
An IPsec Gateway Based on the Intel IXP2400
Network Processor

Marc Brooker

October 18, 2005

Declaration

This report and the project on which it is based is entirely my own
work.
I have used the IEEE convention for citation and referencing. Each contri-
bution to, and quotation in, this report from the works of others has been
attributed, cited and referenced.
I have not allowed, nor will allow, any other student to copy my work with
the intention of passing it off as their own.
I acknowledge that plagiarism is wrong, and declare that this report, and the
project on which it is based, is entirely my own work.

Marc Brooker

i

Abstract

The Intel IXP2400 is a powerful and flexible network stream processor which
promises to offer superior performance to currently deployed solutions while
remaining cost effective. This report presents the design of a Virtual Pri-
vate gateway based on the IXP2400 processor, implementing a subset of the
Internet Protocol Security (IPsec) protocol.

The design is chosen through analysis and comparison of multiple possible
designs. Performance of the design is optimised by performing manual design
space exploration on a performance critical section of the system.

A framework for performance evaluation by simulation is presented. This
framework is used to perform a complete analysis of the performance of the
gateway. Performance and Quality of Service factors such as throughput,
delay and jitter and measured for a variety of packet loads and configurations.

A complete description of the Internet Protocol Security standard is pre-
sented, along with an analysis of the algorithms required for implementation
of the standard.

ii

Acknowledgements

Several individuals and institutions provided invaluable assistance to the au-
thor during the completion of this project.

Mr Neco Ventura Mr Ventura, in his capacity as adviser provided ex-
tremely valuable insight and assistance to the author during both the
implementation and writing phases of the project and provided the
equipment required for the project.

Eskom Eskom Transmissions North East has paid for the author to attend
the University of Cape Town for four years.

Kate McWilliams Miss McWilliams has been extremely patient in provid-
ing assistance to the author.

Leslie Lamport, et al. Thanks to Leslie Lamport for LATEX, Donald Knuth
for TEX and Thomas Esser for teTEX.

iii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Aims of the Project . 1
1.3 Justification of Project Goals 2
1.4 Ethical Implications of VPNs 3

2 Literature Review 6
2.1 Introduction . 6
2.2 Design and Implementation of IPsec Gateways 6
2.3 Performance Analysis of Systems 9
2.4 Comparison of Virtual Private Networking Protocols 11
2.5 Conclusion . 11

3 Comparison of Alternative Designs 12
3.1 Required Operations . 12
3.2 Naive Design . 12
3.3 Pipelined Design . 14
3.4 Parallel Design . 16
3.5 Comparison Of Designs . 18
3.6 Conclusion . 19
3.7 Design Optimisation of Packet Processor 20

4 Final Software Design 25
4.1 Introduction . 25
4.2 The Receive Program . 26
4.3 The Transmit Program . 29
4.4 The Packet Processing Program 30
4.5 Processing of Received IPsec Packets 34

5 Analysis of Software Design 36
5.1 Simulation Environment . 36

iv

CONTENTS

5.2 Voice Over IP . 40
5.3 Large Packet Simulation . 42
5.4 Typical Internet Simulation 44
5.5 Limited Network Speed Simulation 46
5.6 Comparison With Other IPsec Implementations 48
5.7 Discussion of Results . 49
5.8 Conclusion . 50

6 Conclusion 51
6.1 Achievement of Project Goals 51
6.2 Conclusions from Design and Testing 52
6.3 Future Work . 52

A The Intel IXP2400 Network Processor A-1
A.1 Overview . A-1
A.2 Architecture of the IXP2400 A-2
A.3 Conclusion . A-6

B VPN Protocols B-1
B.1 Internet Protocol Security (IPsec) B-1
B.2 Point-to-Point Tunneling Protocol (PPTP) B-3
B.3 Layer 2 Tunneling Protocol (L2TP) B-5
B.4 Transport Layer Security . B-5
B.5 Selection of Protocol . B-6
B.6 Conclusion . B-8

C Internet Protocol Security C-1
C.1 The IPsec Protocol . C-1
C.2 Overhead of IPsec . C-5
C.3 Secure Hash Algorithm (SHA-1) C-7
C.4 Advanced Encryption Standard C-10

D Implementation of Design D-1
D.1 Microengine C . D-1
D.2 Details of Implementation . D-2
D.3 Support Programs . D-4
D.4 Conclusion . D-4

E Project CD E-1
E.1 Directory Structure . E-1

v

List of Figures

3.1 Naive packet processing design 13
3.2 Pipelined packet processing design 14
3.3 Multi-pipeline packet processing design 16
3.4 Parallel packet processing design 17
3.5 Performance of Superscalar Design vs Parallel Design 19
3.6 Comparative Throughput of Packet Processor Design Alter-

natives . 23
3.7 Throughput of Packet Processing Alternatives vs Benchmarks 23

4.1 Final Packet Processing Structure 25
4.2 Ethernet TCP/IP packets split into mpackets 26
4.3 State Transition Diagram for Packet Reassembly Process . . . 27
4.4 Ring Buffer FIFO Queue . 28
4.5 Design of Packet Processing Program 31
4.6 Cipher Block Chaining Encryption 32
4.7 ESP Tunnel Mode . 33
4.8 Overview of Packet Processing Operations 35

5.1 Results of Packet Size Investigation 38
5.2 Distribution of Packet Sizes Weighted by Size 39
5.3 Transfer Rate for VoIP Packet Load 41
5.4 Per-Packet Delay for VoIP Packet Load 42
5.5 Transfer Rate for Large Packet Load 43
5.6 Per-Packet Delay for Large Packet Load 44
5.7 Transfer Rate for Typical Internet Packet Load 45
5.8 Per-Packet Delay for Typical Internet Packet Load 46
5.9 Per-Packet Jitter for Typical Internet Packet Load 47
5.10 Transfer Rate for Limited Network Speed Simulation 48

A.1 Block Diagram of the IXP2400 architecture A-2
A.2 Microengine Context State Transition Diagram A-3

vi

LIST OF FIGURES

C.1 ESP Transport Mode . C-2
C.2 ESP Tunnel Mode . C-3
C.3 The ESP Header . C-3
C.4 The AES Shift Rows Transform C-12
C.5 The AES MixColumns Transform C-13
C.6 Patterns Evident in Electronic Code Book Ciphertext C-16

vii

Chapter 1

Introduction

1.1 Introduction

Privacy and information security are extremely important features of current
generation data and communications networks. The increasing reliance of
companies, governments and individuals on broadband packet networks has
created a great demand for security and privacy services for these networks.
Users are unwilling, however, to trade reduced network speed for improved
privacy.

In order to meet the demands of users for privacy and data security
without sacrificing network throughput, systems must be design which can
perform significant processing tasks on packets at line speed. Recent de-
velopments in network stream processor technology have brought devices to
market which can meet the task of line speed data processing at a price users
can afford.

By exploiting the incredible power of these devices, this project aims to
create a Virtual Private Networking gateway capable of protecting data on
broadband networks without reducing throughput.

1.2 Aims of the Project

The aims of the project are to investigate, design and test the software for
the implementation of a Virtual Private Networking gateway based on the
Intel IXP2400 Network Processor.

During the course of completion of the project, the following goals will
be achieved:

• Investigate the feasibility of using the Intel IXP2400 in a dedicated
Virtual Private Networking gateway.

1

1.3. JUSTIFICATION OF PROJECT GOALS

• Investigate the effects such a gateway will have on network Quality of
Service (QoS).

• Perform measurements of the real-world performance of the VPN gate-
way.

• Investigate the social and ethical implications of cryptography.

• Report on the findings of each of these investigations.

• Conclude on the implications of results and measurements.

1.3 Justification of Project Goals

1.3.1 Technical Justification

The recent rise in deployment of high speed networks has greatly increased
the demand for systems which can process packets on these networks in real
time. In response to these growing demands, various semiconductor compa-
nies introduced lines of Network Processors - special purpose microprocessors
designed for packet and cell processing on broadband networks.

Virtual Private Networking protocols have risen in importance recently as
companies, governments and individuals become aware of the importance of
privacy, authentication and data integrity. A very effective way of providing
these services securely and cost-effectively to all users on a network and
remote access users is by making use of a Virtual Private Networking (VPN)
gateway, which can provide both pre-configured and opportunistic privacy
and authentication services to all data transmitted over a public network.

The convergence of virtual private networking technology, high speed net-
works and line speed packet processing promises to increase the utility of
broadband networks and play a crucial role in ensuring that packet based
high speed data networks can fulfill the communication requirements of any
client.

Currently, however, high speed VPN hardware is extremely expensive and
is unlikely to be affordable by small and medium business users, leading them
to rely on traditional circuit switched networks for their secure communica-
tions and remote access needs. The development of an affordable, high speed
Virtual Private Networking gateway would ensure that broadband networks
can meet the requirements of all prospective users at a price they can afford.

In order for a VPN gateway to be useful, it must not prevent interactive
protocols used over protected connections from functioning acceptably. Ad-

2

1.4. ETHICAL IMPLICATIONS OF VPNS

dressing Quality of Service (QoS) concerns inside the gateway would ensure
that interactive protocols, such as Voice over IP, remain useful.

