

π Estimator

With a parallel pseudorandom number generator implemented and ready to

be used, it is fairly easy to extend the design to implement a Monte Carlo

simulation that estimates π.

As we have already discussed, the algorithm idea is to draw random

numbers from [0, 1]2, and then determine the number of points drawn that

fall within the unit quarter circle. We can do this by drawing a value x from

[0, 1], and y from [0, 1].

Our pseudorandom number generator generates integers between 0 and

m, where m is the period of the generator. Thus we see that we can generate

a floating-point number between 0 and 1 simply by taking a random number

Xn ∈ {0, 1, . . . ,m} and dividing it by the period. Thus we have x = Xn/m.

We can then use y = Xn+1/m.

We need to maintain a count of how many (x, y) pairs satisfy the condition

x2 + y2 < 1. We call a pair that satisfies this condition a ‘hit’. To parallelize

the problem we can make each processing engine draw pairs in parallel. Each

processing engine must maintain a count of how many of the pairs it drew

were hits. Figure 3.6 shows the flow diagrams of the algorithms implemented

in the processing engines. Once all p processing engines have completed a

run of a set number of simulations, say N , then the count of hits from each

engines can be summed. If we call this sum H, then π̂ = 4 · H
pN

.

We implemented both a single-FPGA 15 processing engine version, and

a 30 processing engine version of the simulation, which spanned two FP-

GAs. The two-FPGA version used the same architecture as the two-FPGA

random number generator (see Figure 3.5), and the bridge between the two

FPGAs was used to transfer the hits counts from the processing engines on

the secondary FPGA to the primary FPGA1. Table 3.2 shows the FPGA

resources used on the primary and secondary FPGAs in the 30 processing

1More specifically, the hits counts on the secondary FPGA were summed, and this sum

was transferred to the primary FPGA, which then added this subtotal to its own.
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Figure 3.6: Processing engines each performing N simulations to estimate π.
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Table 3.2: Place and Route results for a two-FPGA, 30 processing engine

Monte Carlo simulation to estimate π.

Primary FPGA

Resource Used Available % Used

Slice Flip Flops 50,152 88,192 56%

4 input Lookup Tables 35,354 88,192 40%

Occupied Slices 35,794 44,096 81%

Hardware Multipliers 216 444 48%

Secondary FPGA

Resource Used Available % Used

Slice Flip Flops 44,180 88,192 50%

4 input Lookup Tables 34,659 88,192 39%

Occupied Slices 32,899 44,096 74%

Hardware Multipliers 144 444 32%

engine version.

Figure 3.7 shows the FPGA resources used as we scale up the number of

processing engines. We see that the required number of hardware multipliers

scales exactly linearly with the number of processing engines used. We ex-

pect this, since multipliers shouldn’t ordinarily be need for ‘infrastructure’,

and should be purely dependent on the number of multiplications done in the

code. The other resources scale almost linearly with the number of processing

engines used. The relationship is not perfectly linear since some of the re-

sources are used in infrastructure for getting data into and out of the FPGA,

and so on. Thus the number of slices used when two processing engines are

placed is less than double the number used when just one processing engine

is placed. Another factor to consider is that the Xilinx Place and Route tool

doesn’t necessarily generate an optimal solution, and if there is suboptimal

use of resources, then we can’t expect exact linear scaling.
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Figure 3.7: Percentage of FPGA resources used on a single FPGA, as a

function of the number of processing engines included.
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3.2.3 Performance Results

We implemented a functionally identical copy of the π estimator program

for the SRC-6 in standard C, for execution on an x86 processor, so that

performance could be compared. In this section, we present the performance

results from both the x86 implementation, and the SRC-6 implementation.

We also show how the performance of the SRC-6 implementation scales with

the number of processing engines used.

Figure 3.8 shows the speedup obtained using the SRC-6 over a conven-

tional x86 microprocessor architecture for the Monte Carlo simulation, using

15 processing engines. Here we define the speedup s as: s = tCPU

tRC
, where tCPU

is the time taken for a task to complete on our x86 platform, and tRC is the

time taken for the functionally equivalent task to complete on our reconfig-

urable computing (SRC-6) platform. Figure 3.9 shows the speedup obtained

using the SRC-6, using both FPGAs in the MAPe module, and a total of 30

processing engines — 15 engines on each FPGA. With just one FPGA, we

obtain a speedup approach 3x, and with two FPGAs, we obtain a speedup

approaching 6x. Given that one FPGA produces a speedup s, we expect n

FPGAs to produce a speedup ns, since there is no communication between

processing engines, and no communication between the FPGAs until each

engine has completed its simulations.

In both Figures 3.8 and 3.9 we see that the speedup for a smaller number

of iterations is lower than for larger numbers of iterations. This is the case

because the total time for the simulation to run to completion is less than 5

seconds, and the amount of time it takes to load the FPGA design becomes

significant (Figure 2.2 shows the constituents of the completion time of an

application).

Figure 3.10 shows how the performance of the simulation scales with

the number of processing engines used. The number of iterations was kept

constant at 1.5 × 109 = 1500000000. In this figure the speedup is defined

as the completion time of a design with i processing engines, divided by the

completion time of the design with one processing engine, running the same
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Figure 3.8: Performance of Monte Carlo estimation of π on an SRC-6 MAPe

with 15 processing engines, using one FPGA, compared with that of an x86

processor.
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Figure 3.9: Performance of Monte Carlo estimation of π on an SRC-6 MAPe

with 30 processing engines, using two FPGAs, compared with that of an x86

processor.
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simulation. We see that there is a very nearly linear relationship between

the speedup and the number of processing engines used. This figure also

very clearly illustrates that without the parallelism enabled by the FPGA,

and this favorable performance scaling relationship, we would not see the

performance gains shown in Figure 3.8.

Figure 3.10: Performance of Monte Carlo estimation of π on an SRC-6 MAPe,

using one FPGA, as a function of the number of processing engines used.

3.3 Monte Carlo Options Pricing

An important area in financial mathematics and financial engineering is that

of options pricing [26]. An option is a financial device that gives a party (the

holder) the opportunity to either sell or purchase an asset at a particular

price on any date in a set of dates in the future. This party will pay for the

right to have this opportunity — he will purchase the option from a writer. A

32



call option gives the holder the opportunity to buy an asset, and a put option

gives the holder the opportunity to sell an asset. The writer is obligated to

honor the decision of the holder of the option — either to buy or sell an asset

at the price specified in the option contract.

Clearly an institution that sells options to investors would like to calculate

the value of an option at its purchase date as accurately as possible. Unfortu-

nately the formulae that exist for pricing options often result in analytically

intractable expressions. Financial engineers resort to numerical methods to

solve them, and Monte Carlo methods are often used.

We have implemented a Monte Carlo algorithm to price a specific type

of option, an Asian option, which has no simple closed form expression [27].

3.3.1 Pricing Asian Options with Monte Carlo

An Asian option is an option whose payoff is determined by the average value

of the asset to which it pertains over the duration of the contract. This is

distinct from, for example, a European option, whose payoff depends on the

value of the asset on the expiry date alone [26].

In general, the payoff h of a call option can be described as follows:

h(K, S) = max (S −K, 0)

Here S is called the spot price and K is called the strike price. For a

simple option, such as a European option, the spot price is simply the value

(market price) of the underlying asset on the expiry date. In a European call

option, the strike price is the price that the holder can purchase the asset for.

Clearly if K < S, then it would be to the holder’s advantage to exercise the

option; the payoff would be S −K. However, if S < K, then if he exercised

the option, he would be purchasing an asset for more than it is worth. In

this case he would choose not to exercise the option, so his payoff would be

0.

For a put option, this is simply reversed, so the payoff h of a put option

can be described as
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h(K, S) = max (K − S, 0)

From now on, we will only work with call options, but the methods we

describe can easily be modified to apply to put options. We now present the

background from Haugh [28] that is necessary to understand the problem

we investigated. Haugh [28], Jäckel [29] and Glasserman [30] provide suit-

able introductions to Monte Carlo methods in finance for those interested in

learning more about this domain.

Assume we have an asset A with a value at time t, which we denote as At.

Let the expiry date of an Asian option be T days from the date the option is

written. The value of the asset will be recorded at a specific time on m days,

with regular intervals between recordings. The payoff of the option will then

be

h(X, K) = max

(
1

m

m∑
i=1

A iT
m

, 0

)

where X =
(
A T

m
, A 2T

m
, . . . , AT

)
. X is a vector of recordings of the price

of the asset at regular intervals. The payoff is dependent on an average of

the prices of the asset, rather than just the price of the asset when the option

expires.

The value of the option when it is written (i.e. at time 0) is

C0 = EQ
[
e−rT h (X)

]
where EQ [.] is the expectation value under the risk-neutral probability

measure. We now assume that the asset A is a stock. We can find an estimate

of the price C0, Ĉ0 for the Asian option by simulating many different paths

of the stock price over the relevant time period, and averaging the payoffs

that we can calculate based on each path.

What we need to do is generate a set of different possible paths that the

asset price At could take. A single vector X denotes a single path. Let us
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generate a set
{
X(1), . . . ,X(n)

}
of vectors X(i), such that each vector repre-

sents a path that the asset price could take, independent of the other paths.

Clearly there are infinitely many paths that the stock price can take, so it

is not possible for us to generate all possible paths. Instead, we choose to

generate random paths, and if the number of paths n is large enough, this

suffices. This situation is analogous to the classic Monte Carlo integration

scenario where we wish to evaluate a multidimensional integral, but sam-

pling uniformly from the region of integration and using regular numerical

integration techniques is too computationally expensive, so we instead draw

random samples from the region of integration and proceed from there.

Clearly each value in a vector X(i) is not independent of the others, so

we can’t simply draw them from some uniform distribution, as we might be

able to in other, simpler Monte Carlo simulations. Each path is modelled

as stochastic processes, specifically a Geometric Brownian Motion. We look

briefly now at how to simulate such a process.

A stochastic process {Xt : t ≥ 0} is a Brownian motion2 B (µ, σ) if

1. For 0 < t1 < . . . < tn, (Xt2 −Xt1) , (Xt3 −Xt2) , . . . ,
(
Xtn −Xtn−1

)
are

mutually independent.

2. For s > 0, Xt+s−Xt ∼ N (µs, σ2s), where N(a, b) is the normal distri-

bution with mean a and variance b.

A standard Brownian motion (SBM) is denoted as Bt, and is a Brownian

motion with µ = 0 and σ = 1. We assume that B0 = 0.

We note that if X ∼ B (µ, σ), and X0 = x, then

Xt = x + µt + σBt.

Thus we can generate a Brownian motion using a standard Brownian

motion.

2This is also known as a Wiener process.
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A stochastic process {Xt : t ≥ 0} is a geometric Brownian motion GBM (µ, σ)

if log (X) ∼ B (µ− σ2/2, σ). We call µ the drift and σ the volatility. If

S ∼ GBM (µ, σ) then

St = S0e
(µ−σ2/2)t+σBt .

We can see that to simulate S, it will suffice to simulate the standard

Brownian motion B. i.e. By generating the Bt for the required number

of steps, we can simply insert these values into the expression to find the

corresponding St, since all the other values are known.

To simulate Bti for t1 < t2 < . . . < tn, we simply do the following:

Set t0 = 0 and Bt0 = 0. For each i, generate X ∼ N (0, ti − ti−1) and set

Bti = Bti−1
+ X.

We have now described how we can price an Asian option, and have pro-

vided almost all the detail of which quantities a Monte Carlo simulation will

need to calculate. We have seen above that to generate a geometric Brown-

ian motion, we need to be able to draw samples from a normal distribution.

However, we have thus far only described our development of a pseudoran-

dom number generator that draws values from the uniform distribution. We

describe now how we can use these values to generate normally distributed

values.

3.3.2 Generating Normal Random Variables

We have an implementation of a pseudorandom number generator that draws

samples from U (0, 1). Several methods exist for generating samples drawn

from N (µ, σ) given samples drawn from U (0, 1). We use the Box-Muller

method, as shown in [28].

If we generate U1 ∼ U (0, 1) and U2 ∼ U (0, 1), then if we define Z =√
−2 log (U1) cos (2πU2), it can be shown that Z ∼ N (0, 1).

We note that if Z ∼ N (0, 1), then we can generate an X such that

X ∼ N (µ, σ) by setting X = µ + σZ.
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3.3.3 Design and Implementation

As we have noted, the options pricing algorithm we implemented required

the use of random variables drawn from a normal distribution. Thus we

needed to modify our pseudorandom number generator, which draws sam-

ples from U(0, 1), to generate samples drawn from N(0, 1). We implemented

the Box-Muller algorithm, and Figure 3.11 shows a set of data generated by

our implementation on the SRC-6, as compared to normal random variables

generated using MATLAB’s randn function. We see that our data set cor-

responds well to the histogram generated by a trusted normal distribution

generator. We ran the Lilliefors test for normality on our data, which con-

firmed that we should accept the null hypothesis that the data was taken

from a normally distributed population.

Figure 3.11: Histogram, with 500 bins, of 200000 random numbers gener-

ated on the SRC-6 (blue), and 2000000 random numbers generated using

MATLAB’s randn function, scaled (red).

With the capability to generate normally distributed random variables
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working, we were able to extend our program to generate a Brownian mo-

tion, and following that, a geometric Brownian motion. The remainder of

the options pricing algorithm is then relatively simple — we generate N geo-

metric Brownian motions in a loop, and for each, calculate if the generated

stock price path would have resulted in a positive payoff. The payoffs can be

averaged, and the option price can be calculated from that average.

Because every stock price path is independent of all the others, it is easy

to parallelize this algorithm — we simply have p processing engines each run

N path simulations, and we can average the payoffs once all the processing

engines have finished. Figure 3.12 shows the flow diagrams of the algorithms

implemented in the processing engines. The output is a sum of the payoffs

from each processing engine. Thus EQ [h (X)] = sum · p
N

. Therefore our

estimate of the option price C0 is Ĉ0 = EQ
[
e−rT h (X)

]
= e−rT · sum · p

N
.

Flattening Loops for Loop Optimization

The MAPC compiler in the SRC Carte environment automatically performs

some optimizations on the innermost loop in MAPC code. Specifically, it

creates a data dependency graph and creates a pipeline that is optimized to

the extent possible based on the constraints implicit in the data dependency

graph.

The MAPC compiler performed this optimization for our Monte Carlo π

estimator without any special effort on our part, but for our options pricing

simulation we needed to ‘flatten’ our loops to get maximum benefit from this

compiler capability.

If we have an inner and an outer loop, and would like the compiler to

optimize both, we need to somehow combine the loops, since the compiler

can only optimize the innermost loop. In our case we have a loop structure

as follows:

// Generate N paths to average over

for ( int i = 0 ; i < N; i++)

{
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Figure 3.12: Processing engines each generating N independent paths of

stock price movements to simulate possible payoff scenarios.
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// Generate m s toc k p r i c e s

for ( int j = 1 ; j <= m; j++)

{
// Generate s t o c k p r i c e at next t imes t ep

}
}

We need to flatten the loops so that the compiler can optimize both loops.

This is especially true in this case since m is likely to be relatively small, and

N large, so having the optimizations performed only on the inner loop will

not greatly improve performance. We flattened the loops as follows:

int i , j ;

for ( int count = 0 ; count < N ∗ m; count++)

{
i = count / m;

j = ( count % m) + 1 ;

// i and j now cy c l e through the same va l u e s as they

// did b e f o r e f l a t t e n i n g

}

The division and modulo operations are relatively expensive to imple-

ment, and it is preferable to use a counter with a ceiling value to obtain the

same result. MAPC contains a function, cg count ceil 32, with signature

void cg count ceil 32 (int en, int reset val, int reset en, int ceiling,

int *res); that implements such a counter. We could replace the division

and modulo operations in the flattened loop with the appropriate counters

and get the same result:

int i , j ;

for ( int count = 0 ; count < N ∗ m; count++)

{
c g c o un t c e i l 3 2 (1 , 1 , count == 0 , m, &j ) ;

c g c o un t c e i l 3 2 ( j == 0 , 0 , count == 0 , VAL LONG MAX, &i ) ;
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// i and j now cy c l e through the same va l u e s as they

// did b e f o r e f l a t t e n i n g

}

These counters increment in one clock cycle. Unfortunately they only

function correctly if there are no branches within the loop. We needed to use

several if statements within the loop, so we were forced to continue with the

division/modulo flattening method. In the following section, which shows

our performance results, Figure 3.13 shows the performance advantage that

was obtained by flattening the loop in a simulation with one single processing

engine, running on a single FPGA.

Build Results

Just a single processing engine consumes a considerable proportion of the

resources available on the MAPe FPGA, as shown by the Place and Route

report in Table 3.3. We see that nearly half the flip flop and lookup tables are

used, and more the half the available slices are used. We also note that even

though our algorithm doesn’t require a very large number of floating point

multiplications, with just one processing engine 13% of the integer hardware

multipliers are used.

We assume that the high percentage of flip flop, LUT and slice usage is

due primarily to the control flow that takes place in the algorithm. There are

necessarily numerous conditional statements, and we expect that everywhere

code branches, the MAPC compiler will have to create spatially distinct logic

in hardware that needs to be connected for signaling and data transfer. Thus

we conjecture that a considerable amount of the resources in the FPGA

is ‘wasted’ helping route signals and data, rather than performing useful

computations.

We attempted to compile a two-processing engine version of the simula-

tion, which was successful with the caveat that the clock speed of the FPGA

needed to be lowered. Specifically, table 3.4 shows the report from the Place

and Route. We see that nearly all the slices were needed. It may be surpris-
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Table 3.3: Place and Route results for a one-FPGA, one processing engine

Monte Carlo options pricing simulation.

Resource Used Available % Used

Slice Flip Flops 37,958 88,192 43%

4 input Lookup Tables 38,187 88,192 43%

Occupied Slices 28,048 44,096 63%

Block RAMs 3 444 1%

Hardware Multipliers 60 444 13%

ing at first glance that the Xilinx tools were able to generate a design that

fitted at all, given that the one-processing engine version used 63% of the

slices. However, the Place and Route algorithms used are genetic algorithms

for optimization, and in the case of the first build, the algorithms likely did

not find the smallest design possible, but rather just a design that satisfied

the constraints and that works. Secondly, even though the Xilinx tools were

able to find a design that fits for the two-processing engine version, this came

with the caveat that the clock speed had to be dramatically dropped — from

the regular frequency of 100MHz to a frequency of 56.1MHz. This will have

been necessary since routing from one physical end of the FPGA to another

end may have required a complicated path that could not operate at 100MHz.

Clearly this is a major problem, since we can at most hope for a 2x

speedup by having two processing engines, but now the clock speed is nearly

halved, so any speedup will be cancelled. We do, however, know that if the

number of slices were increased by a relatively small amount (at most, a 25%

increase would be necessary), the generated design would be suitable to run

at 100MHz, so for a 25% increase in the number of slices, we will likely get

nearly double the performance that we have with the present design on the

SRC MAPe FPGA3.

3The MAPe features two Xilinx Virtex II Pro FPGAs, and Xilinx has now already

released members of the Virtex-5 family, which feature sufficiently many slices.
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Table 3.4: Place and Route results for a one-FPGA, two processing engine

Monte Carlo options pricing simulation.

Resource Used Available % Used

Slice Flip Flops 68,581 88,192 77%

4 input Lookup Tables 70,564 88,192 80%

Occupied Slices 44,094 44,096 99%

Block RAMs 11 444 2%

Hardware Multipliers 113 444 25%

We also developed and built a version of the simulation that runs on both

FPGAs in an SRC MAPe module, in the same way this was achieved for the

Monte Carlo π estimator and illustrated in Figure 3.5. Since each FPGA

runs independently of the other throughout the majority of the simulation,

the resources required on each are very similar to those for the single FPGA

case. We built versions of the software that provided one processing engine

per FPGA, and two processing engines per FPGA, for a two-FPGA setup,

and the Place and Route reports showed very similar usage percentages, as

we expected. In both cases the Xilinx tools had to reduce the clock frequency

in the design to meet the timing requirements.

3.3.4 Performance Results

First we look at the difference in performance between a version of the al-

gorithm coded using unflattened, nested loops, and a version using flattened

loops. As we have explained, the MAPC compiler only optimizes the in-

nermost loop. In Figure 3.13 we see that the compiler is able to perform

optimizations that improve the performance of the code by approximately

22% if we flatten the loops. This test was done using only one processing

engine, on only one FPGA.

The performance of the flattened version is limited largely by the data

dependencies in the code. The algorithm is iterative, since the next value
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in a standard Brownian motion is dependent on the present value, and thus

the optimizations that the compiler can perform when building a pipeline

are restricted. This is reflected in the fact that each loop iteration requires

79 clock cycles.

As we might expect, the performance appears to scale linearly with the

number of iterations we perform. Here iterations refers to the number N of

paths we simulate. We ran the simulations with parameters T = 1 (year)

and m = 11 (months).

Figure 3.13: Performance of a Monte Carlo options pricing simulation on

an SRC-6 MAPe, using one FPGA, showing the speed difference between

unflattened loops and flattened loops.

Figure 3.14 shows that the SRC-6 implementation of the options pricing

simulation performs considerably worse than a standard C implementation

running on the MAPstation’s Intel Xeon 2.8GHz processor. If we run a sim-

ulation on a single FPGA on the MAPe module, with just one processing

engine, the time to complete the simulation takes approximately 4.8x longer

than on the CPU. If we use two processing engines on a single FPGA, we
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obtain only a slight improvement, since, as we explained in the previous sec-

tion, the design can only be run at 56.1MHz, which is nearly half the normal

clock speed. Thus we lose nearly all the advantage of having two processing

engines tackle the problem in parallel because each engine is running at just

over half the normal speed.

We have plotted estimates for completion time for two further scenar-

ios: firstly, two processing engines running on a single FPGA, and secondly,

two processing engines each running on two FPGAs. These estimates make

the assumption that the FPGA is sufficiently large that the designs can be

accommodated without the need to lower the clock speed4.

We see that even if we used a larger FPGA, which allows the design to

be placed such that they can run at 100MHz, the performance of the two

FPGA implementation (with two processing engines in each FPGA) would

not beat the performance of the CPU, although the speedup/slowdown would

approach unity.

3.4 Conclusion

We were able to successfully implement a parallel pseudorandom number

generator for the SRC-6 MAPstation reconfigurable computer, and use it as

a basis to develop two Monte Carlo simulations: an estimator of π, and an

options pricing calculation.

For the simpler simulation, the π estimator, we achieved a speedup of 6x

using two FPGAs and 15 processing engines in each.

For the options pricing simulation, we found that even with a larger

FPGA, the SRC-6 reconfigurable computing implementation would not be

able to rival the performance of the Xeon 2.8GHz CPU.

In both cases, the number of slices on the FPGA was the limiting factor

4We estimated in the previous section that at most 25% more slices per FPGA would be

required, based on our Place and Route results for the build of the one-processing-engine,

one-FPGA implementation.
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Figure 3.14: Performance of a Monte Carlo options pricing simulation on an

SRC-6 MAPe, compared with that of an x86 processor.
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in our ability to scale up performance. However, from the π estimator we saw

encouraging results that indicate that performance scales linearly with the

number of processing engines we can fit onto an FPGA. We also verified that

the resources required by a program scale nearly linearly with the number

of processing engines. Thus as FPGAs become larger, we will be able to fit

proportionately more processing engines onto an FPGA, and the performance

of the programs will grow proportionately.
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Chapter 4

Cellular Automata Simulations

on Reconfigurable Computers

Cellular automata are discrete models that operate according to a fixed set of

rules, uniform across space. Cellular automata were first extensively studied

by von Neumann [31], who founded the area of research while attempting

to find a simple system that could exhibit self-replication. Self-replication is

a common feature in biology, and von Neumann wanted to show that self-

replication needn’t result from an extremely complicated system and set of

rules.

Von Neumann was successful in finding a self-replicating system, and

since then cellular automata have been studied to model other complex be-

havior. Wolfram [10] has published a comprehensive volume that includes a

wide variety of examples of physical phenomena that can be modeled, with

a certain degree of success, using cellular automata. A particularly inter-

esting aspect of cellular automata is how a system with very simple rules

can exhibit extraordinarily complex behavior that is seemingly impossible to

predict (without actually simulating the system).

We now introduce cellular automata formally, following the presentation

in [32] for the one-dimensional case, and extending the definitions to the

two-dimensional case.
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4.1 An Introduction to Cellular Automata

A cellular automaton is a discrete model described by a space S, a set of

states Q, a function FS : QS → QS that describes how the system evolves in

time, and an initial configuration X ∈ QS. At time t ∈ N, the configuration

will be described by F t
S (X).