1.3.2 Social Justification

Broadband data network technology promises to bring high speed access to
the information and communication potential of the internet to all potential
users, especially the poor and those who live in rural areas. Universal deploy-
ment of these networks would provide an extremely powerful tool for social
upliftment through education and access to communication technology.

With deployment of these technologies, however, comes concerns about
the privacy and integrity of communications flowing over these networks.
Data streams flowing over broadband networks could be copied (tapped)
untraceably at nearly any point on the network.

Addressing these privacy concerns is essential to the public acceptance of
data networks. Users will not rely on these networks for their telecommu-
nications needs if they do not trust that their communications will remain
private. Some potential users, such as rural hospitals, can not rely on data
networks at all if they are not assured that data transmitted over these net-
works will remain completely private and confidential.

An affordable, high speed, Virtual Private Networking gateway would
play a large role in ensuring that information travelling over all data networks
can be trusted to remain private and uncorrupted.

1.4 Ethical Implications of Virtual Private Net-

works

The most important ethical issue surrounding the design and deployment
of Virtual Private Networks is their use of cryptography for privacy and
authentication. The use of cryptography has extremely important ethical
and moral implications, which need to be carefully considered before a system
which uses it can be developed.

Legitimate Users of Crytography

Most users who depend on cryptography for privacy, integrity and authen-
tication services have a legitimate need for the services this technology pro-
vides. Legitimate users of cryptography include governments, companies,
professionals and individuals.

3

1.4. ETHICAL IMPLICATIONS OF VPNS

Governments Governments rely on encryption for the protection of state
secrets, secure communication within the government (especially during
times of war) and secure communication with the governments of other
countries. Cryptography can also play a critical role in the protection
of public health records and other information which is protected by
secrecy legislature.

Companies Companies use encryption to protect trade secrets and other in-
tellectual property and protect themselves against industrial espionage.

Professionals Professionals such as Lawyers, Doctors and Engineers have
an ethical, and in some cases legal, responsibility to protect information
about their clients.

Individuals Many individuals seek to protect their privacy against both ca-
sual eavesdroppers and determined adversaries. Individuals might also
rely on cryptography to protect their constitutional right to privacy.

Illegitimate Users of Cryptography

Criminals Organised crime organisations could use encryption to protect
records of their crimes and communications regarding past and future
crimes. Virtual Private Networks, coupled with VoIP, could thwart law
enforcement surveillance and wiretapping.

Terrorists Terrorist organisations are likely to use encryption to prevent
intelligence agencies from intercepting their communications.

It is clear that use of encryption by criminals is not desirable. Terrorism, how-
ever, is more subjective. Insurgents in countries with oppressive governments
are likely to find themselves classified as terrorists by those governments. Few
outside these governments, however, would argue that use of encryption by
those seeking freedom is undesirable.

In his testimony to the Economic Policy Subcommittee of the United
States house of representatives during hearings about export controls on en-
cryption in October 1993, Phil Zimmerman (author of Pretty Good Privacy,
the first wide spread encryption product for personal computers) said:

“Some Americans don’t understand why I should be this con-
cerned about the power of Government. But talking to people in
Eastern Europe, you don’t have to explain it to them. They al-
ready get it– and they don’t understand why we don’t. I want to
read you a quote from some E-mail I got last week from someone

4

1.4. ETHICAL IMPLICATIONS OF VPNS

in Latvia, on the day that Boris Yeltsin was going to war with
his Parliament:

“Phil I wish you to know: let it never be, but if dictatorship
takes over Russia your PGP is widespread from Baltic to Far East
now and will help democratic people if necessary. Thanks.” ”

Cryptography and The Categorical Imperative

The categorical imperative is an important part of the philosophical basis of
deontological ethics as defined by Immanuel Kant. Kant’s first formulation
of the categorical imperative - “Act only according to that maxim by which
you can at the same time will that it would become a universal law.”[1, 2] -
is a useful tool for the analysis of the ethics of cryptography.

This formulation allows a person to ethically perform a particular act
if, and only if, the rule under which they justify that act could apply to
all. Based on this concept it is only ethically acceptable to research and use
cryptography if such use can be extended to all possible researchers and users
of cryptography without causing a greatly undesirable state of affairs. It is
clear that this is not the case for cryptography and, based on this imperative,
it is ethically acceptable for an individual to research or use cryptographic
technology.

Conclusion

It is clear that preventing the general use of cryptography would lead to a
more undesirable state of affairs than allowing free use of cryptographic tech-
nology. Researching, deploying and using cryptographic products is ethically
allowable, if the end which will be achieved by the use of these technologies
is ethically justifiable.

Most users of cryptography have a legitimate need for the services that
this technology provides. Provision of cryptographic technology to legitimate
users can be seen as a social good. Prevention of research into cryptogra-
phy and technologies using cryptography is unlikely to prevent the harmful
elements of society from gaining access to these technologies.

5

Chapter 2

Literature Review

2.1 Introduction

An extensive review of literature relevent to the implementation of Virtual
Private Network protocols, particularly IPsec, on embedded systems was
conducted. Papers relevent to the AES and SHA-1 algorithms, relevant mul-
tithreaded and embedded design issues and past work on network processors
were also considered for inclusion in this review.

Extensive literature exists on the theoretical aspects of the algorithms
and techniques used for design and implementation of the project. Very little
literature exists, however, on practical and theoretical aspects of designing
and developing applications for network processors.

2.2 Design and Implementation of IPsec Gate-

ways

2.2.1 IPsec-based end-to-end VPN deployment over
UMTS

In “IPsec-based end-to-end VPN deployment over UMTS”[4], Xenakis and
Merakos describe the design and implementation of an end-to-end Virtual
Private Network using IPsec over the UMTS (3G mobile) network.

The paper is concerned with the overall network design issues surround-
ing deployment of IPsec on mobile devices (MEs) attached to the UMTS
network. Both qualitative and quantitative analyses of the performance and
Quality of Service impact of IPsec are presented, along with a simulation
environment for performance analysis based on the OPNET network simula-

6

2.2. DESIGN AND IMPLEMENTATION OF IPSEC GATEWAYS

tor. The proposed network architecture is not implemented and the results
obtained are derived purely from the theoretically expected behaviours of
network nodes.

The authors found that IPsec privacy services have a significantly higher
cost in terms of network performance and processing time than authentica-
tion and data integrity services. It is concluded that

“Security features may have an adverse impact on aspects of
quality of service offered to the end-users and the system capacity.
Data protection increases the required bandwidth, and security
transformations reduce the performance in terms of throughput
and delay.”[4]

“Clearly, there is a need to carefully choose the proper config-
uration of IPsec that is well suited for the application of interest.
By trading off security with throughput-delay performance, a sys-
tem engineer can work out a solution that balances the system
real-time requirements.”[4]

While the design requirements presented in this project differ greatly from
those in the paper (dedicated network processing hardware versus low power
mobile terminals), we have come to similar conclusions regarding the deploy-
ment of Virtual Private Networks.

2.2.2 Secure Wireless Gateway

In the paper “Secure Wireless Gateway”[5], Godber and Dasgupta present
the design of an inexpensive IPsec gateway and access point for 802.11b
wireless LANs.

The gateway presented in the paper was based on commodity hardware
and software — a 133MHz Pentium laptop running OpenBSD 2.9. Routing,
NAT, firewall and IPsec services on the gateway machine were provided with
standard software provided with the OpenBSD operating system. Client-side
IPsec services were provided by the native IPsec implementation on Windows
2000.

The authors found that the gateway as designed could be used with ex-
isting client side hardware and software and could provide effective security
for 802.11b networks. The authors conclude that

“With appropriate hardware support, a sufficiently fast pro-
cessor and hardware-accelerated cryptography, this gateway solu-
tion could easily be constructed on a simple to install and config-
ure embedded gateway platform. This embedded gateway could

7

2.2. DESIGN AND IMPLEMENTATION OF IPSEC GATEWAYS

easily replace today’s standard, vulnerable wireless access points
which are quickly being mapped, probed, and very likely abused
by potentially malicious individuals.”[5]

While the IPsec gateway presented in this project does not provide all of the
functionality required to replace existing access points it could be extended
and paired with embedded access point hardware to provide secure access to
wireless LANs.

2.2.3 Implementing IPsec

In “Implementing IPsec”[6], Keromytis, Ioannidis and Smith describe the
design and implementation of the IPsec protocols on several POSIX compli-
ant operating systems. The implementation is presented in the form of a set
of kernel patches for the target operating systems, along with some support
programs.

A performance analysis of the implementation was performed, based on
testing the implementation with real-world IP traffic and recording through-
put rates. While this paper focuses on the details of the implementation of
the protocols in the OpenBSD and Linux kernels, it provided some insight
into efficient methods for the implementation of IPsec.

2.2.4 Other IPsec Implementations

The most widely used IPsec implementations are those built into commodity
operating systems for PCs and servers. Documentation of the design process
of these protocol implementations is either not publically available or non-
existant. This lack of literature makes analysis and comparison of these
designs difficult, without extensive analysis of source code or functionality.
IPsec implementations are available for Microsoft Windows 2000, XP and
2003, OpenBSD, FreeBSD, Apple Mac OSX and Linux.

The IPsec implementations built into commodity operating systems all
appear very similar in functionality and it is unlikely that they differ widely
in design.