The function FS takes as input the present configuration of the system,

and outputs the configuration after one ‘timestep’. If we need to define FS in

a piecewise fashion for all possible configurations in QS we would not be able

to work with sizeable systems. The size of the space S, |S|, will typically be

far greater than 100, and the number of possible states, |Q| will be at least

2. This would mean having to define at least 2100 state transitions.

Instead of defining FS directly, we can define a local function f : Qn → Q

that acts locally on individual ‘cells’ in the space. This function can be used

across all cells in the space to obtain the same effect as FS.

4.1.1 One-dimensional Cellular Automata

For example, if we have a finite one-dimensional space S = {0, 1, . . . , N − 1},
with two possible states for each cell, i.e. Q = {0, 1}, the configuration at

timestep t + 1, X ′, may be calculated using the configuration at timestep t,

X:

X ′ = FS (X)

= FS

(⊗
i∈S

Xi

)
=
⊗
i∈S

f (Xi−a, . . . , Xi, . . . , Xi+b) .

Here Xi represents the state of the ith cell in configuration X. We have

thus been able to redefine FS in terms of the local function f : Qa+b+1 → Q.

f is the transition of the state of the ith cell, Xi, to the state of the cell

at the next timestep, X ′
i. The state X ′

i depends only on the state of the
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cell in the previous iteration, Xi, and the states of its a + b neighbours,

Xi−a, . . . , Xi−1, Xi+1, . . . , Xi+b.

The function f has only |Q|a+b+1 = 2n elements in its domain, where

n = a+b+1. The ‘size’ of the local function thus depends only on the number

of possible states that each cell can be in, and the number of neighbour states

that need to be considered when calculating the transition of a single cell.

We can now define the function f using a finite table. If a = b = 1,

then n = 3, the function can be defined using 23 = 8 mappings. In this

example, the state X ′
i depends on the previous state Xi and the states of the

two immediate neighbours of the ith cell. We can implement the rule that

the state of a cell should be flipped if its neighbors are in the same state1 by

defining the function as follows:

f(0, 0, 0) = 1 f(1, 0, 0) = 0

f(0, 0, 1) = 0 f(1, 0, 1) = 1

f(0, 1, 0) = 0 f(1, 1, 0) = 1

f(0, 1, 1) = 1 f(1, 1, 1) = 0

Thus if we have a configuration X = (0 1 0 1 1 0 0 1 . . . 0 1), we can

calculate the configuration at the next timestep using N evaluations of f —

one evaluation for each cell. For example, assuming zero-based indexing2 the

state X ′
1 can be calculated by evaluating f(X0, X1, X2) = f(0, 1, 0), which

we can see from the table is 0. Thus in the next timestep, the state of the

second cell3 of the automaton will switch from 1 to 0.

1More precisely, we wish to set X ′
i = 1−Xi if Xi−1 = Xi+1.

2i.e. The first cell has index 0, so if the cellular automaton is in configuration X, the

state of the first cell is X0.
3An issue surrounds how we should handle boundary conditions — the first and last

cells only have one neighbour each, and the local transition function requires input from

two neighbours. We typically just pretend that each of these cells has a second neighbour,

and that the state of that neighbour is some fixed, arbitrary value. For example, we may
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4.1.2 Two-dimensional Cellular Automata

Most cellular automata models that attempt to model some physical process

use two or more dimensions, since we more often than not would like to

investigate two- or three-dimensional physical systems. We can extend our

one-dimensional cellular automata definition to two dimensions fairly easily.

Again we have a set of states Q, and a space S, where S is now two-

dimensional. A global transition function FS : QS → QS can again be

redefined in terms of a local transition function f : Qn → Q. A configuration

X ∈ QS specifies the state of every cell in the two-dimensional space S, which

can now be thought of as a matrix, or grid of cells. We denote as X(i,j) the

state of the cell in the ith row and the jth column. Now we can find the next

configuration X ′ from the current configuration X using just local functions

by redefining FS as follows:

X ′ = FS (X)

= FS

 ⊗
(i,j)∈S

X(i,j)


=
⊗

(i,j)∈S

f
(
X(i−a,j−b), . . . , X(i,j), . . . , X(i+c,j+d)

)
.

The essential difference is that the local function now considers neighbours

in two dimensions rather than one. The transition from state X(i,j) in the

cell at position (i, j) to X ′
(i,j) now relies on the state X(i,j) as well as the state

of the cell ‘near’ it. Specifically, we define a rectangular grid around the cell

at (i, j). The topmost, leftmost cell in this grid is at position (i − a, j − b),

and the cell at the bottommost, rightmost cell in this grid is at position

(i + c, j + d).

choose the state 0, and can then calculate the time evolution of the first cell by evaluating

f(X−1, X0, X1) = f(0, X0, X1).
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4.2 Conway’s Game of Life

The canonical example of a cellular automaton is Conway’s Game of Life

(GoL) [33], which is a simple binary (two-state), 2D cellular automaton. In

GoL, a = b = c = d = 1; that is, the state X ′
(i,j) depends purely on the state

of the cell at the current time at position (i, j), and the states of the cell’s

immediate neighbours.

In GoL, the two states are labelled ‘dead’ and ‘alive’. We will call the

state 0, ‘dead’, and state 1, ‘alive’. The rules can be summarised as follows:

if a cell is alive, it will ‘survive’ (that is, remain alive) if the total number of

its immediate neighbours that are also alive is either two or three. If a cell

is dead, there will be a ‘birth’ (the cell will transition from dead to alive) if

the number of its neighbours that are alive is exactly three. If the number

of ‘alive’ neighbours a cell has is less than two, or greater than three, then

the cell ‘dies’ and will be dead in the next timestep. Figure 4.1 shows four

situations that demonstrate all three scenarios. In each case the centre cell

is the one whose transition we are considering.

Figure 4.1: Examples of Birth, Survival and Death in the Game of Life.

Clearly the transition function f can be specified by a piecewise defini-

tion with |Q|(a+c+1)·(b+d+1) = 29 = 512 entries. For example, the following

mapping (which represents a birth) may be defined:
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(0, 1, 1, 0, 0, 0, 0, 1, 0) ≡


0 1 1

0 0 0

0 1 0

 7→ 1

However, in practice when simulating the Game of Life, it is easier to

just apply the rules as we stated them above, and implement them by per-

forming a count of the number of neighbours that are alive, and then use if

statements to determine the transitioned state based on these counts.

This is not the case in general, and we will see later that another two-

dimensional CA, a lattice gas, is most easily implemented by just using a

lookup table that acts very similarly to f .

4.2.1 Design and Implementation

We designed and implemented a program to perform a Game of Life simula-

tion on the SRC-6 MAPstation. Our two primary considerations were how

we should go about parallelising the problem, and where we should place the

data.

Parallelizing Two-Dimensional Cellular Automata

Since the transition of a cellular automaton configuration from one timestep

to the next can be calculated using just applications of a local function,

cellular automata are excellent candidates for data parallelization. Data par-

allelization [34] is a classic parallelization scheme whereby a problem is par-

allelized by splitting up the input data, distributing it to different processors,

and having each processor perform the same function on the data it has been

sent. The results can then be merged once each processor is done.

Figure 4.2 shows a small Game of Life grid in some configuration. If

we wish to compute the next configuration, we need to loop through each

cell in the grid, and apply the Game of Life rules to it, to find the state

of the corresponding cell in the next configuration. Let’s say we have a set
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of processors4. We would like to divide the work so that each processor in

the set does an equal amount of work, and the next configuration can be

computed together faster than just one processor would be able to do it.

Figure 4.2: A grid representing a configuration in the Game of Life cellular

automaton.

One option is to divide the grid horizontally and vertically, as shown in

Figure 4.3. This, however, creates unnecessary communication overhead —

each processor will now have to communicate with two others, since each

subgrid borders two others. We obviously would like to reduce communica-

tion as much as possible, since communication results in wasted computation

time.

Another possibility is to divide the grid into horizontal ‘slices’, as shown

in Figure 4.4. This scheme is both simpler to implement, and had fewer

communications requirements. It also doesn’t place any restrictions on the

number of processors that can be used — the previous scheme doesn’t allow

for odd numbers of processors. We chose to use this data parallelization

scheme in our design.

If we consider each slice in the decomposition in isolation, we are unable

to apply the local transition function f to every cell. Specifically, every cell

4We use the word ‘processors’ here in the general sense — that is, it is an entity that

performs information processing, and may be a ‘processing engine’ in an FPGA; a physical

microprocessor, or indeed even a human following instructions.
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Figure 4.3: A grid decomposed into four subgrids, by dividing the grid ver-

tically and horizontally.

Figure 4.4: A grid decomposed into five subgrids, by dividing the grid into

horizontal strips.

55



that is on a border with another slice will be troublesome. For the small grid

in Figure 4.4, this is the case for every cell. Why are we unable to compute

f on cells that lie on the borders? For the Game of Life, f requires as input

the states of all the cell’s neighbours (as well as the state of the cell itself).

In every case, a cell’s neighbours on the same row will be ‘visible’. However,

if we are for example in the second slice, and wish to calculate the transition

of the third cell in the first row of the slice, we can see the states of the cell’s

neighbours on the same row, and on the row beneath it (which is also part

of the second slice), but the cells in the row above it belong to the first slice,

and are not visible.

This problem can be fixed by the introduction of ‘ghost regions’ — at

every border between slices, we insert two rows of cells, one ‘above’ the

border, and one ‘below’ it. In other words, each slice has a ghost, or buffer

region of one row of cells, placed above the topmost row of cells, and another

placed below the bottommost row of cells. We needn’t have buffer regions

at the top of the topmost slice, nor at the bottom of the bottommost slice,

although it does not harm to include them.

In these ghost regions, we place copies of the cell states from the corre-

sponding states on the other side of the border. Thus in the second slice, the

top ghost region will be a replica of the configuration of the bottommost row

of cells in the first slice. The bottom ghost region in the second slice will be

a replica of the configuration of the topmost row of cells in the third slice.

Figure 4.5 shows our Game of Life grid with ghost regions inserted. The

ghost regions are coloured light grey for cells that are dead, and a darker

grey for cells that are alive. With the ghost regions in place, every slice can

be processed independently of the others.

After every timestep, the ghost regions need to be updated. This is

because the cell states in the non-ghost regions reflect the next configuration,

but the ghost region cell states are based on the configuration before the

transition. To update, we simply take the top row of the second slice and

place it in the bottom ghost region of the first slice; take the bottom row
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Figure 4.5: A grid decomposed into five subgrids, showing the ‘ghost regions’

for each slice.
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of the first slice and place it in the top ghost region of the second slice,

and so on. In principle in shouldn’t matter which order we copy the new

configurations to the ghost regions in, but in practice we may need to be

more careful.

If each slice is processed by a separate processor, so slice 1 is on processor

1, slice 2 is on processor 2, and so on, then we can use the following updating

scheme: processor 1 sends the bottom row of slice 1 to processor 2. Processor

2 receives the row from processor 1, and then sends the bottom row of slice

2 to processor 3. This continues until we reach the last processor, p. Once

processor p has received the bottom row of slice p− 1, from processor p− 1,

it sends the top row from slice p to processor p − 1. Processor p − 1 then

sends the top row of slice p− 1 to processor p− 2, and so on. This continues

until processor 1 has received the top row of slice 2, from processor 2.

This scheme will avoid deadlock even if receiving calls are blocking. Fig-

ure 4.6 illustrates the synchronization scheme, with the order of operations

entered clockwise. Each circle node in the graph represents a processor,

which is responsible for a single slice of the grid.

Implementing Ghost Region Synchronization in MAPC

SRC MAPC provides a variety of language constructs to enable concurrent

programming, and communication between parallel sections. The #pragma

src parallel sections directive allows us to create parallel ‘processing

engines’. We can think of this directive as forcing an operation similar to

the Linux process programming model fork() and join() operations. Thus

when we start a region with parallel section we are effectively forking, and

then when end the region with parallel sections, we are joining the processes

back again5.