Microsoft Windows

A security analysis of the design and implementation of IPsec in Microsoft
Windows 2000 is presented in “Microsoft Windows 2000 Internet Protocol
Security Review”[7], a technical report by Network Associates. The archi-
tecture splits IPsec functionality between Kernel Mode and User Mode, with

8

2.3. PERFORMANCE ANALYSIS OF SYSTEMS

per-packet processing implemented in kernel mode and management and Se-
curity Association maintenance implemented in user mode.

FreeSWAN

FreeSWAN (and projects derived from it, such as OpenSWAN) is a widely
used implementation of IPsec for the Linux operating system. Packet pro-
cessing is performed in kernel mode by a kernel module, KLIPS, which inter-
faces with the TCP/IP stack of the Linux kernel. Key exchange and security
association maintenance are provided by userspace daemons.

Commercial Embedded IPsec Gateways

Many network equipment manufacturers offer complete product lines of em-
bedded IPsec gateways and network devices with built in Virtual Private
Networking capabilities. Compared to the performance of software IPsec im-
plementations running on commodity server hardware, the performance of
dedicated embedded IPsec gateways is extremely good.

For example, the Cisco ASA 5540 security appliance combines a high
speed IPsec gateway with extensive firewall and bridging capabilities. The
maximum IPsec throughput of the ASA5540 is rated at 325 MBit per second
- approximately three times faster than the highest rate delivered by this
project. In October 2005, the listed price of the ASA 5540, including user
licences, was approximately US$18000 (R117000).

2.3 Performance Analysis of Systems

The papers presented above all contain performance analyses of the designs
presented and some discussion of the performance analysis methodologies
used. “IPsec-based end-to-end VPN deployment over UMTS”, in particular,
provides an extensive discussion of performance analysis.

2.3.1 An Approach for Quantitative Analysis of Ap-
plication Specific Dataflow Architectures

The paper “An Approach for Quantitative Analysis of Application-Specific
Dataflow Architectures”[8] by Kienhuis, Deprettere, Vissers and van der
Wolf presents “an approach for quantitative analysis of application-specific
dataflow architectures” which “allows the designer to rate design alternatives
in a quantitative way and therefore supports him in the design process to
find better performing architectures.”

9

2.3. PERFORMANCE ANALYSIS OF SYSTEMS

The paper focuses on the optimisation of signal processing applications on
specific data flow orientated systems, however some of the methods presented
are widely applicable to performance analysis of software implementations.
The method used for development of the simulation environment is widely ap-
plicable. The approach to system analysis by simulation used in this project
was partially based on the techniques described in this paper.

2.3.2 Design Space Exploration for Real-Time Embed-
ded Stream Processors

In “Design Space Exploration for Real-Time Embedded Stream Processors”[9],
Rajagopal, Cavallaro and Rixner present a framework for performing design
space explorations on hardware designs. Design space exploration is a tech-
nique for guided or automated exploration of a design parameter space using
simulation, qualitative or quantitative models to optimise a design for a par-
ticular task.

In the paper, the design space exploration technique was used to perform
optimisation of the design of stream-processor hardware for a particular ap-
plication. A similar, though non-automated, technique of design space ex-
ploration was used in this project to explore the relationship between system
performance and design parameters.

2.3.3 IPsec Forwarding Application Level Benchmark

The “IPsec Forwarding Application Level Benchmark”[10] implementation
agreement is a standard for the testing of network processor based IPsec
implementations published by the Network Processor Forum. The agreement
defines test procedures, standard performance metrics and results reporting
procedures for performance testing of IPsec implementations.

The test procedure described in the agreement uses two identical devices
as the devices under test (DUT), a packet generator and a traffic analyser.
Packets are generated by the generator at the highest rate that does not
cause packet loss and parameters such as throughput and delay are recorded
by the packet analyser.

The testing procedure recommended by this agreement is very similar to
the one implemented in this project. This document provides a basis for the
validity of the results of the testing procedure used to analyse the design
detailed in this project.

10

2.4. COMPARISON OF VIRTUAL PRIVATE NETWORKING
PROTOCOLS

2.4 Comparison of Virtual Private Network-

ing Protocols

A complete comparison of Virtual Private Networking protocols is presented
in Appendix B. Literature relevant to each protocol is listed and analysed.
The comparison includes functionality, security and performance analyses of
each protocol.

2.5 Conclusion

The design of IPsec implementations for a wide variety of applications and
systems is widely documented, with literature covering nearly all aspects of
the implementation of the IPsec protocols. Very little literature exists, how-
ever, discussing the design aspects of implementing processing-time bound
applications such as IPsec on network processors. While it is clear that IPsec
implementations for network processors have been designed and completed
in industry, these designs are not documented in publically accessable liter-
ature.

Performance analysis of embedded systems and applications is well cov-
ered by existing literature — extensive documentation exists covering pre-
vious achievements in this area. The existing literature was found to be
extremely helpful in the development of simulation and analysis approaches
in this project.

11

Chapter 3

Comparison of Alternative
Designs

3.1 Required Operations

Each packet received from the internal network has to be processed through
a number of steps before being dispatched to the external network. These
steps are:

Receive The packet is received from the Media and Switch Fabric (see Sec-
tion A.2.3 on page A-6) interface and copied to the IXP2400’s memory.

Encrypt The packet contents are encrypted using the AES algorithm.

Hash A cryptographic hash of the encrypted packet’s contents is calculated
using the SHA-1 algorithm.

Tunnel The encrypted packet is encapsulated within a tunnel mode IPsec
packet (see Section C.1.3 on page C-3) and the ESP header and footer
are added.

Transmit The packet is copied from the IXP2400’s memory, through the
MSF and out over the network.

3.2 Naive Design

3.2.1 Motivation for Design

The most obvious design is to use a single processing core to perform all
of the required steps in order. This design would map well onto traditional

12

3.2. NAIVE DESIGN

microprocessors which can only process a single instruction at a time and do
not provide support for efficient multithreading.

The naive design is the most simple of the designs presented here, and
will likely be the easiest to implement and debug.

Receive Encrypt Hash Tunnel TransmitReceive MSF Transmit MSF

Figure 3.1: Naive packet processing design

3.2.2 Design Details

In the naive design, one packet at a time will be processed completely before
the next one is accepted from the MSF receive buffer. All the processing
will be handled by a single Microengine program running on just one of the
IXP2400’s eight Microengines.

3.2.3 Analysis of Design

The naive design makes very inefficient use of the resources of the IXP2400.
Only one of the processor’s eight available packet processing engines (Micro-
engines) are used, severely limiting the possible throughput of this design.

The time taken for a single packet of size P to be processed completely
and dispatched to the network is (τr(P) + τe(P) + τh(P) + τm(P) + τt(P)) µs
where τr(P), τe(P), τh(P), τm(P) and τt(P) are the time take in microseconds
to receive, encrypt, hash, encapsulate and transmit a packet of size P bits,
respectively. The throughput of the design is therefore

Rnaive =
P

τr(P) + τe(P) + τh(P) + τm(P) + τt(P)

megabits per second, for a packet stream with mean packet size P .
The time taken to copy a packet from the receive buffer and copy a packet

to the transmit buffer is two orders of magnitude shorter than the processing
time required for the encrypt, hash and encapsulate operations. The transmit
and receive operations can therefore be ignored when calculating the transmit
rate. The times taken by the processing functions are linearly related to the
packet size, suggesting that the throughput rate will not be sensitive to the

13

3.3. PIPELINED DESIGN

packet size. Therefore, the throughput rate of the design will be

Rnaive =
1

τe + τh + τm

megabits per second where τe, τh and τm are the times taken by each pro-
cessing task to process a single bit, in microseconds.

3.3 Pipelined Design

3.3.1 Motivation for Design

Pipelining is a design technique for continuous processes which can greatly
improve the bandwidth of the process at the cost of increased process latency.
It is widely used in most modern microprocessor designs (especially larger
processors such as the Intel Pentium line) and is readily applicable to nearly
any process. Pipeling is especially suited to the task of packet processing,
as the result of the processing of one packet does not depend on the results
of processing of any other packet. This independence means that the design
can be extremely simple, without any of the complexity required to pipeline
interdependent processes.

Receive
from
Network

Encrypt
(AES)

Hash
(SHA-1)

Encapsu-
late
(Tunnel)

Transmit
over
Network

ME 0 ME 1 ME 2 ME 3 ME 4

Figure 3.2: Pipelined packet processing design

3.3.2 Design Details

As discussed in Section A.2 on page A-2, the IXP2400 has eight simple DSP-
like packet processing cores, called Microengines. Each Microengine has a
very limited amount of fast memory and instruction store. The most obvious
mapping of the required packet processing tasks to Microengines is to map
each task to a single core.

Packets are passed through this pipeline in such a way that each stage
of the pipeline processes one packet at a time, with a total of five packets in
flight. The pipeline is advanced when the slowest processing stage of the line
has completed it’s task.

14

3.3. PIPELINED DESIGN

3.3.3 Analysis of Pipeline Design

The complexity and time required for the five steps of the pipeline vary
greatly. The receive and transmit steps of the process take up to two orders
of magnitude less time than the hash and encrypt steps. This effectively
reduces the throughput of the entire pipeline to that of the slowest step in
the line.

Simulation results revealed that the encrypt step of the pipeline takes the
longest time. If the mean packet size is P bits and the time taken to encrypt
a packet of size P is τe(P) microseconds, then the pipeline will advance every
τe(P)µs and the time taken to encrypt a packet will be 5τe(P)µs. When the
pipeline is full, a packet will be issued each time the pipeline steps, which
leads to a mean throughput of Rpipeline = P

τe(P)
megabits per second, where

Rpipeline is the throughput rate, P is the mean packet size and τe(P) is the
time required to encrypt a packet of size P . As discussed in Section 3.2.3,
τe(P) is a linear function of P , therefore the throughput of the pipelined
design will be

Rpipeline =
1

τe

megabits per second, where τe is the time required to encrypt a single bit.
The pipeline design only uses five of the eight Microengines present on

the IXP2400 processor - four of which are likely to be underutilised as they
need to wait for the encryption step to complete before continuing with the
next packet in the stream.

3.3.4 Superscalar Design

“If one pipeline is good, then surely two pipelines are better.”[11]

In order to extend the pipelined design to make better use of the available
resources, more than one pipeline can be used for the most time consuming
processing tasks. Illustrated in Figure 3.3, the multi-pipeline duplicates the
encrypt, hash and encapsulate operations into two independent pipelines.
Each pipeline independently receives packets from the a dedicated receive
Microengine, processes it and transfers it to the transmit Microengine for
transmission over the network.

3.3.5 Design Details

As discussed in Section 3.2.3 on page 13, the receive and transmit stages
of the pipeline are several orders of magnitude faster than the remainder

15

3.4. PARALLEL DESIGN

Receive
from
Network

Encrypt
(AES)

Hash
(SHA-1)

Encapsu-
late
(Tunnel)

Transmit
over
Network

ME 0

ME 1 ME 2 ME 3

ME 4
Encrypt
(AES)

Hash
(SHA-1)

Encapsu-
late
(Tunnel)

ME 5 ME 6 ME 7

Figure 3.3: Multi-pipeline packet processing design

of the pipeline stages. It is therefore clear that, by duplicating the three
pipeline stages which take up the majority of the required processing time,
the throughput of the design has been doubled, with no effect on packet
latency.

The throughput of the superscalar design is Rsuperscalar = 2Rpipeline = 2
τe

megabits per second and the latency for a single packet is unchanged from
that of the pipelined design at 5τe(P).

While the superscalar design is twice as fast in throughput as the pipelined
design and makes better use of the available resources on the IXP2400, it
does not take full advantage of the data level parallelism inherent in network
packet streams. The speed is further constrained by forcing all pipeline stages
to wait for one time consuming stage to complete it’s task.

3.4 Parallel Design

3.4.1 Motivation

Streams of data packets have a large amount of inherent data level paral-
lelism. Network processors include multiple processing cores to allow the
programmer and system designer to take advantage of the available par-
allelism. The Intel IXP2400, which is used in this project, includes eight
Microengines - simple processor cores designed to perform packet processing
tasks in parallel.

Any software design which seeks to make efficient use of a network stream
processor must exploit the data level parallelism inherent in network data
flows.

16

3.4. PARALLEL DESIGN

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Receive

Dispatch

Ring
Buffer

Arbiter

Transmit

Receive MSF

Transmit MSF

Figure 3.4: Parallel packet processing design

3.4.2 Design Details

In contrast to the pipelined design presented above, in the parallel design a
single Microengine was programmed to perform the encrypt, hash and encap-
sulate steps. Joining tasks in this way, it is possible to have six Microengines
perform the time consuming parts of the packet preparation process in par-
allel, greatly increasing the efficiency of use of the resources available on the
IXP2400.

A single Microengine was used to receive packets from the MSF interface.
Once the receive process is complete for a single packet, it is placed by
the receive Microengine (producer) into a large ring buffer. Idle processing
Microengines (consumers) can then take packets out of this buffer and process
them.

Another Microengine was dedicated to the transmission of completed
IPsec packets over the network. This microengine also provides an arbitra-
tion service which decides which completed packet to send first. Arbitration
at this stage could be used to implement explicit Quality of Service models
on the gateway.

3.4.3 Analysis of the Parallel Design

Assuming a network traffic distribution that will keep the MSF input buffer
partially full at all times, the internal receive buffer will always contain
enough packets that the processing microengines will not have to wait for
data to process. The internal receive buffer therefore decouples the time

17

3.5. COMPARISON OF DESIGNS

taken to receive a packet from the processing time.
Each processing Microengine will transmit packets into the internal trans-

mit buffer with a rate of RME = P
τe(P)+τh(P)+τm(P)

where P is the mean packet

size, τe(P), τh(P) and τm(P) are the time taken to encrypt, hash and en-
capsulate a packet of size P , in microseconds, respectively. Given that τ(P)
is a linear function of P (see Section 3.2.3 on page 13), the overall packet
transmission rate of the parallel design is

Rparallel =
6

τe + τh + τm

megabits per second.
The derivation of the mean packet delay and the probability that the

receive buffers will be full for a given traffic distribution for this design is
fairly complicated, and can be found from the simulation data presented in
Chapter 5.

3.5 Comparison Of Designs

In order to compare the throughput rates of the three design alternatives
presented here it must be assumed that, in each case, the packet arrival rate
is identical to the packet departure rate. This ensures that there will always
be a packet available in the receive buffer when one is required and that
the receive buffer never overflows. This is not a reasonable assumption for
absolute performance analysis, but greatly simplifies the analysis of relative
performance at no cost to accuracy.

Comparison of Transmission Rates

The throughput rates for the four designs discussed above, are

Rnaive =
1

τe + τh + τm

Rsuperscalar =
2

τe

Rparallel =
6

τe + τh + τm

It is clear that Rparallel = 6Rnaive - the parallel design is potentially six times
faster than the naive design. Comparing the superscalar and parallel designs,
the relationship

Rparallel

Rsuperscalar
= 3τe

τe+τh+τm
can be calculated. Since the encrypt

18

3.6. CONCLUSION

step is the most computationally intensive step, 3τe > (τe + τh + τm) and
Rparallel > Rnaive.

In terms of throughput rate, the parallel design is the fastest, the su-
perscalar design is second and the naive design is slowest - slower than the
parallel design by a factor of six.

0
0.5

1
1.5

2

0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

3

Parallel
Superscalar

Figure 3.5: Performance of Superscalar Design vs Parallel Design

Figure 3.5 illustrates the relationship between the throughput perfor-
mance of the superscalar design and the parallel design. Relative perfor-
mance is graphed on the vertical axis. The x axis is the relationship τe

τh

and the y axis is the relationship τe

τm
. It is clear from this graph that where

τh + τm < 2τe, the parallel design is superior.

3.6 Conclusion

The parallel design, presented in Section 3.4 on page 16, is the most efficient
of the design alternatives presented above in terms of throughput and use of
the IXP2400’s available resources. The complexity of this design is similar
to that of the superscalar design, but is much higher than the complexity of
the naive design.

As the complexity of all the designs is manageable, the parallel design
was chosen as the best of the four alternatives. The implementation and
analysis of this design is presented in the following chapters.

19

3.7. DESIGN OPTIMISATION OF PACKET PROCESSOR

3.7 Design Optimisation of Packet Processor

3.7.1 Introduction

The packet processing program performs all the packet processing operations
required to encrypt, hash and encapsulate the data stream. In the final
software design, six instances of this program run, one per Microengine, to
take advantage of data level parallelism inherent in packet streams.

Transferring data to or from the DRAM and SRAM interfaces of the
IXP2400 is a relatively slow process and it is likely that the data process-
ing program will spend a significant amount of time waiting for data to be
transferred over these interfaces. As illustrated in Table 3.1 and further dis-
cussed in Section A.2.1 on page A-4, copying data to external memory has a
minimum latency of 150 to 300 clock cycles, plus transfer time.

Table 3.1: IXP2400 Types and Properties of Memory (from [12])
Memory Type Maximum Size Access Latency Bus Width
Local 2560 bytes 3 4
Scratch 16K 60 4
SRAM 256M 150 4
DRAM 2G 300 8

In a single threaded design, time taken waiting for memory transfers is
wasted and can greatly reduce the effective processing speed of the Micro-
engine. Memory access times can dominate execution times for processes
which need to access a significant amount of memory, or make a large num-
ber of small writes to memory. This effect can be reduced through judicious
use of write and read combining, or by executing multiple threads on each
Microprocessor core.

The IXP2400 Microengine provide zero-overhead context switching for up
to eight threads per Microengine core. Threads which are ready to run can
be executed by those which are currently waiting on memory access. Using
multithreading can greatly reduce the performance effect of external memory
access and improve the effective processing rate of the Microengines.

Multithreaded programs can make better use of data level parallelism and
increase the number of packets that can be processed concurrently.

3.7.2 Limited Memory Sizes

The largest challenge faced when writing multithreaded programs for the
IXP2400 Microengines is the severe limitation on the size of fast memory.

20

3.7. DESIGN OPTIMISATION OF PACKET PROCESSOR

Per-Microengine local memory is similar in speed to the L1 cache of tradi-
tional large microprocessors, but is severely limited in size to 2560 bytes.
Scratch memory is shared between the Microengine cores and offers similar
throughput and latency to the L2 cache on large microprocessors, such as
the Intel Pentium 4 (see Section A.2.1 on page A-4).