The first design for the program that we implemented is shown in Figure

5In practice, the SRC Carte environment simulator actually uses OpenMP to implement

parallel sections, and the programming model of OpenMP is nearly identical to that of

parallel sections in MAPC.
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Figure 4.6: Sequence of processor communication to synchronize ghost re-

gions, while avoiding deadlock.
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4.7. The overall idea behind the design is that we create multiple processing

engines, and each engine exists for the lifetime of the whole simulation. Each

processing engine is assigned a slice of the CA grid (one slice per process-

ing engine). The processing engines operate by performing a transition on

their slice from one configuration to the next, and then updating their ghost

regions by communicating with their neighbouring processing engines. The

synchronization scheme used is based on that shown in Figure 4.6.

There are various possibilities for implementing this design in MAPC.

The preferred technique is the use of streams. Streams in MAPC are uni-

directional, and are used to implement the producer-consumer pattern [38].

We first attempted to implement the design using (p − 1)(p − 1) streams,

one stream for each communication shown in Figure 4.6. For example, we

had a stream s 1 to 2 that was used to send the bottom row of the slice in

processor 1 to the ghost region in processor 2. Another stream, s 2 to 3,

was created to transfer states from processor 2 to processor 3. Another set

of streams was used to copy states in the other direction, from the top row

of processor i to the ghost region in processor i− 1.

The major issue with this setup is that we have no explicit mechanism

for ensuring that every processing engine is on the same iteration. We would

expect, in an idealized situation, that there would be no need for an explicit

barrier6, since each processing engine is doing identical work, implemented

using nearly identical logic. However, to begin with, the first and last process-

ing engines perform slightly less work than the others, since they only have to

communicate with one neighbouring processing engine each. In addition, the

compiler doesn’t guarantee that two functionally identical parallel sections

will be implemented in an indentical fashion in hardware, and will be started

on exactly the same clock tick.

To solve this, we problem we attempted to create our own barrier. We

6By ‘barrier’, we mean a point at which all processing engines should stop until all the

others have reached that point. We use the term in the same sense as the MPI Barrier()

function in the Message Passing Interface parallel programming API.
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Figure 4.7: Processing engine performing an N timestep simulation, using

the design that all communication is done between the processing engines.
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devised and implemented several schemes to this end. The first involved

designating the first processing engine as a ‘master process’, and making

it a ‘checkpoint’ for all the other processing engines. In this scheme each

processing engine must send a signal to the first processing engine once it

has finished updating its ghost regions. Each processing will then wait un-

til it receives a signal from the first processing engine. The first processing

engine waits until it has received ‘ready’ signals from all the processing en-

gines before sending out a signal to every processing engine to allow them to

continue.

An alternative scheme that we tried used shared variables, locked using

critical sections, to create a barrier. Each processing engine, once it has

updated its ghost regions, sets a flag on a shared variable marking it as

‘ready’. It then waits until all the flags from the other processing engines

are set. In this way all the processing engines reach a barrier until every

processing engine has set its flag. Each processing engine then resets its own

flag and continues.

In one other variation of this scheme that we tried we didn’t use any

streams, and relied solely on shared memory and variables. We will discuss

the layout of the data in more depth later, but a key feature is that we can

arrange the data so that any processing engine can access any other process-

ing engine’s data. The scheme then works like this: the first processing

engine accesses the cell data from the second processing engine and copies

the first row to update its own ghost region. It then copies its own bottom

row of cell data to the top ghost region in the second processing engine. Once

the first processing engine is done, it send a signal to the second processing

engine. The second processing engine then does the same for itself and the

third processing engine, and so on.

This, however, is no different than if we just had one processing engine

handle all the ghost region synchronization. We will see that this is ultimately

what we resorted to.

In all the above schemes we tried there were quirks that resulted in dead-
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lock, or just occasional anomolous behaviour. Our attempts to use streams,

critical sections and shared flag variables to create a barrier clearly go be-

yond what these langugage features were intended for. A different approach

to synchronization was required.

The design we switched to is shown in Figure 4.8. Whereas in the design

shown in Figure 4.7, we forked multiple processing engines once, in this design

we fork and join the processing engines once every iteration.

We can think of the design as having p processing engines and a separate

‘master process’ that orchestrates the computation. When the parallel sec-

tions region ends (i.e. when we effectively perform a join operation), we have

essentially created a barrier. This is intrinstic to the SRC parallel sections

implementation.

In this scheme we have the ‘master process’ update the data in the ghost

regions directly — it copies data directly from various arrays storing slice

data.

Data Layout

Data layout is a particularly important aspect of the program design, since

the time it takes a computation to complete can easily double, or worse, if

we make poor choices.

The onboard memory (OBM) banks take 5 clock cycles to read from.

If access onboard memory from within a loop, every loop iteration will be

slowed down by these accesses. Thus if we have 9 memory accesses in a loop

(which, in the simplest case, we will have since there are 9 cells whose values

need to be read per iteration — the cell we’re updating, and its 8 neighbours),

the loop will require at least 9× 5 = 45 clock cycles per iteration.

Loops should ideally be designed to use as few clock cycles per iteration

as possible. One of the simplest ways of improving matters is by moving

the data to memory that is quicker to access. We decided to store the grid

data in Block RAM (BRAM), which is on the FPGA. BRAM requires only

one clock cycle to access, so by making this design choice, we improve loop
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Figure 4.8: Processing engines performing an N timestep simulation. The

program forks processing engines, then joins them once every iteration.
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performance dramatically — from at least 45 clock cycles per iteration, to

at least 9 clock cycles per iteration.

Another issue we had to consider was that related to the parallelism in

the system. We would like the loops in each processing engine to run as fast

as possible. However, a single array defined in MAPC, which is realized in

BRAM, allows only one read to the entire array per clock cycle. Thus if

we used a single array to store the grid data, there would be contention for

access to the memory amongst the processing engines. Our solution was to

create a separate array for each processing engine. With this design, each

processing engine can access its own BRAM array once per clock cycle, and

it is not necessary for the programmer or the compiler to have to orchestrate

reads amongst the processing engines7.

Figure 4.9 shows the design of the system and the data flow within in.

The initial cellular automaton configuration is transferred from the CPU

to the onboard memory in the MAP module using a direct memory access

transfer. The data is then copied and distributed from the onboard memory

to the appropriate BRAM arrays8. The processing engines can then perform

the cell updates by reading from and writing to their BRAM arrays.

Once the simulation is finished, the data flows in the opposite direction:

the BRAM data is packed into an OBM bank, and from there a DMA transfer

is used to send it to the CPU.

A final issue to consider for cellular automata simulations in general, is

where one should store the lookup tables that define the transition function

f . In the case of Game of Life, however, we implemented the update rules

in logic, rather than using a lookup table.

7The onboard memory banks have the same characteristic as BRAM: it is only possible

to make one read from a bank at a time. Since there are only 6 banks, at best it would be

possible to have 6 processing engines. Since we rely on parallelism in the FPGA to obtain

a speed advantage over a microprocessor, this is a fairly severe restriction.
8Depending on the size of an array, it may span more than one BRAM block.
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Figure 4.9: Layout and flow of the data in the system during a cellular

automata simulation.
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BRAM Lexical Write Limits

Figure 4.9 shows that after data is transferred to the MAPe module from

the CPU, it needs to be moved from the onboard memory into BRAM. The

OBM banks are 64-bits wide, but the cell data is 8-bits per state9. Thus

when we read a value from OBM, we need to unpack it into its 8 constituent

values (each value obtained from OBM is 64 bits wide, and each cell state

contains 8 bits, so each OBM value contains 8 cell states). Once it has been

unpacked, we need to write these values to BRAM.

MAPC provides the split 64 8() function to split the value in the first

parameter into 8 separate variables, whose addresses are provided in the next

8 parameters. Assume that the array referring to OBM is called OBMARR and

that the BRAM array we want to copy data from OBM into is called BRAMARR.

Then we might expect to use the following code to copy N values from OBM

into BRAM:

int i ;

unsigned char b0 , b1 , b2 , b3 , b4 , b5 , b6 , b7 ;

for ( i = 0 ; i < N; i++)

{
s p l i t 6 4 t o 8 (OBMARR[ i ] , &b7 , &b6 , &b5 , &b4 , &b3 ,

&b2 , &b1 , &b0 ) ;

BRAMARR[ ( i ∗ 8 ) ] = b0 ;

BRAMARR[ ( i ∗ 8) + 1 ] = b1 ;

BRAMARR[ ( i ∗ 8) + 2 ] = b2 ;

BRAMARR[ ( i ∗ 8) + 3 ] = b3 ;

BRAMARR[ ( i ∗ 8) + 4 ] = b4 ;

BRAMARR[ ( i ∗ 8) + 5 ] = b5 ;

BRAMARR[ ( i ∗ 8) + 6 ] = b6 ;

BRAMARR[ ( i ∗ 8) + 7 ] = b7 ;

9We only need 1 bit per cell for the Game of Life, but the lattice gas requires more

data per cell to store the cell’s state. We thus chose to use 8-bit variables in preparation

for the development of the lattice gas code.
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}

Unfortunately using this method causes a significant problem later on

in the program. The MAPC compiler has a limitation on the number of

lexical writes that can be made to a BRAM array10. In the above code, we

have made eight lexically distinct writes to BRAMARR. In the version of the

Carte environment that we used, the limit of lexical writes was 8. Thus after

loading the OBM into BRAM, it was not possible to perform any more writes

to BRAM.

The solution to the problem, recommended by the compiler team at SRC,

is to find an alternative way to load the data from OBM to BRAM using as

few lexical BRAM writes as possible. Clearly it is still necessary to perform

8 logical writes. The following code uses a single lexical write by shifting the

8 values needing to be written through a single variable, which is repeatedly

written to BRAM:

int i , j ;

unsigned char b0 , b1 , b2 , b3 , b4 , b5 , b6 , b7 ;

for ( i = 0 ; i < N; i++)

{
s p l i t 6 4 t o 8 (OBMARR[ i ] , &b7 , &b6 , &b5 , &b4 , &b3 ,

&b2 , &b1 , &b0 ) ;

for ( j = 0 ; j < 8 ; j++)

{
BRAMARR[ ( i ∗ 8) + j ] = b0 ;

b0 = b1 ;

b1 = b2 ;

b2 = b3 ;

b3 = b4 ;

10To understand why such a limit exists, consider that to implement a lexical write to

Block RAM, the compiler has to generate a logic design that can take results from multiple

sources and send it to one BRAM bank. This necessitates the use of a multiplexer, and

clearly this can’t be arbitrarily large.
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b4 = b5 ;

b5 = b6 ;

b6 = b7 ;

}
}

We have thus reduced the number of writes used from eight to one. Un-

fortunately only having 7 remaining writes for each BRAM array is rather

limiting, and it is not possible, or at least is impractical, to combine different

types of writes in the way described above. This technique works well when

there are a number of writes together, and they can easily be indexed by a

loop. The cellular automata simulation algorithm fortunately does not in-

volve many different stages where writing to BRAM is necessary, so we were

able to successfully reduce our number of lexical writes below the compiler

limit.

Build Results

Table 4.1 shows the results of the Place and Route stage after building a

version of the program that implemented four processing engines on a single

FPGA.

Table 4.1: Place and Route results for a one-FPGA, four-processing engine

Game of Life cellular automata simulation.

Resource Used Available % Used

Slice Flip Flops 23,620 88,192 26%

4 input Lookup Tables 13,454 88,192 15%

Occupied Slices 16,084 44,096 35%

Block RAMs 24 444 5%

The grid size was 128x128. Since each cell uses an 8-bit value to store its

state, the total space required to store a configuration of the grid is 128 ×
128 = 16384 bytes, which is 16 kbytes. However, we have broken the grid into
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slices 32 cells high and 128 cells wide. In addition, each slice has an extra two

rows, to store the ghost region, and two extra columns that act as a buffer

on each side. Thus each slice actually consists of (128 + 2)× (32 + 2) = 4420

cells. Each cell is a represented by a single byte. The Block RAMs store a

maximum of 2048 bytes each. Thus to store a single slice, the FPGA needs

to use d4420/2048e = 3 BRAMs. Therefore to store 4 slices, the FPGA needs

to use 12 BRAMs.

When the cell transitions are being calculated we use two copies of the

cell data — one to store the data from the current configuration, and another

copy where we place the new configuration. Since we have two copies of the

slice data, the FPGA uses 24 BRAMs in total.

Table 4.2 shows the Place and Route results after building a version of

the program with eight processing engines.

Table 4.2: Place and Route results for a one-FPGA, eight-processing engine

Game of Life cellular automata simulation.