External memory interfaces (SRAM and DRAM) have less bandwidth
than the internal memory interfaces and have longer access times. Access
latency times for these buses can be worse than those listed in Table 3.1 if
the external buses are accessed concurrently by more than one Microengine.

If all the data required by a program cannot fit into local and scratch
memory, some data must be moved to external memory. Which data is
copied to external memories can be found empirically by analysing data
access patterns. If possible, small tables or datasets which are accessed fre-
quently must be stored in one of the fast local memories, while large datasets
which are accessed infrequently should be stored in one of the slower external
memories.

The extremely limited size of fast memory present on the IXP2400 cre-
ates a tradeoff between running multiple threads and running fewer threads
faster by placing their working set into faster memory ares. In order to
fully optimise a program for the IXP2400, a balance must be found between
parallelism and memory usage.

3.7.3 Design Alternatives

Two alternative designs for the packet processing Microengine program were
designed, implemented and tested. These designs represent two alternative
approaches to the optimisation of the program. The first design sacrifices
execution speed per thread for more threads, while the second optimises the
execution time per thread, but reduces the number of threads that can fit
into the available memory area.

Eight Threads, Slower Memory

In this design, all eight possible hardware threads supported on the IXP2400
Microengine were used to take maximum advantage of data level parallelism
in the input data. Eight packets and sets of temporary variables need to be
stored in memory, along with a single copy of the 4 kilobyte lookup tables
required for AES. Some of the temporary variables required for the processing
units were stored in external SRAM and packet data was read one SHA-1
block (320 bytes) at a time from DRAM.

21

3.7. DESIGN OPTIMISATION OF PACKET PROCESSOR

Accessing external memory increases the time it takes to process a single
packet and reduces the throughput of the packet processor.

Three Threads, Fast Memory

The second design utilised three hardware threads per Microengine. More
of the working set of each program can be placed into fast memory areas,
reducing the number of accesses to the external memory bus.

All of the temporary variables which are required for packet processing
were kept in fast local RAM, along with the tables required for the AES and
SHA-1 algorithms. Packet data is read into local memory for processing 320
bytes (one SHA-1 block) at a time.

This design reduces the amount of time it takes to process a single packet,
effectively increasing the possible throughput of each thread of the packet
processor.

3.7.4 Analysis of Design Alternatives

Quantitative analysis of the performance of Microengine programs is ex-
tremely difficult. One reason for this difficulty is that factors such as mem-
ory access times vary greatly with load on the memory buses and this load
varies dynamically with the execution patterns of multiple threads on mul-
tiple cores.

In order to establish which design performs better in real-world condi-
tions, a simulation was performed (based on the models presented in [8]
and [13] for performing simulations of design alternatives) using the cycle-
accurate simulator built into the Intel Developer Workbench development
environment. A mixture of different sized packets, similar to real-world In-
ternet packet loads was created and run through the two alternative packet
processors. The simulation results were recorded for approximately 60 ms,
after which the behaviour of the system was found to be constant. The sim-
ulation environment used was the one developed for evaluation of the final
design, detailed in Section 5.1 on page 36.

The results of the simulation are presented in Figure 3.6. The graph
shows the amount of data transmitted by the entire system, consisting of six
packet processing Microengines with each engine running the eight or thread
thread variants of the packet processing program.

The system based on the eight thread packet processing program trans-
mitted approximately 770kB of data in 0.05 seconds, corresponding to a data
rate of 15400kB per second, or 120Mbit per second. The mean throughput

22

3.7. DESIGN OPTIMISATION OF PACKET PROCESSOR

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Seconds

D
at

a
T

ra
ns

fe
rr

ed
 (

M
eg

ab
yt

es
)

Three Threads per Microengine
Eight Threads per Microengine

Figure 3.6: Comparative Throughput of Packet Processor Design Alterna-
tives

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Seconds

D
at

a
T

ra
ns

m
itt

ed
 (

M
eg

ab
yt

es
)

Three Threads Per Microengine
70Mbit per second

(a) Three Threads: Throughput ap-
prox. 70Mbit/s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Seconds

D
at

a
T

ra
ns

fe
rr

ed
 (

M
eg

ab
yt

es
)

120Mbit per second
Eight Threads Per Microengine

(b) Eight Threads: Throughput ap-
prox. 120Mbit/s

Figure 3.7: Throughput of Packet Processing Alternatives vs Benchmarks

23

3.7. DESIGN OPTIMISATION OF PACKET PROCESSOR

per microengine thread is therefore 120
6×8

= 2.5 Mbit per second. Approxi-
mately three microseconds of Microengine thread time are required per byte
- corresponding to approximately 1830 Microengine clock cycles per byte.

The system based on the three thread packet processing program trans-
mitted approximately 432kB of data in 0.05 seconds, at a mean data rate
of 8640kB per second or 68Mbit per second. The average throughput per
microengine thread is 68

6×3
= 3.75 Mbit per second. This design uses two mi-

croseconds of Microengine thread time per byte, on average - corresponding
to approximately 1220 clock cycles.

It is clear that despite the three thread design offering 50% superiour
throughput per thread, the larger number of threads of the eight thread
design outweighs the per-thread advantage of the three thread design. The
throughput advantage of the eight thread design can be approximated by

Teight

Tthree

=
2.5

3.75
× 8

3
= 1.78

This result correllates closesly with the results presented in Table 3.2, in-
dicating that the eight thread design is approximately 80% faster than the
three thread design.

Table 3.2: Data Transferred vs Time for Packet Processor Design Alterna-
tives

Seconds Three Thread Eight Thread Difference
0.01 73722 140212 90%
0.02 167986 298226 78%
0.03 254334 463064 82%
0.04 342810 616708 80%
0.05 431936 776190 80%

24

Chapter 4

Final Software Design

4.1 Introduction

In Chapter 3 four software designs for an IPsec gateway was compared and
the best design chosen. The final design makes use of the six of the IXP2400’s
microengines to perform packet processing in parallel, one microengine to
receive packets from the network and control allocation to processing micro-
engines and one Microengine to transmit packets over the network.

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Encrypt

Hash

Tunnel

Receive

Dispatch

Ring
Buffer

Arbiter

Transmit

Receive MSF

Transmit MSF

Figure 4.1: Final Packet Processing Structure

Illustrated in Figure 4.1, this design makes optimal use of the process-
ing resources present on the IXP2400. As discussed in Appendix A, the
Intel IXP2400 network processor has eight high speed DSP-like cores called
Microengines, all eight of which are utilised by this design.

25

4.2. THE RECEIVE PROGRAM

In order to implement this design, three separate Microengine programs
must be designed and constructed - the receive program, the processing pro-
gram and the transmit program.

4.2 The Receive Program

4.2.1 Required Functionality

The Receive microengine program is required to perform two tasks:

1. Receive Packets from the network

• Interface with the Media and Switch Fabric Interface to receive
mpackets

• Reassemble mpackets into complete Ethernet packets

• Copy Ethernet packets into RAM for processing

2. Dispatch Packets to the Encrypt Microengines

• Provide a store for packets awaiting processing

• Allocate packets to Encrypt Microengines in an efficient manner

The two tasks are implemented as separate threads (or contexts) on a single
Microengine. Efficient communication between the threads is ensured by
utilising shared memory areas.

4.2.2 Reception of Network Packets

The IXP2400’s Media and Switch Fabric interface passes network packets
to the microengines in the form of mpackets - small constant sized packets -
which must be reassembled into packets before packet processing. The size of
the mpackets is configurable to 64, 128 or 256 bytes per mpacket. Mpackets
are a constant size, but may contain a variably sized payload if a network
packet does not fit into a whole number of mpackets.

Ethernet TCP/IP Packet 1 TCP/IP Packet 2

mpacket mpacketmpacketmpacket mpacket

Figure 4.2: Ethernet TCP/IP packets split into mpackets

26

4.2. THE RECEIVE PROGRAM

Each mpacket has an associated Receive Status Word (RSW). The RSW
specifies the size of the mpacket’s payload, whether any errors occurred dur-
ing the reception of the mpacket and whether the mpacket passes a simple
parity check. The RSW also includes the SOP and EOP bits. The SOP bit
indicate whether the mpacket is the first mpacket of a network packet and
the EOP bit indicates whether it is the last. For packets which fit entirely
into a single mpacket, both the EOP and SOP bits will be set.

Receive State Machine

The Finite State Machine design model is ideally suited to simple state-based
tasks such as the reassembly of network packets from a stream of frames
or mpackets. This model was used to provide an extremely simple, robust
reassembly program which can handle all possible errors and inconsistencies
in the mpacket stream. The possible states are:

WAIT The program waits for an mpacket to arrive with the SOP bit set
indicating that it is the first part of a packet.

CONTINUE The program collects mpackets and reassembles them into a
buffer in RAM.

COMPLETE The final mpacket of the packet is copied into the buffer.
Parameters such as the size of the complete packet are recorded.

DONE The packet is dispatched to the processing Microengines.

ERROR All mpackets for the rest of the current network packet are dis-
carded.

EOP Bit Set
SOP Bit Set

EOP Bit Cl��ear�
SOP Bit Set�

EOP Bit Clear

EOP
Bit Set

DRAM Transfer
Complete

WAIT

CONTINUE

COMPLETE

DONE

Error Bit Clear

ERROR
Error
Bit Set

SOP Bit Clear

Figure 4.3: State Transition Diagram for Packet Reassembly Process

27

4.2. THE RECEIVE PROGRAM

4.2.3 Allocation of Packets to Processing Units

The receive Microengine allocates received packets to one of the packet pro-
cessing engines to be encrypted, hashed and encapsulated. Packets must
be allocated to available idle Microengines or placed into a buffer if all the
processing Microengines are busy.

4.2.4 First In First Out (FIFO) Queue

A FIFO queue was used to store packets awaiting consumption by the pro-
cessing Microengines. The use of a FIFO queue ensures that packets are
serviced in the order in which they arrive, minimising worst-case waiting
times when the processing units are saturated with packets. Implementation
of the FIFO queue as a ring buffer would minimise the number of memory
accesses that are required when adding or removing data from the queue.

Ring Buffers are a simple data structure consisting of a linear array of
memory, a read pointer and a write pointer. When data is written to the
buffer, it is written at position of the write pointer and the write pointer is
advanced. When data is read, the read pointer is advanced to point to the
next full slot. If the read and write pointers point to the same element then
the buffer is either full or empty and further reading or writing is blocked
until the next write or read.

This data structure can be extended to the multiple producer-multiple
consumer case by replacing the read and write pointers with a bitmap indi-
cating which slots are full. Fast hardware support for bit-level operations on
the IXP2400’s Microengines makes this data structure extremely efficient to
implement.

1 2 3 4 5 6

Read Pointer Write Pointer

1 111 0 0Bitmap

Figure 4.4: Ring Buffer FIFO Queue

A different queue structure could be used to achieve Quality of Service
goals for prioritised data streams. The implementation of a priority queue in
place of the FIFO queue would not add significant complexity to the design of
the packet distribution code. Using a priority queue, packet processing could
be prioritised according to size, source, destination or any other criterion.

28

4.3. THE TRANSMIT PROGRAM

Monitors

Monitors are a widely used software design pattern that allows multiple par-
allel processes or threads to have shared access to a limited resource. A
monitor consists of a mutex (or mutual exclusion variable) which only one
process can hold at a time and a set of functions for interacting with the avail-
able resources. Monitors provide the same functionality as semaphores[15],
but are simpler to implement in some cases.

A Monitor design pattern was used to ensure that the FIFO queue could
safely be accessed by multiple consumers. Providing safe asynchronous mul-
tiple consumer access to the packet buffer allows the packet processing units
to proceed independently until interaction with the Monitor is required. At
this point, if another process is currently accessing the buffer then the process
is forced to wait until it can acquire the mutex.

The IXP2400 Microengines provide hardware support for Mutual Exclu-
sion variables (Mutexes), including atomic test-and-set operations.

4.3 The Transmit Program

4.3.1 Required Functionality

The Transmit program is required to perform two tasks:

1. Arbitrate access to transmission resources

2. Send packets to the Media and Switch Fabric (MSF) interface for trans-
mission over the network

The two tasks are implemented in a single thread as they are inherently
serial in nature - the next packet cannot be accepted for processing until the
previous packet’s transmission has been completed.

4.3.2 Arbitration of Transmission Resources

Processing microengines communicate with the transmission microengine
program through an extremely simple shared memory interface. Simulta-
neous access to this interface by multiple processing engines is prevented
by the use of a mutual exclusion variable (mutex). Microengines which are
ready to transmit packets idle until the mutex becomes available.

When a processing microengine takes possesion of the mutex, the follow-
ing sequence is followed:

1. The processing ME asserts a ready-to-send shared variable.

29

4.4. THE PACKET PROCESSING PROGRAM

2. In response the transmission ME asserts a clear-to-send shared vari-
able.

3. The processing ME copies the address and size of the packet to shared
variables.

4. The transmission ME copies the packet to the transmit buffer.

5. The ready-to-send and clear-to-send shared variables are cleared.

Following the completion of this processes, the transmit buffer is sent out
over the network and the processing ME is freed to process another packet.

4.3.3 Transmission of Packets

Data is transferred to the transmit MSF using memory mapped IO. Properly
formatted data is copied to a series of transmit buffers which, when signalled
to do so, the transmit MSF will send out over the network. The complete
data transmission process is as follows:

1. Break packet down into one or more fixed size mpackets

2. Query MSF to find which transmission buffers are free

3. Copy each mpacket to a free transmission buffer

4. Write the status words for the used transmission buffers in the correct
packet order

Data transmission occurs asynchronously - the transmit thread can start
processing the next packet while the current packet is being transferred over
the network.

4.4 The Packet Processing Program

4.4.1 Required Functionality

The packet processing program is required to perform four tasks:

1. Encrypt the packet data using the AES algorithm

• Break packet up into AES blocks (16 bytes) and add padding to
the final block, if necessary

• Use AES algorithm to encrypt the blocks

30

4.4. THE PACKET PROCESSING PROGRAM

• Reassemble the ciphertext into a block of memory

2. Hash the enciphered packet data using the SHA-1 algorithm

3. Construct the Encapsulating Security Payload header and footer

4. Encapsulate the enciphered packet within an IPsec tunnel mode packet

All three tasks are performed by a single thread on the packet processing
microengines. Multiple packet processing threads are used in parallel to
improve performance and take advantage of data-level parallelism.

4.4.2 Design of Packet Processing Program

In Section 3.7 on page 20, two alternative designs for packet processing micro-
engine programs were presented and compared. The final design uses eight
concurrent threads per Microengine to improve the performance of packet
processing operations. The use of eight threads effectively greatly reduces

Transmission Microengine

Receive and Dispatch Microengine

Hash

Encrypt

Tunnel

Hash

Encrypt

Tunnel

Hash

Encrypt

Tunnel

Hash

Encrypt

Tunnel

Hash

Encrypt

Tunnel

Hash

Encrypt

Tunnel

Hash

Encrypt

Tunnel

Hash

Encrypt

Tunnel

Figure 4.5: Design of Packet Processing Program

the effect of memory access latency and increases the number of Microengine
clock cycles which are spent performing useful work, instead of waiting on
memory access.

4.4.3 Encryption Operation

The first task required in the process of creating an Encapsulating Security
Payload packet is the encryption of the original packet data. The ESP pro-
tocol (see Section C.1.3 on page C-3) originally specified two cryptographic
algorithms, NULL and DES[16]. NULL is a placeholder in the protocol for
no encryption, data is simply passed through unencrypted[17]. DES is the
Defence Encryption Standard[18], a cryptographic algorithm which, due to
it’s small key size, is considered insufficiently secure for new IPsec systems.

31

4.4. THE PACKET PROCESSING PROGRAM

The ESP standard was extended in 2003[19] to include the Advanced
Encryption Standard in it’s list of cryptographic algorithms. The AES algo-
rithm (discussed fully in Section C.4 on page C-10) offers excellent security
along with good performance in both software and hardware implementa-
tions. AES supports three different key sizes: 128bits, 192bits and 256bits.
Support for 128bit keys is required for compliance with the standard, support
for the other sizes is optional.

The most efficient implementation of the AES algorithm on 32 bit hard-
ware (such as the IXP2400 Microengines) makes use of a set of four 1 Kilobyte
look up tables for performing the majority of required operations. In this
implementation, a single copy of these tables is stored in scratch memory
and is shared between all the processing microengines.

Before the encrypt step the packet data is broken up into 16 byte blocks,
as required by the AES algorithm. If the available data does not fit into an
integral number of blocks, padding data is added to the final block to make
the total size a multiple of 16 bytes. Bytes from the previous block are used
as padding, to reduce the predictability of the bytes in the padded block.

Each block is then encrypted with the AES cipher algorithm operating in
Cipher Block Chaining mode. In this mode, the ciphertext of the previous
block is bitwise XORed with the plaintext of the current block before the
block is encrypted. The first plaintext block of each packet is XORed with
an Initialization Vector - a special block of data which is shared between
the two ends of the IPsec connection, as part of the Security Association. A
complete discussion of CBC mode can be found in Section C.4.6 on page C-
15.

AES
Encrypt
Block

AES
Encrypt
Block

AES
Encrypt
Block

Initialisation
Vector

Plaintext PlaintextPlaintext

Ciphertext CiphertextCiphertext

Figure 4.6: Cipher Block Chaining Encryption

32

4.4. THE PACKET PROCESSING PROGRAM

4.4.4 Encapsulation of Packets

The encapsulation process requires the construction of an ESP header and
footer, along with an outer IP header for encapsulation of the enciphered
packet data. Figure 4.7 illustrates the packet structure that is formed with
the constructed headers and footers.

New
IPv4
Header

ESP
Header

Original
IPv4
Header

TCP
Header

Original Packet
Payload

ESP
Trailer

ESP
Auth

Authenticated

Encrypted

Figure 4.7: ESP Tunnel Mode (from [20])

Construction of the outer IP header is simple. The majority of the fields
are filled in with constant values, or values derived from the Security Asso-
ciation.

Header Field Value
Version Set to 4 (only IPv4 is supported).
Header Length Set to 5. The header length is 20 bytes as

no IP options are supported.
TOS Copied from the header of the inner packet.
Total Length Calculated from the size of the encrypted packet,

ESP header and IP header.
ID Set to 0.
Flags Copied from the header of the inner packet.
Fragment Offset Set to 0. Fragmentation is not supported.
TTL Set to the TTL of the inner packet header minus one.
Protocol Set to 50 to indicate the ESP protocol.
Checksum Calculated from the constructed packet.
Src Address Set to the address of the gateway.
Dest Address Copied from the header of the inner packet.