Resource Used Available % Used

Slice Flip Flops 43,413 88,192 49%

4 input Lookup Tables 25,504 88,192 28%

Occupied Slices 30,144 44,096 68%

Block RAMs 32 444 7%

As we would expect, the number of slice flip flops, lookup tables and

slices approximately double between the four-engine and eight-engine ver-

sions. Our discussion above of why 24 BRAMs are used in the four-engine

version is instructive, and a similar line of reasoning for the eight-engine

version shows that each slice will contain (128 + 2) × (16 + 2) = 2340 cells.

Therefore each slice will be allocated d2340/2048e = 2 BRAMs. We have 8

slices, each stored twice, so we have 8× 2× 2 = 32 BRAMs.

The overhead of the ghost regions for each slice is significant — 12.5%

of each slice stored in BRAM contains ghost region (as opposed to 7.25%
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for the four-processing engine version). In addition, a 128 × 128 grid is

sufficiently small that rounding up to the nearest BRAM when allocating

BRAMs to store slices results in significant waste. This is the primary factor

that results in the eight-engine version using 33% more BRAMs than the

four-engine version.

If we were to build a simulation with a far larger grid, the overhead

would be far less significant, as would the waste of BRAMs resulting from

rounding up during allocation. For example, if we have a 1024 × 1024 grid,

the four-engine version would use 130 BRAMs per slice, and therefore 520

BRAMs in total. The eight-engine version would use 66 BRAMs per slice,

and 528 BRAMs in total. In an ideal case, if there were no ghost regions,

and the compiler allocated data across BRAMs rather than rounding up, we

would need 512 BRAMs. Thus the eight-engine version uses approximately

3% more BRAMs than the BRAMs required to store just the cell state data,

where BRAM allocation has been done without rounding up.

4.2.2 Performance Results

Figure 4.10 shows the performance results of our Game of Life simulation

program on a 128 × 128 grid. We obtained a speedup of approximately 4x

using the eight-processing engine simulator, and approximately 2.7x using

the four-processing engine simulator.

We see that the speedup does not change significantly with the number of

iterations, and that the amount of time taken to complete a given simulation

depends linearly on the number of iterations, as we would expect.

Since the speedup of the four-processing engine version is 2.7x, we might

reasonably expect the eight-processing engine version to produce a speedup

of 5.4x. However, it is 4x. This discrepency likely arises due to communica-

tion costs. Specifically, we noted in the previous section that 12.5% of the

data stored in the eight-processing engine version is that from ghost regions.

At the end of every iteration, we have a serial process that updates each

ghost region. Thus the amount of time taken to perform the communica-
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Figure 4.10: Performance of a Game of Life simulation on an SRC-6 MAPe,

compared with that of an x86 processor.
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tion between the processing engines at the end of every iteration depends

on the size of the ghost regions, and the proportion of this time to the time

it takes to compute a full transition is dependent on the proportion of data

that stores ghost regions.

In the previous section we also noted that 7.25% of the data stored in

the four-processing engine version is that from ghost regions. Thus there is

a proportionately smaller communication cost for the four-processing engine

version, and we can therefore expect it to run more efficiently. If we consider

that the communication cost in the eight-processing engine version is likely

about 12.5/7.25 ≈ 1.7 times greater than that in the four-processing engine

version, and that the communication cost is likely a significant contributer

to the running time, then it seems reasonable that we obtain a 4x speedup

for our eight-processing engine simulation, rather than 5.4x.

We expect that if the size of the grid is increased to the point where

the ghost regions consist of < 1% of the data, then doubling the number of

processing engines will double the performance.

4.3 Fluid Dynamics Simulations using the Lat-

tice Gas Method

Wolfram [35], and Frisch, Hasslacher and Pomeau (FHP) [36] both published

seminal theoretical results in 1986 showing that it is possible to create a

cellular automaton whose dynamics, in the continuum limit, simulate the

Navier-Stokes equation for fluid flow. In general cellular automata methods

for modelling fluid flow are called lattice gas automata (LGA). Frisch et.

al. presented a model, commonly referred to as the “FHP” model, where a

fluid is represented as a discrete lattice, where each vertex on the lattice is

connected to six others. Fluid particles may reside at a lattice point11, or be

transiently passing into or out of a vertex.

11This was not part of the original FHP model, but is an extension that is now often

used.
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Figure 4.11 shows a sample FHP LGA lattice, which illustrates how tran-

sitions are made from one timestep to the next.

Figure 4.11: Transition of an FHP lattice gas automata. Solid arrows show

the configuration at the current timestep, and hollow arrows show the con-

figuration at the next timestep. Image from Luo, ref. [37].

Each vertex on the lattice is a point in space. It is assumed that fluid

particles can only travel along the edges of the lattice. For any particular

lattice point (vertex, or in the language of cellular automata, ‘cell’), at any

particular timestep, we can describe the state of the cell by observing the

six edges connected to it. Each edge will either have a particle moving away

from the vertex on it, or will be empty. The vertex can also have a transiently

stationary particle located there.

Because the fluid particles can only travel along the lattice edges, we can

define finitely many possibilities for what happens when particles collide with

each other at lattice points. Figure 4.12 shows a few examples of rules that

can be applied to transition an input state (the state at the present timestep)

to an output state at the next timestep. In some cases there are multiple

possibilities for the results of a collision; this figure shows both in the two of

examples of this.

We assume the model whether there can be particles entering the vertex
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Figure 4.12: Example transition rules for FHP lattice gas automata. Image

from Luo, ref. [37].

on any of the six edges, and there can be a particle that is stationery at a

vertex for one or more timesteps. Therefore in this model there are a total

of 27 = 128 states. The rules simply map each state to one or more other

states. These rules have been carefully designed so that they are physically

realistic12.

4.3.1 Design and Implementation

Since the lattice gas automata model is just an extended cellular automata

model, we were able to reuse a large portion of our design for the Game of

Life simulation in designing the lattice gas simulation program.

The principle differences between the Game of Life and the lattice gas

automata are:

12By this we mean that there is conservation of energy and moment. For example, it

would not be physically realistic to have an input state that shows three particles entering

a vertex, and have an output state that shows just one particle leaving.
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1. The space in which the simulation takes place is not basic grid. Rather

it is a lattice where each vertex is connected to six neighbours, as shown

in Figure 4.11.

2. Each cell can be in one of 27 = 128 states in the lattice gas, whereas in

the Game of Life each cell could only be in one of two states.

3. In the Game of Life, we didn’t need to explicitly define the transition

function f , since the transition rules could be encapsulated in a pithy

rule. With the lattice gas, this is not possible, and it is necessary to

explicitly define each of the 128 transitions.

Our changes to the Game of Life design take into account these differences

between the two otherwise similar models.

As with the Game of Life, we parallelized the problem using a data par-

allelization strategy. Again we opted to simply divide the lattice into slices,

and assign each slice to a processing engine. The communication scheme

used to update the ghost regions is identical.

Figure 4.13 shows the design of the data flow in the system.

Each cell can be in one of 27 = 128 states. Therefore 7 bits can be used

to represent the state of a single cell. MAPC does not allow for arbitrary size

types, so we store cell states in the unsigned char type, which is 8 bits long.

We also allow for a cell to be marked as a ‘boundary’ cell, which is a cell that

is a solid object and which fluid particles will always bounce off. By defining

a group of boundary cells together in the initial lattice configuration, we can

effectively define an obstacle around which the fluid must flow.

Each cell state is therefore recorded by 7 + 1 bits, stored in a byte —

the highest order bit records whether or not the cell is a boundary. The

remaining 7 lower order bits each record whether or not there is a particle

entering the cell at that particular timestep in one of the six lattice edge

directions, or if there is a particle transiently stationary at the cell.

Because in the lattice gas we need to use lookup tables to implement the

transition function, the system needs to store more data than the Game of
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Figure 4.13: Layout and flow of the data in the system during a lattice gas

automata simulation.
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Life system. Each processing engine needs to remain independent during the

transition of one configuration to the next, so we have designed the system

so that each processing engine has a dedicated lookup table in BRAM. Since

the lookup table is used often, it needs to be placed in memory that can be

accessed quickly. BRAM is thus preferred. In addition, we want to avoid

the possibility of contention amongst processing engines for access to the

lookup tables, and providing each processing engine with its own lookup

table resolves this.

Build Results

Table 4.3 shows the Place and Route results after building a version of the

program with five processing engines, for a lattice size of 480× 480.

Table 4.3: Place and Route results for a one-FPGA, five-processing engine

Lattice Gas Automata simulation.

Resource Used Available % Used

Slice Flip Flops 37,629 88,192 42%

4 input Lookup Tables 21,039 88,192 23%

Occupied Slices 25,246 44,096 57%

Block RAMs 325 444 73%

The limiting resource in this instance happens to be the number of Block

RAMs available, since every processing engine needs to be assigned its own

lookup table in BRAM. A four-processing engine design was built, and it

required 260 BRAMs, or 58%. Thus it may be possible to build six-processing

engine version, but to add more processing engines we would need to modify

the design to decouple the lookup tables from the processing engines. Of

course this would have performance implications, and we would need to find

a way to compensate for the fact that two or more processing engines would

have to share each lookup table13.

13One possible design idea, which we did not attempt to implement, would be to stagger
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4.3.2 Performance Results

Figure 4.14 shows the performance results for the five-processing engine ver-

sion of the program, running a simulation on a 480× 480 lattice. The recon-

figurable computer delivers a 1.7x speedup over the x86 processor.

The speedup gained is less than the speedup that the four-processing

engine Game of Life program obtained over its x86 counterpart. This may

be a result of the fact that the transition algorithm for the Game of Life is far

simpler than that for the lattice gas, and that the reconfigurable computer

may not be able to speed up the serial portion of the cell transitions in the

lattice gas as much as it can the transitions in the Game of Life program.

4.4 Conclusion

We successfully implemented two cellular automata simulation programs on

the SRC-6 MAPstation reconfigurable computer: Conway’s Game of Life,

and an extended FHP Lattice Gas. We also implemented these programs in

standard C code for the x86 platform to make performance comparisons.

We obtained a speedup of approximately 4x in the Game of Life simula-

tion, using one FPGA and eight processing engines, versus a Xeon 2.8GHz

CPU. We obtained a speedup of approximately 1.7x in the Lattice Gas Au-

tomata simulation, using one FPGA and five processing engines.

In the case of the Game of Life, the number of slices on the FPGA were

the limiting resource to scaling to greater numbers of processing engines.

However, in the Lattice Gas Automata program, the number of Block RAMs

was the limiting resource.

the processing engines in such a way that no processing engine ever attempts to read from

a lookup table while another is reading. Since the loops take 8 clocks per iteration, and

BRAM reads take only one clock cycle, it may be possible to share one BRAM lookup table

amongst 8 processing engines. If you could share one lookup table amongst 8 processing

engines, the available BRAM would then likely no longer be the limiting factor in building

the design, but rather the available slices would.
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Figure 4.14: Performance of a Lattice Gas Automata simulation on an SRC-6

MAPe, with 5 processing engines, using one FPGA, compared with that of

an x86 processor.
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Chapter 5

Image Processing – Edge

Detection on Reconfigurable

Computers

FPGAs have been extensively used in digital signal processing applications,

including image processing [39, 40]. Image processing applications tend to

use fairly simple algorithms that are computationally intensive due primarily

to large data sizes and rates, since as real-time video processing.

In this chapter we present our implementation of Sobel edge detection on

the SRC-6, and find that for this application the reconfigurable computing

platform delivers a modest speedup over a pure microprocessor architecture.

5.1 An Introduction to the Sobel Edge De-

tection Algorithm

Sobel Edge Detection [41] is one of the early, simple-yet-effective edge detec-

tion algorithms, and forms the basis of Canny Edge Detection [42], which is

considered the optimal edge detector. We now present a brief introduction

to Sobel’s method for edge detection.

We can consider an image as a discrete function with two non-negative
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integer parameters, f : N2 → N, which maps a pair of spatial coordinates

to a non-negative integer value representing colour intensity1: (x, y) 7→ z,

where x, y, z ∈ N.

One approach to finding edges in an image is based on the idea that an

edge is an area in an image whether there is a fast change in the values of

the image function, and that this can be captured by finding the gradient of

the image function, ∇f .

In the case of the image function, the gradient can be defined as a combi-

nation of the partial derivative of the function in the horizontal (x) direction,

and the partial derivative of the function in the vertical (y) direction:

∇f =
∂f

∂x
~ix +

∂f

∂y
~iy.