Construction of the ESP header requires very little computation. In a
complete IPsec implementation, the Security Parameter Index (SPI) would
be found from the Security Association Database and filled into the ESP
header. In the minimal implementation we present this value is a constant
- only one Security Association is supported. The Sequence Number field is

33

4.5. PROCESSING OF RECEIVED IPSEC PACKETS

filled with the sequence number of the packet - a monotonically increasing
variable which tracks the number of packets sent with the current security
association.

The encrypted data is placed immediately after the ESP header, followed
by the ESP footer. The ESP footer is constructed to indicate that the inner
packet is IPv4 and the number of bytes of padding that were required.

4.4.5 Hashing Operation

Following the encryption process, groups of AES blocks repacked with padding
as specified in [21] to create 64 byte SHA-1 blocks. The HMAC-SHA-1 (see
Section C.3.2 on page C-8) algorithm is then used on these larger packets,
along with the session key, to produce a 160 bit (20 byte) Message Authen-
tication Code for the packet ciphertext. The constructed ESP header and
footer are also packed into blocks and added to the data to be hashed.

The 20 byte message authentication code produced by HMAC-SHA-1
is truncated to 96 bits (12 bytes) to produce the HMAC-SHA1-96 message
authentication code required by the ESP protocol. Following it’s calculation,
the MAC is copied to the end of the packet, after the ESP trailer.

4.5 Processing of Received IPsec Packets

The sections above discuss the method used to transform an IPv4 packet
into a tunnel mode IPsec packet using the ESP protocol. The design of the
process to transform an IPsec tunnel mode ESP packet into an IPv4 packet
(decapsulation) is very similar and requires the same operations.

In the decapsulation case, packet reception and transmission operations
are unchanged. The encryption operation is replaced with an AES-CBC
decryption operation which is extremely similar to the decryption operation.
The AES decryption operation uses different tables and a slightly modified
key schedule, but requires the same number of operations as the encryption
algorithm.

The hashing operation is performed identically in the decryption case —
the entire 160 byte MAC is calculated, truncated to 12 bytes and compared
with the MAC attached to the received packet. If the calculated and received
MACs do not match, the packet is discarded. If the calculated and received
MACs match, the decrypted inner IP packet is copied from the received
packet and is transmitted over the network.

The decryption and decapsulation operations are very similar to the en-
cryption and encapsulation operations and require the same amount of mem-

34

4.5. PROCESSING OF RECEIVED IPSEC PACKETS

ory and CPU time. The design presented above for encapsulation and en-
cryption would require very little modification to handle the decryption and
decapsulation of IPsec packets.

Original
IPv4
Header

TCP
Header

Original Packet
Payload

New
IPv4
Header

ESP
Header

Original
IPv4
Header

TCP
Header

Original Packet
Payload

ESP
Trailer

ESP
Auth

Original
IPv4
Header

TCP
Header

Original Packet
Payload

New
IPv4
Header

ESP
Header

Original
IPv4
Header

TCP
Header

Original Packet
Payload

ESP
Trailer

Encrypt

Encapsulate

Hash

Figure 4.8: Overview of Packet Processing Operations

35

Chapter 5

Analysis of Software Design

5.1 Simulation Environment

In order to analyse the performance of the design detailed in Chapter 4, the
system was implemented in Microengine C, a dialect of the C programming
language supported by the Intel Developer Workbench development environ-
ment and compiler. The implementation is detailed in Appendix D.

Intel Developer Workbench provides a cycle-accurate[22] software sim-
ulator for the IXP2400 network processor which does not depend on the
presence of the IXP2400 hardware. This simulator was used to analyse the
performance of the design and i implementation. Use of a software simulator
decreased the amount of time required for debugging of the implementation
and setting up of simulations. Simulations were performed overnight and
over weekends to gather a significant amount of data for processing.

Analysis of the design and implementation was performed by running
the simulator with a variety of different packet streams, collecting the re-
sults of the simulation and analysing these results with matlab and Python
programs.

5.1.1 Packet Streams

Two methods were used to generate streams of packet data for accurate
simulation of a real-world deployment environment.

The first method used was packet generation DLL (external library), de-
veloped in C++ using Microsoft Visual Studio, which was plugged into the
simulation environment. This external library used a statistical model to
generate a packet stream with exponentially distributed interarrival times
and packet sizes distributed according to the values typical of Internet traf-
fic. The packet generation DLL can be tailored to generate streams at any

36

5.1. SIMULATION ENVIRONMENT

speed that is required.
The second method used for generating packet streams was the Datas-

treams packet generator built into the Developer Workbench environment.
Using this tool, packets can be generated in many formats, including Eth-
ernet TCP/IP, Ethernet IP and PPP TCP/IP. The Datastreams tool can
generate packets with random sizes distributed linearly over an arbitrary
range.

While the first method offered superior flexibility and configurability, the
simulator performance penalty it caused was too large to allow large simula-
tions to be run effectively. The majority of the simulations of the final design
were run with packets generated by the built in Datastreams tool.

5.1.2 Distribution of Packet Sizes on the Internet

The distribution of packet sizes on the internet has two strong modes. The
first mode is between 40 and 64 bytes per packet - made up by control
packets, ACK packets and data packets for interactive applications such as
Telnet, SSH and Voice over IP. The second mode is around 1500 bytes per
packet, the maximum transmission unit (MTU) of Ethernet. Applications
which transfer bulk data, such as HTTP and FTP generate the majority of
large packets on the Internet.

The performance of the IPsec gateway will depend on the distribution of
packets sent through it. This makes the packet size distribution of the traffic
stream to be sent through the gateway critical to accurate evaluation of the
performance of the design.

Measurement of Packet Sizes

The distribution of packet sizes in typical Internet traffic was found by col-
lecting packet transfer statistics for a number of machines on the University
of Cape Town campus. Statistics were collected with the tcpdump1 program,
an open source packet capture program which allows packet headers for all
traffic flows to and from a machine to be captured.

During the course of the analysis, 5.2 million packet headers were col-
lected. A Python program was then used to extract the total packet size
fields from these packets and write them into a text file. matlab was then
used to analyse the packet distribution data and find the size distribution of
this data.

The distribution of packet sizes obtained from this analysis is illustrated
in Figure 5.1(a). While small packets make up a significant proportion of the

1tcpdump can be downloaded from http://www.tcpdump.org

37

5.1. SIMULATION ENVIRONMENT

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

Packet Size (bytes)

P
ro

po
rt

io
n

of
 In

te
rn

et
 P

ac
ke

ts

(a) Distribution of Internet Packet Sizes

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Size (bytes)

P
ro

po
rt

io
n

of
 T

ot
al

 B
yt

es
 T

ra
ns

m
itt

ed

(b) Distribution of Packet Sized Weighted By Size

Figure 5.1: Results of Packet Size Investigation

38

5.1. SIMULATION ENVIRONMENT

total packet count (about 35% of total traffic), the total amount of data con-
tributed by small packets is realtively insignificant. Figure 5.1(b) illustrates
the total proportional contribution to internet traffic of packets by size.

The amount of time required to encrypt, hash and encapsulate an IP
packet depends is proportional to the packet size, plus a small constant value.
The proportional load caused by packets of different sizes on the IPsec gate-
way is difficult to calculate.

From the analysis, it was found that the mean packet size is approximately
903 bytes.

In order to validate these results, measurements of Internet packet size
distributions taken elsewhere were compared to them. While distributions
from all sources show the same strong bimodal structure, the exact distri-
butions differ widely. It is intuitively obvious that packet size distributions
from different sources would be different - they are entirely dependent on the
usage of the network being measured.

Figure 5.2 illustrates the distribution of packets on an unknown tier one
carrier, from Hank Nussbacher, based on 46× 109 packets2.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

Packet Size (bytes)

P
ro

po
rt

io
n

of
 In

te
rn

et
 P

ac
ke

ts

Figure 5.2: Distribution of Packet Sizes Weighted by Size

Nussbacher’s data suggests an average packet size of approximately 500

2From a posting to the North American Network Operators Group mailing list
by Hank Nussbacher, December 2003. http://merit.edu/mail.archives/nanog/2003-
12/msg00399.html

39

5.2. VOICE OVER IP

bytes. While the distributions differ substantially, they are very similar in
terms of overall form - a strong peak at between 32 and 64 bytes and a
strong peak at around the Ethernet MTU of 1500 bytes. The ratio between
the peaks and the number of packets of intermediate sizes depends on the
applications used on the network being measured.

Distribution Used for Testing

Based on the measurements presented above, a simple packet size distribution
was developed for testing of the IPsec gateway. This distribution simplified
the distributions above to 47.5% packets linearly distributed between 32 and
96 bytes, 47.5% packets between 1400 and 1600 bytes and 5% packets be-
tween 450 and 550 bytes. The mean packet size of the distribution used was
approximately 770 bytes.

5.1.3 Simulation Methodology

The system was tested with a variety of different packet loads on different
speed simulated networks. For each simulation, the simulator was run until
it was clear that the simulation had settled down to a constant behaviour.