Here ~ix and ~iy are the unit vectors in the x and y directions respectively.

Clearly it is not possible to find the partial derivatives analytically. In-

deed, since f is not continuous, we can at best find approximations to the

partial derivatives of the underlying continuous image function. Once we

have determined approximations to the partial derivatives, we obtain an ap-

proximation of the magnitude of the gradient, |∇f | =
√

(∂f
∂x

)2 + (∂f
∂y

)2. If the

gradient magnitude is above a certain threshold at a point (x, y), it is likely

that the pixel at (x, y) forms part of an edge, and we mark it as such.

One method for approximating the partial derivatives ∂f
∂x

and ∂f
∂y

is to

convolve the image function with specifically constructed convolution masks2.

1This assumes that we are working with a greyscale image, where the intensities may

range from, for example, 0 as black, to 255 as white, and values inbetween represent varying

shades of grey. We can extend our model to full colour images, which may represent the

colour at a particular coordinate pair as a set of integers. For example, one common model

is to use a triplet (r, g, b), where the values represent the intensities of red, green and blue

components in the pixel colour. One simple method of extending the greyscale model of

edge detection to full colour is by averaging the colour intensities, or using some other

method to convert the image to greyscale, before continuing with the standard greyscale

edge detection algorithm. However, in this chapter we work only with greyscale images.
2In the literature these may also be referred to as convolution kernels, gradient filters
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A 3× 3 approximation to the partial derivatives is given by convolution

with the Prewitt operators Px and Py [43]:

Px =


−1 0 1

−1 0 1

−1 0 1



Py =


1 1 1

0 0 0

−1 −1 −1


We can find an approximation to ∂f

∂x
at a particular point (x, y) by con-

volution:

∂f

∂x
= Px ⊗ f(x, y).

The convolution used is the standard 2D convolution:

Px ⊗ f(x, y) =
1∑

i=−1

1∑
j=−1

Px(i + 1, j + 1)f(x− i, y − j)

The approximation to ∂f
∂y

at a particular point (x, y) is similarly given by:

∂f

∂y
= Py ⊗ f(x, y).

The Sobel operators Sx and Sy [41] are similar to the Prewitt operators,

but give a greater weighting to the centre pixel:

Sx =


−1 0 1

−2 0 2

−1 0 1



Sy =


1 2 1

0 0 0

−1 −2 −1


or operators.
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In Sobel edge detection, the partial derivatives are approximated using

convolution with the Sobel operators.

We can find the magnitude of the gradient using the square root of the

squares of the partial derivatives, but both multiplication and finding square

roots are expensive operations. Thus in practice the further approximation

|∇f | =
∣∣∂f
∂x

∣∣ +
∣∣∣∂f

∂y

∣∣∣ is used. If, for a certain threshold T at a point (x, y),

|∇f | > T , then at that point we draw a dark pixel to represent that that

point is part of an edge. Otherwise we draw a light pixel. We repreat this

for all points in the image function f .

5.2 Edge Detection on a Reconfigurable Com-

puter

5.2.1 Design and Implementation

We designed and implemented a program to perform edge detection on an

input bitmap image on the SRC-6 MAPstation.

In some respects, the edge detection algorithm and computing problem

is similar to that of cellular automata algorithms. In both problems we must

iterate through a large volume of 2D data, and on each element perform some

computation involving it and its neighbours. Given this similarity, there are

similarities in our design and implementation approaches to both problems.

We parallelized the edge detection algorithm by using a data paralleliza-

tion scheme, as we did with the cellular automata algorithms. In particular,

we divided an input image into three slices, which can be processed inde-

pendently of one another by three processing engines. Figure 5.1 shows the

algorithm design for our edge detection application. The loop in each process-

ing engine was flattened to allow the compiler to optimize and pipeline it.

Ultimately each loop required 8 clock cycles per iteration.

One of the major differences between our design for the cellular automata

programs and this design for edge detection is that we have accounted for the
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Figure 5.1: Processing engines each performing Sobel edge detection on a

slice of the input image.
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fact that in edge detection there is only one iteration, whereas in a cellular

automata simulation there are many.

In our cellular automata program designs we made the assumption that

loading data from onboard memory into block RAM at the start of the pro-

gram, and writing it back from BRAM into onboard memory at the end,

would take a negligible amount of time compared to the total execution

time, and would thus definitely be worth the difference it makes.

However, with edge detection this assumption is no longer valid. Loading

data into BRAMs, which essentially act as a cache, when each element will

be read only 8 times is no longer a strategy that will reduce the clock cycles

per loop iteration by an order of magnitude.

Instead we created a design for the flow of data that is significantly differ-

ent to that of the cellular automata programs. Figure 5.2 shows the layout

and flow of data in the program. The image data is transferred to onboard

memory using direct memory access. The data is split into three slices on the

CPU, so the first three onboard memory banks receive the data for the three

slices. The SRC-6 has six onboard memory banks, and the remaining three

are used by the three processing engines to write out the resulting image.

It is necessary for each processing engine to have its own dedicated on-

board memory bank, since each bank can only serve one request at any one

time, so having multiple processing engines per bank would require logic to

prevent contention.

Build Results

The build results for the program are shown in Table 5.1. Since only three

processing engines are used, the resource utilization on the Virtex II FPGA

is not particularly high. With our design the limiting resource is not on the

FPGAs, but rather the number of memory banks in the MAPe module that

can be concurrently accessed.
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Figure 5.2: Layout and flow of the data in the system during edge detection.

Table 5.1: Place and Route results for a one-FPGA, three processing engine

edge detection program.

Resource Used Available % Used

Slice Flip Flops 16,089 88,192 18%

4 input Lookup Tables 8,452 88,192 9%

Occupied Slices 10,290 44,096 23%
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5.2.2 Results

Figure 5.3 shows an input image and the output produced by the edge de-

tection algorithm.

Figure 5.3: Original image (left). Image with detected edges shown (right).

Performance Results

The total execution time for edge detection on a ‘reasonable’ size image is

very small. The largest image we tested the application on was 700 by 2100

pixels, and all the variants of both the classical and RC programs we tested

the image on took a second or less to complete.

For such short execution times we can’t draw any reliable conclusions,

since the time is dominated by tasks other than the edge detection calculation

— in the classical implementation, the time to load the input image and write

the output image to disc is dominant, and in the RC implementation the IO

time, as well as the time taken to load the FPGA design is dominant.

Therefore to record meaniful performance data, we inserted timing code

into the classical and RC implementations to determine exactly how long

the edge detection computation was taking in each. In the classical program

the times reported are the durations between when the image data has been

loaded into an array in memory and when the edge-detected image has been
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Table 5.2: Performance of Sobel Edge Detection on an SRC-6 MAPe, with

three processing engines, using one FPGA, compared with that of an x86

processor.

Input Image CPU Computation MAPe Computation Speedup

Size Time (s) Time (s) Factor

700× 2100 0.0646 0.0388 1.67

produced in memory. The times reported for the RC program are the dura-

tions between when the DMA transfer of data into the FPGA has completed,

and just before the DMA transfer of the results out of the FPGA is about

to begin.

To confirm our timing results, we also modified the edge detection pro-

grams (both the x86 and RC versions) and made each perform the edge

detection calculations several thousand times, and recorded how long the en-

tire execution took. In this scenario, the overhead times no longer dominate,

and we were able to verify that our timing results were accurate.

Table 5.2 shows the performance results. A modest speedup factor of

1.67x is achieved over the x86 processor.

One aspect of the implementation that could possibly be improved upon is

the reuse of data. Reads from onboard memory are relatively expensive, and

our implementation makes 8 reads to an OBM bank per pixel that is checked.

We could plausibly reduce the average number of clocks per iteration by

caching pixel data that we have already read from the onboard memory.

Figure 5.4 illustrates the concept. The black square represents the pixel

that is currently under inspection. The blue squares represent pixels that

have not yet been read from memory, and orange squares represent pixels

that have been read from memory before, and thus may be cached. Clearly

the very first calculation will need to load all required pixels from onboard

memory (stage 1). We can see that by the time we reach the second pixel

(stage 2) we can save two reads from onboard memory. By the time we reach
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Figure 5.4: Caching pixels to reduce the number of reads from onboard

memory.

the start of the second row (stage 3), we can save three reads, and when we’re

beyond the first pixel in the second row onwards (stage 4), we only need to

make one read from onboard memory per pixel gradient calculation.

With this improvement our design is likely to yield a speedup near 10x.

If more concurrently-accessible memory banks were added to the MAP

module, it would be possible to add more processing engines to our design,

which would result in a linear increase in speed, since the algorithm is em-

barrasingly parallel and involves no communication.

5.3 Conclusion

We successfully implemented Sobel edge detection on the SRC-6 MAPstation

reconfigurable computer. Our design used all the available memory banks on

the SRC-6 MAPe module in an attempt to maximize the number of areas of

an input image that can be concurrently accessed.

We obtained a speedup of 1.67x over a Xeon 2.8GHz CPU, and have

provided a design idea involving the caching of pixels that are read which

may result in speedups of approximately 10x.
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Chapter 6

Automatic Macromolecular

Docking on Reconfigurable

Computers

Cryo-electron microscopy (cryo-EM) is a commonly-used and important tech-

nique in macromolecular structure determination [44]. Recently there has

been interest in finding methods that can dock high-resolution structures,

determined using X-ray crystallography or nuclear magnetic resonance tech-

niques, into the low-resolution density maps produced by cryo-EM [44, 45,

46].

Figure 6.1 shows an example of a macromolecular model docked in a

density map. Given the density map and the model, the problem is to find

the best docking of the model into the map.

The methods that have been developed for finding dockings are in prin-

ciple fairly simple. The key idea used by Roseman [45], Wriggers et. al.

[44, 46] and others1 is that we can measure how well a particular placement

of a model within a density map ‘fits’ by computing the correlation between

the model and the map. The objective of a broad class of docking algorithms

is to find the placement of a given macromolecular model within a given

1The list of references in [46] provides comprehensive coverage of the field.
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Figure 6.1: A macromolecular model (yellow) docked in an electron micro-

scope density map (blue mesh). Image from ref. [45].

density map that yields the highest correlation. This is done using a 6D

search: the position and orientation of the 3D density map is kept constant,

and the macromolecular model is systematically translated and rotated. At

each new configuration of the model, the correlation between the model in

its new configuration, and the density map, is computed. The rotational

and translation parameters that result in the highest2 correlation are stored.

Figure 6.2 illustrates how a model may be translated and rotated to find a

best fit.

2The available docking packages typically store a list of the n highest correlations and

the rotation and translation parameters that resulted in them, rather than just the single

highest correlation.
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Figure 6.2: Fitting a macromolecular model by rotation and translation.

Image from ref. [46].

6.1 Macromolecular Docking using Global Cor-

relation

Wriggers et. al. note in [46] that for typical data sizes, correlation-based

docking algorithms take one or more hours of CPU time on current high

performance workstations. Clearly any reduction in the compute time of

docking programs would be welcome.

Using the DOCKside docking package, developed by Snowden et. al [47]

as our base, we have designed and implemented the global correlation docking

algorithm for the SRC-6 MAPstation.

The computational expense of docking is a result not of there being an

inordinate amount of data to process, but rather that the requisite 6D search

quickly results in large compute times as the size of the data increases beyond

trivially small. This is due to the fact that 6D search has a computational

complexity of O(n6), or O(n3 log n3) using Fourier-accelerated docking [46].

The computation time rises quickly with the size of n, even in the accelerated

case.

The fact that variants of the docking algorithm exist that use the Fourier

transform to accelerate the algorithm is a boon, since FPGAs have long been

used to accelerate fast Fourier transforms in DSP applications.
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6.1.1 Design and Implementation

The algorithm for global correlation docking is summarized in Figure 6.3.

The EM map is loaded, and may be filtered. If the Fourier-accelerated dock-

ing method is being used, then the fast Fourier transform is applied.

Next, the atomic structure is loaded. Sets of Euler angles Θ, Φ, Ψ are

generated. These angles are going to be used to rotate the molecular model,

and are generated in such a way that guarantees that there is a regular

spacing of rotations.

With the structure loaded and the angles generated, the iterative part of

the algorithm can begin. We start by generating a rotation matrix R from

the first set of Euler angles, and rotating the atomic model using it. Once

the model has been rotated, it is filtered so that it is at a similar resolution

to the density map. Next the correlation between the rotated, filtered model

and the density map is computed. Since this is the first iteration, we will

save the computed correlation and the Euler angles used in this iteration. In

general the computed correlation will be compared to the previous highest

correlation, and if it is larger, it will become the highest correlation, and the

Euler angles used will be stored.

We note that each iteration of the algorithm happens in isolation, and

that the algorithm can therefore be parallelized in the following way: we can

separate the generated rotations into p sets, and assign each of p processors

a set of rotations. Each processor can use the iterative docking algorithm

to find a locally maximum correlation, and the corresponding Euler angles

leading to a rotation of the model that resulted in that correlation. Once

all the processors have computed the locally maximum correlation for their

sets of Euler angles, a master processor can find the maximum of the local

correlation maxima, and hence obtain the globally maximum correlation, and

its corresponding Euler angles.

Since resources on FPGAs are quite severely limited, we wish to create

a design that uses the FPGA only for the most computationally intensive

parts of the algorithm. Figure 6.4 shows how the parallelized version of the
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Figure 6.3: An overview of the global correlation docking algorithm. Image

from ref. [46].
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global correlation docking algorithm may be implemented on the SRC-6.

6.1.2 Results

We were successful in developing an implementation of global correlation

docking in MAPC. However, during development we were repeatedly set back

by deficiencies or limitations in the language. We used Snowden’s DOCKside

package as our reference implementation. DOCKside was written in C++,

so the first step towards obtaining a functioning MAPC implementation was

to port the DOCKside docking engine implementation from C++ to C. This

is in itself an unpleasant exercise, as all the abstractions that C++ allows

need to be unpacked.

The process of porting object-oriented C++ code to C is made more

difficult by the fact that MAPC does not allow for dynamically sized arrays.

All data to be stored in Block RAM needs to have a known size (or at least

a known upper bound), so it is necessary to calculate such upper bounds

based on the parameter values that can be expected. This requirement is, of

course, motivated by the fact that there is only a set amount of Block RAM

on an FPGA, and unlike with a microprocessor, it is not possible to rely on

virtual memory if your program happens to request more memory than is

physically available.

Nevertheless, regardless of the motivation of the requirement, it is an

impediment to productivity.

We were able to create an implementation of the docking algorithm that

builds correctly under the SRC Carte debug (simulator) environment. How-

ever, when we attempted to build the program for use on the SRC-6 hard-

ware, the Xilinx build tools crashed after the machine performing the build

ran out of RAM (of which it had 3GB).
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Figure 6.4: Processing engines each search to find a maximum correlation

for the Euler angles they are assigned.

97



6.2 Conclusion

We identified the macromolecular docking problem as one that currently

requires lengthy computation times, and that may be amenable to speedup

on a reconfigurable computer. We designed a parallelized algorithm based

on the global correlation docking algorithm, and implemented a version of

the algorithm in MAPC for the SRC-6. The program built successfully in

the SRC simulator environment, but unfortunately the build process failed

while creating a hardware design for the program, as the build server ran out

of RAM.

Although the SRC toolset for programming reconfigurable computers is

one of the leaders in the field, the environment is still rather immature,

and even porting code from C++ to MAPC is an exercise that is perhaps

unnecessarily difficult.
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Chapter 7

Conclusion

7.1 Results

In this thesis we have described our successful design and implementation

of several scientific computing and engineering applications on an SRC-6

MAPstation reconfigurable computer:

• Monte Carlo estimation of π

• Monte Carlo financial options pricing

• Cellular Automata Game of Life

• Cellular Automata Lattice Gas simulation

• Sobel Edge Detection

We managed to obtain speedups for all these applications. In addition,

we implemented a macromolecular docking algorithm, which we were unable

to build for the SRC-6 due to the build cluster not having enough RAM.

7.2 Analysis

Although the speedups we obtained were all less than 10x, we found in several

of the algorithms encouraging scaling results that indicate that as the density
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of FPGAs increases, and as more dedicated hardware multipliers are added

by the vendors, the performance of the applications we implemented will

increase proportionately.

The development of software for the SRC-6 using the MAPC language

was a considerable improvement on using a hardware description language

such as Verilog or VHDL. However, the software development environment is

still very immature and is lacking in both language features (such as point-

ers, dynamic arrays, object-orientation) and library support (little more than

the most basic mathematical functions are currently provided). In addition,

programming the SRC-6 in MAPC requires a fairly thorough knowledge of

the quirks of the language and the compiler — for example, it is necessary

to know where the compiler will store data based on what type of variable

you used1. There are also numerous compiler limitations that hinder devel-

opment. For example, there is a fairly low limit on the number of lexical

writes that can be made to a static array or a variable2.

In summary, we found that the Carte development environment and

MAPC were far easier to build scientific applications with than Verilog or

VHDL, but that considerable work is still required before using such tools

will be as easy as developing software for traditional computing platforms.

1Statically defined arrays are implemented in BRAM, but static variables are imple-

mented in the FPGA fabric.
2As at time of writing, the limit was 16.
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Appendix A

Monte Carlo Methods

A.1 A Review of Monte Carlo Methods

Monte Carlo methods originated [11] in the first half of the 20th century as

a useful technique when performing scientific simulations. Many scientific

problems involve the evaluation of integrals [12], and in scientific compu-

tation, these integrals often have no analytical solutions and furthermore

resist traditional numerical solution due to their involving a high number of

dimensions.

A.1.1 An Early Monte Carlo Algorithm

Any algorithm that involves at its core the use of random numbers is gen-

erally referred to as one that uses a Monte Carlo method. One well-known

algorithm for estimating π was conceived by Georges Louis Leclerc Comte

de Buffon in 1777 [13]. de Buffon stated that if one drops a needle of length

l onto a flat surface, which has parallel lines each a distance D apart, with

D > l, drawn on it, then the probability that the needle will intersect one of

the lines is 2l/πD. From this observation, de Buffon reasoned that it would

be possible to estimate the value of π by repeatedly dropping a needle onto

such as surface, and recording how many times the needle intersected a line.

If the experimenter performs N drops, and p is the number of times the
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needle intersected a line divided by N , then an estimate of π is obtained1:

π̂ =
2l

pD

If N → ∞, then π̂ → π. In other words, if a large number of drops is

performed, the estimate of π, π̂ will approach the actual value of π. This hap-

pens to be a highly inefficient technique for calculating π (even crude Taylor

Series Expansion-based methods are considerably better), but de Buffon’s

method illustrates the important concept of how an experiment involving an

element of randomness can be used to compute a deterministic quantity.

A.1.2 Numerical Integration using Monte Carlo Meth-

ods

Estimating π using de Buffon’s technique may be a neat trick, but as we

mentioned, it’s much slower than other known methods of calculating π. Are

there any problems that can be solved using Monte Carlo techniques more

efficiently than other methods? If so, what are they?

Of course, Monte Carlo methods wouldn’t have become a useful technique

in scientific computing if they weren’t faster than other methods for at least

some important problems. It so happens that numerical integration is one

such problem, and that in fact numerical integration underlies a wide variety

of scientific computing problems.

Given the task of computing the integral I, where

I =

∫
R

f(x)dx,

regular numerical integration techniques become ineffectual [15] if the

region R is in a high-dimensional space. Specifically, methods such as Simp-

son’s and Gauss Quadrature rely on computing f(x) for values of x sampled

regularly on the region R. The number of values that need to be sampled

grows exponentially with the dimension of the integral.

1A complete derivation is available in [14], amongst other sources.
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Let’s define N as the number of samples of x we have to draw from R in

order to get an acceptable estimate2 for the integral I. Call the dimension

of the space we are integrating in D. The number of values that have to be

generated grows exponentially with the dimension of the integral, and thus

the time taken3 to find the solution will be of order O(ND). This exponential

dependence on the dimension of the problem is often referred to as the curse

of dimensionality, since solving integrals numerically in high dimensions using

such techniques becomes impractical because of this exponential dependence.

Fortunately Monte Carlo Integration provides a means to sidestep this

problem. The core idea of Monte Carlo integration is that to get a good

estimate for I, it is not necessary to sample regular values from the D-

dimensional space in which R exists. Instead, if we pick independent and

identically distributed random samples, x(1), ...,x(N) from R, then we can

obtain the following estimate for I:

Î =
1

N
{f(x(1)) + · · ·+ f(x(N))} =

1

N

N∑
i=1

f(x(i))

The Law of Large Numbers can be used to show [12] that if a large number

of samples N are drawn, then Î → I. That is,

lim
N→∞

1

N

N∑
i=1

f(x(i)) = I.

More surprising though, is the fact that the error in the estimate Î is

O( 1√
N

), which is a result of the Central Limit Theorem. This result holds

regardless of the dimension of the integral. As we have already mentioned, for

other known methods it is necessary to evaluate exponentially more points in

R as the dimension grows in order to get an accurate estimate. However, this

is not the case for Monte Carlo integration - since the error in the estimate

is only reliant on the number N of sample vectors x(i) drawn from R, the

2The specific error threshold that is chosen isn’t important, just so long as it is kept

constant.
3Here O represents the ‘big-O’ notation for order analysis.
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dimension can be increased arbitrarily without affecting the accuracy of the

result or the time complexity of the algorithm.

To give a concrete example of Monte Carlo integration, assume that we

wish to calculate the following integral:

I =

∫ 1

0

x3dx.

This integral has an analytical solution, and is also best solved using

non-Monte Carlo numerical integration techniques if we insist on solving

it numerically. Nevertheless, it will suffice as an illustration (and for this

purpose, it having a well-known solution makes the numerical estimate easier

to check).

First we need to draw a number of random values, which we shall label

x(i). Each x(i) will be drawn from [0, 1]. Let’s draw 1000 values. We now

have N = 1000 values in the range of the integration, for example: x(1) =

0.4351,x(2) = 0.1791, ...,x(1000) = 0.6301. Now we can compute an estimate

of I:

Î =
1

1000
{0.43513 + 0.17913 + · · ·+ 0.63013}

Obviously the result you get will depend on the actual random values in

[0, 1] that were drawn. We obtained the result Î = 0.2506 for one run of the

algorithm, which is reasonably close to the actual answer I = 0.25.

A.1.3 Monte Carlo, Beyond Simple Integration

Solving high dimensional integrals is an important and useful task, and it

so happens that a fairly wide variety of interesting scientific problems can

be reduced to the computation of an integral. One particularly important

method is Markov chain Monte Carlo (MCMC) [12]. MCMC may be used

when we would like to sample from a probability density function p(x), but
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doing this directly is not feasible4. The technique pioneered by Metropolis

et. al. [16] is rather crafty. Instead of tackling the problem of drawing from

p(x) directly, an MCMC algorithm sets up a Markov chain5 with p(x) as its

stationary distribution, and draws samples from this Markov chain.

A host of methods based on MCMC now exist, and have been applied in

a wide variety of fields, ranging from computational chemistry to Bayesian

inference.

A.2 A Review of Parallel Pseudorandom Num-

ber Generation

In the review of Monte Carlo methods, we noted that multidimensional inte-

grals could be more efficiently computed using random sampling than stan-

dard numerical techniques. We saw that the defining element of Monte Carlo

algorithms is randomness — all Monte Carlo algorithms require random sam-

ples to be drawn from a distribution. This leads us to our first problem:

computers are deterministic devices, so how can we generate random num-

bers on them? Next we need to deal with the issue parallel pseudorandom

number generation. Finally, we’ll take a brief look at assessing the quality of

pseudorandom number sequences.

4Why would it not be possible to sample from p(x) directly? Clearly if the p.d.f. is not

known a priori then this is one case where direct sampling is not possible. This situation

arrises in molecular modelling, for example, where we may wish to compute the potential

energy surface of a molecule, which we know exists but for which we don’t yet have a

description.
5A Markov chain is a discrete-time stochastic process with the condition that future

states are independent of past states. The probability of transitioning from one state to

another is dependent only one the present state, and not on the previous states in which

the process has been.
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A.2.1 Generating Random Numbers on Deterministic

Computers

“Anyone who considers arithmetical methods of producing ran-

dom digits is, of course, in a state of sin.” – John von Neumann

(1951).

The problem of generating sequences of random numbers sampled from

some distribution wasn’t widely investigated until computers became power-

ful enough to perform useful calculations using Monte Carlo methods. How-

ever, as soon as they did, the difficulty of generating suitable sequences was

soon realized to be a considerable obstacle. Even today techniques for ran-

dom number generation on computers is an important research area6.

Since computers are deterministic devices, it’s not possible to generate

truly random numbers using a procedure on a computer. Truly random

numbers can be obtained from physical processes that are truly random,

such as the time between beta particle emissions in radioactive decay7.

Given that physical processes are too slow or expensive to extract large

numbers of random bits from, it has been necessary to devise methods of

generating random numbers on computers. However, as we’ve discussed,

we can’t generate truly random numbers — instead we have methods to

generate numbers pseudorandom numbers, which can pass a certain standard

for randomness and are thus suitable for use in Monte Carlo simulations.

One of the simplest and most well-known pseudorandom number gener-

ators is the linear congruential generator (LCG). LCGs, described in detail

in [21], are described by the recurrence relation

6In 1997, Matsumoto and Nishimura developed the Mersenne twister algorithm [17],

which is both faster than other commonly-used methods, and has a large period. It is now

widely used, but is still far from perfect.
7Radioactive decay is well-covered in the literature, with many textbooks giving it a

thorough treatment. See [18], for example. HotBits [19] is an online service that provides a

stream of random numbers based on the timing between β decay in 85Kr → 85Rb+β−+γ.
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Xn = (aXn−1 + b) mod m.

Here Xn denotes the nth number in the sequence (Xn)n∈N. The nth

number is computed using the (n− 1)th number in the sequence Xn−1, and

the parameters a, b and m.

LCGs are highly sensitive to the parameters, as well as the initial value

X0, also known as the seed. Numerous studies have been done to determine

what parameter values yield LCGs that produce usable pseudorandom num-

ber sequences. See, for example, [15] and [21]. If the parameters are poorly

chosen, then the resulting LCG may produce a sequence that is highly cor-

related and fails to pass any reasonable test for randomness.

Loosely, the period of an LCG is the number of values it will produce

before it begins repeating its starting sequence. The period will be at most

m, but it may be less, depending on the values of a, b and X0. To obtain a

full period, it is necessary that:

1. b and m be relative prime.

2. a− 1 be divisible by all prime factors of m.

3. a− 1 be a multiple of 4 if m is a multiple of 4.

4. m > max (a, b, X0)

5. a > 0 and b > 0

If we let Yn = Xn/m then Yn ∈ [0, 1). If the LCG parameters are chosen

carefully, then we can consider each Yn as having been randomly sampled

from the uniform distribution between 0 and 1, i.e. Yn ∼ U (0, 1).

Many Monte Carlo algorithms require that we sample not from U (0, 1),

but from some other probability density function p(x). We will review later

in the chapter how values drawn from U (0, 1) can be transformed such that

samples are effectively drawn from other distributions.
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A.2.2 Parallel Pseudorandom Number Generation

We have seen one method of generating a single sequence of pseudorandom

numbers. However, in order to speed up Monte Carlo simulations on parallel

computers, it is necessary to provide each logical processor with its own

stream of pseudorandom numbers. We will soon see that this is also true for

Monte Carlo algorithms on reconfigurable computers.

With the rise of parallel computers, came the need for methods of gen-

erating uncorrelated streams of random numbers. Assume we have a par-

allel computer with p logical processors labelled P1, ..., Pi, ..., Pp. Clearly it

is unacceptable to have each processor use the same LCG, with the same

parameters. In that case, each processor will use an identical sequence of

pseudorandom numbers.

What we need is for each processor Pi to have a sequence of pseudorandom

numbers at its disposal that is uncorrelated with the sequences used by any

other processor. Several schemes have been devised to accomplish this. We

now review some, as they are presented in [22].

Perhaps the most obvious is the central server scheme. If we dedicate a

single processor to generating a sequence of random numbers, this processor

can send the next number in the sequence to the next processor that requests

one. The biggest drawback of this scheme is that the central server will likely

become a bottleneck.

Cycle division eliminates the requirement of having a central server. In-

stead, each processor Pi generates a subsequence of the overall sequence

(Xn)n∈N. One popular realization of this scheme is simply to have each

processor use the same LCG but use different seed values on each processor.

Another version, know as the leap frog method, has the first processor, P1,

generate the subsequence (X1, Xp+1, X2p+1, ...), the second processor, P2, gen-

erate the subsequence (X2, Xp+2, X2p+2, ...), and so on. Yet another method,

cycle splitting, allocates the first N numbers in the sequence (Xn)n∈N to the

processor P1, the second N numbers in the sequence to processor P2, and so

on.
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Unfortunately the subsequences generated by cycle division on an overall

sequence do not necessarily have the same statistical properties as the overall

sequence. Another disadvantage is that the period of each subsequence is

necessarily a factor of p smaller than the period of the overall sequence.

The cycle parameterization scheme suggests modifying one or more of the

parameters of the generator on each processor, so that each processor will

generate a different sequence of numbers.

In SPRNG8, the Scalable Library for Pseudorandom Number Generator,

Mascagni et. al. [23] provide versions of the linear congruential genera-

tor Xn = (aXn−1 + b) mod m that are parameterized by the multiplicative

constant a and the additive constant b.

If m is prime, then a different value for a can be used by each processor,

so that each LCG generates a different sequence. The permissible values of

a are found by applying the rules for an LCG given in the previous section.

If m is a power-of-two, the additive constant b can be parameterized.

This method was pioneered by Percus et. al. [24] for generating multiple

sequences of random numbers in parallel for the NYU Ultracomputer. In

this method, a set of additive constants
{
b(i)
}

is chosen, where the elements

b(i) are pairwise relatively prime. In SPRNG, Percus et. al.’s suggestion to

let b(i) be the ith prime is used.

Thus the additive constant parameterization of the linear congruential

generator results in the ith processor, Pi, using the following generator:

X(i)
n =

(
aX

(i)
n−1 + b(i)

)
mod m.

SPRNG provides parallelizations of various other pseudorandom number

generators, but it does this precisely because there is no consensus on which

generator, and which parallelization, if any, is universally the best. The

additive constant parameterized version of the linear congruential generator

is representative of the other parallel generators available in SPRNG, and

8SPRNG is the de facto standard library for random number generation on cluster

computers.
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suffices as an example for this chapter.

A.2.3 Assessing the Quality of Pseudorandom Number

Sequences

“Random number generators should not be chosen at random.”

– Donald Knuth (1986).

Because of the importance of ensuring that a pseudorandom number gen-

erator is producing ‘good’ results, a host of tests have been devised to test

generators. Using an unsuitable generator in Monte Carlo simulations can

render its results meaningless, and moreover, without verifying the ‘correct-

ness’ of the generator, it may be very difficult to detect errors.

Ideally the numbers a generator produces should be independent and

identically distributed in the range of the generator. Clearly a sequence

such as (1, 1, 1, 1, 1, 1, ...) isn’t ‘sufficiently random’ to satisfy the needs of a

Monte Carlo algorithm. Neither is (1, 0, 1, 0, 1, 0, ...). However, in general it

is necessary to use a computer test to determine if a sequence is somehow

biased; it is impossible to do so merely by inspection.

A variety of tests have been developed to test sequences for randomness.

Knuth’s standard tests [21] are simple, but still remain popular. The Diehard

tests by Marsaglia [25] are considered to be one of the more stringent sets of

tests available. We now briefly review several popular methods for assessing

the randomness of sequences.

Entropy measures

Entropy is the measure of the information contained in a signal. In a truly

random sequence, of sufficient length, an entropy calculation should reveal

that the sequence has an entropy of 8 bits per byte. That is, before we read

a byte, we have absolutely no information about it. Entropy is defined as:
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H(X) =
n∑

i=1

p(xi) log2

(
1

p(xi)

)
= −

n∑
i=1

p(xi) log2 p(xi).

Here X is a discrete random variable with states x1, x2, ..., xn. p(xi) =

Pr (X = xi) is the probability of being in the ith state, xi.

Thus if we have a sequence Y1, Y2, ..., Yn of bytes (i.e. Yi ∈ [0, 255] , Yi ∈
N), then we can compute its entropy as follows. Therefore, in this example,

the states xi are the integers between 0 and 255, so xi = i−1. First, we need

to find the probabilities of Yi being in the states xi. This can be done by

binning the data. For example, p(x1) = p(0) can be calculated by counting

the number of Yi equal to x1 = 0, and dividing this count by n.

With the probabilities p(x1), p(x2), ..., p(x256) computed, the entropy can

be computed using the definition:

H(X) = −
256∑
i=1

p(xi) log2 p(xi).

The expected entropy of a random sequence is 8 bits per byte, so this

crude test can be used to invalidate sequences with sufficiently low entropies.

The χ2 test for goodness-of-fit

The χ2 goodness-of-fit test is widely used in statistics9 to determine if ob-

served data fits an expected distribution. Knuth [21] suggests that the χ2

test is also a suitable test for measuring the randomness of a sequence. In

a truly random sequence, the probability of any given value appearing at

some position in the sequence should be equal to the probability of any other

value appearing at that same position. We can use the χ2 goodness-of-fit

test to determine whether the values in a given sequence can reasonably be

considered to be following a uniform distribution.

9For example, in survey statistics, we may wish to know if one property we are gathering

data on is affected by another, and then, if so, how the one property influences the other.

The χ2 test is used to determine whether or not the two properties are independent before

investigating further.
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In order to perform a χ2 test on a sequence Y1, Y2, ..., Yn of bytes, we must

compute the χ2 test statistic:

χ2
s =

k∑
i=1

(mi −Npi)
2

Npi

The test statistic is a measure of the deviation of a sample from an ex-

pected distribution. pi are the expected probabilities of state xi appearing,

and mi are the observed frequences. N is the sample size.

For the case of the sequence Y1, Y2, ..., Yn of bytes, as with the entropy

test, we first need to bin the data and determine the frequency with which

each state xi = i − 1 appeared, for all k = 256 possible states. Thus to

compute the frequency m1, simply count the number of Yi equal to x1 = 0,

and so on for m2, ...,mk. We note that pi = 1/256 for all i ∈ {1, 2, ..., 256}.
The test statistic can then be computed as:

χ2
s =

256∑
i=1

(mi − n/256)2

n/256

If the null hypothesis (that each state xi is equally likely to appear) is

true, then χ2
s will be drawn from a χ2 distribution with degrees of freedom

d = k − 1 = 255.

To test if the null hypothesis is true, we need to determine how likely it

is for the χ2
s value to have been drawn from the χ2 distribution. If this is

unlikely, then it is unlikely that the null hypothesis is true, and thus it is

unlikely that the tested sequence is random.

The probability that a calculated χ2
s value, with d degrees of freedom, is

due to chance is:

Qχ2
s,d =

[
2d/2Γ

(
d

2

)]−1 ∫ ∞

χ2
s

(
χ2
) d

2
−1

e−χ2/2 d
(
χ2
)

Here Γ (x) =
∫∞

0
tx−1e−1dt. We can then use this probability to decide

whether we should reject the null hypothesis or not.
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Serial Correlation

In a random sequence, the number at a certain position should be uncor-

related with the number at the previous position. Statistical methods have

been developed to measure correlation between successive values in time se-

ries, and these techniques are well-suited to determining if values in a random

sequence are indeed uncorrelated.

For a sequence Y1, Y2, ..., Yn of bytes, a serial correlation coefficient r may

be computed as follows:

r =
n
∑n

i=2 Yi−1Yi − (
∑n

i=2 Yi)
2

n
∑n

i=2 (Yi)
2 − (

∑n
i=2 Yi)

2

A value of r = 1 indicates that the tested sequence is completely pre-

dictable. You can easily see that the sequence (1, 1, 1, 1, 1, 1, ...) will result

in a coefficient of 1. A value of r = 0 indicates that the sequence exhibits

no serial correlation, and a random sequence can be expected to yield a r

value near 0.10 A ‘typical’ non-random sequence, such as encoded text from

English writing, may yield a coefficient near 0.5.

10Note that r can be positive or negative.
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Appendix B

The SRC-6 Reconfigurable

Computer

Figure B.1 shows the SRC-6 MAPstation used during the duration of this

thesis project. Figure B.2 shows the architecture of the MAP module, which

contains onboard memory and two FPGAs. The MAP module is connected to

a switch, which also has a traditional microprocessor-based computer (with

a Xeon 2.8GHz CPU and 1GB RAM) attached. This computer initiates

computations on the MAP.
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Figure B.1: The SRC-6 in a rack at the National Center for Supercomputing

Applications.

Figure B.2: The architecture of the SRC MAP module.
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