The output of the packet simulator consists of two files - a file contain-
ing the packets received by the program and a file containing the packets
transmitted from the program. Along with the packet data, the files contain
timestamp information which indicates the times the packets were sent or
received. A set of Python scripts was used to process the packet logs and
extract data about the packets which were processes. The collected data was
then analysed and graphed with matlab .

5.2 Voice Over IP

Voice Over IP protocols such as SIP, H.323 and Skype produce large numbers
of small data packets containing compressed voice data. Interactive protocols
and applications are extremely sensitive to packet delay - long delays will
make conversation over VoIP networks uncomfortable and difficult.

In order to simulate Voice over IP traffic, a stream of packets was gener-
ated with sizes distributed uniformly between 75 bytes and 150 bytes. This
packet distribution is similar to that generated by common voice over IP
protocols. The widely used IP telephone application Skype, for example,
generates UDP packets with a 67 byte payload or a total size of 95 bytes (67
bytes payload, 20 bytes IP header, 8 bytes UDP header)[23].

40

5.2. VOICE OVER IP

This simulation was performed with a simulated 1000Mbit per second
Ethernet network on the receive and transmit side and an input packet flow
which matched the demand of the processor.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5

Seconds

D
at

a
R

ec
ei

ve
d

(M
eg

ab
yt

es
)

10MB per second
Voice Over IP Traffic Throughput

Figure 5.3: Transfer Rate for VoIP Packet Load

Voice Over IP Throughput

The Voice Over IP simulation was run for a simulated time of 310ms, during
which time 27100 packets were processed, totalling 3.14MB. This corresponds
to a total throughput of approximately 10 MB per second, or 80 Mbit per
second.

The Skype VoIP protocol uses between 3 and 16 kilobytes per second of
bandwidth[23], depending on network availability and packet loss. Assuming
a worst case usage of 16 KB per second per call, the throughput of the
gateway will support approximately 615 simultaneous voice connections. The
total data transferred by the processor while processing the VoIP packet load
is presented in Figure 5.3, along with a reference line at 10 MB per second
(80Mbit/s).

Voice Over IP Packet Delay

The average delay per packet introduced by the IPsec gateway was found to
be 0.25 ms. As packets will pass through two IPsec gateways during their

41

5.3. LARGE PACKET SIMULATION

transfer, the average packet delay caused by transmission over a VPN is
approximately 0.5 ms. This delay is acceptable for interactive applications
such as Voice over IP, SSH, multiplayer games and streaming video.

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

Packet Delay (milliseconds)

P
er

ce
nt

ag
e

of
 P

ac
ke

ts

Figure 5.4: Per-Packet Delay for VoIP Packet Load

A histogram of packet delays, corrected for packet size, is presented in
Figure 5.4. Ninety percent of packets have a delay greater than 0.12 ms and
a delay less than 0.38 ms. The small ratio between delay and variation in
delay (jitter) will cause small packets to be transmitted in a different order
from the order in which they arrived. Modifications to the design could be
made to prevent packets from being transmitted out-of-order.

The measured mean packet jitter for the VoIP simulation was 0.25 ms and
maximum recorded jitter was 0.90 ms (using the method described in “RTP:
A Transport For Real-Time Applications (RFC3550)”[24] by Schulzrinne et
al.), a significant but acceptable amount of jitter.

5.3 Large Packet Simulation

Large packets make up the majority of the total number of bytes transferred
over the Internet (see Figure 5.1(b) on page 38) and will make up the majority
of processing time used by an IPsec gateway deployed on a general purpose
network. Large packets are generated by applications and protocols including

42

5.3. LARGE PACKET SIMULATION

HTTP (web browsing), FTP (bulk file transfer), peer-to-peer file sharing
and SMTP. These applications transfer large amounts of data and are not
sensitive to small (less than 500 ms) delays.

In order to test the IPsec gateway’s performance with extremely large
packets, a traffic stream was generated with random packet sizes distributed
uniformly from 1500 to 2000 bytes. Using the simulation framework pre-
sented above, throughput and delay measurements were made for large pack-
ets.

Large Packet Throughput

The large packet simulation was run for a simulated time of 233 ms, dur-
ing which time 2172 packets were received and processed, totalling 3.8 MB.
The mean throughput (on the receive side) of the IPsec gateway was approx-
imately 16 MB per second (128 Mbit per second).

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4

Seconds

D
at

a
T

ra
ns

fe
rr

ed
 (

M
eg

ab
yt

es
)

Large Packet Traffic Throughput
16MB Per Second

Figure 5.5: Transfer Rate for Large Packet Load

At 16 MB per second, the transfer of a 650 MB CD image would take 41
seconds and a 4.7 GB DVD image would take 300 seconds. This transfer rate
is superior to the transfer rate of 100 MBit per second Ethernet networks,
which are currently widely deployed.

The total data received by the processor while processing the large packet
load is graphed in Figure 5.5, with a reference line at 16 MB per second.

43

5.4. TYPICAL INTERNET SIMULATION

Note that despite early variations, the graph is extremely linear, suggesting
that the behaviour of the system is constant.

Large Packet Delay

The mean delay per packet introduced by the IPsec gateway was found to be
1.9 ms, or 3.8 ms for a pair of gateways. This delay is acceptable for bulk
data transfer applications and will not have a noticeable effect on application
performance.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

Delay (milliseconds)

P
er

ce
nt

ag
e

of
 P

ac
ke

ts

Figure 5.6: Per-Packet Delay for Large Packet Load

A histogram of delay introduced by the gateway is presented in Figure
5.6. Ninety percent of packets are delayed by between 0.37 ms and 4 ms. As
in the VoIP simulation, large variations in delay are likely to cause out-of-
order packet transmission, which could cause problems with some transport
layer and application layer protocols.

5.4 Typical Internet Simulation

The third simulation was run with a packet mixture typical of real-world
internet connections, as described in Section 5.1.2 on page 37. This simula-
tion, unlike the Large Packet and VoIP simulations, is likely to be a good
indication of real-world system performance.

44

5.4. TYPICAL INTERNET SIMULATION

As in the previous two simulations, the receive and transmit networks
were limited to 1000 Mbit per second and the speed of the packet stream was
dynamically adjusted to keep the receive buffer full at all times or saturate
the receive network.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8

Seconds

T
hr

ou
gh

pu
t (

m
eg

ab
yt

es
)

13MB per second
Gateway Throughput for Typical Internet Packets

Figure 5.7: Transfer Rate for Typical Internet Packet Load

Typical Packet Throughput

The Typical packet simulation was was run for a simulated time of 557 ms.
7.24 MB of data was received in 8134 packets at a mean throughput of
13 MB per second (104 Mbit per second).

This throughput is 23% less than the throughput recorded in the large
packet simulation, but 20% greater than the throughput recorded in the
VoIP simulation. Despite the reduction in throughput when compared to the
Large Packet simulation, the transfer rate remains greater than 100 Mbit per
second.

Typical Packet Delay

The mean delay per packet for the internet packet load was 0.65 ms, or
1.3 ms for a pair of IPsec gateways. Figure 5.8 is the packet delay histogram
for the simulation using a typical internet packet size distribution.

45

5.5. LIMITED NETWORK SPEED SIMULATION

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Packet Delay (milliseconds)

P
er

ce
nt

ag
e

of
 T

ot
al

 P
ac

ke
ts

Figure 5.8: Per-Packet Delay for Typical Internet Packet Load

Ninety percent of packets experienced a delay of between 0.15 ms and
1.3 ms, while two thirds of packets experienced a delay of between 0.16 ms
and 0.87 ms. As with the previous two simulations, the variation in packet
delays could cause out-of-order delivery. High jitter, as generated by this
gateway, can cause quality of service degradation in some interactive pro-
tocols. The calculated mean jitter for this simulation was 0.65 ms (using
the method from [24]), a significant but not unacceptable amount of jitter.
The variation in jitter with time is plotted in Figure 5.9, including a moving
average with a window length of 300 samples.

5.5 Limited Network Speed Simulation

A fourth simulation was run with the the simulated network speed closer to
the throughput of the gateway. The goal of this simulation was to analyse
the effect that network speed had on the throughput and delay behaviour of
the system.

In the previous three simulations, the simulated network was limited in
speed to 1000 Mbit per second, approximately ten times greater than the
maximum throughput of the system. Two simulations were performed with
network speeds closer to the transfer rate of the system. The first simulation

46

5.5. LIMITED NETWORK SPEED SIMULATION

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

Packets

Ji
tte

r
(m

ill
is

ec
on

ds
)

Unsmoothed Jitter
Moving Average

Figure 5.9: Per-Packet Jitter for Typical Internet Packet Load

was performed with 100 Mbit per second limitations on both the ingress and
egress networks. The second simulation was performed with a 80 Mbit per
second limit on the ingress network and a 100 Mbit per second limit on the
egress network.

Throughput

Both limited network speed simulations were run for a simulated time of
228 ms. During this time the first (100-100) simulation processed and trans-
ferred 1444 packets totalling 1.35 MB at a mean throughput rate of 5.9 MB
per second (47 Mbit per second). The second (80-100) simulation processed
and transferred 1081 packets with a total size of 0.98 MB at a mean through-
put rate of 4.3 MB per second (34 Mbit per second).

Delay

The mean delay for both simulations was approximately 0.89 ms, or 1.78 ms
for two gateways. The distribution of delays was very similar to that found in
the typical internet packet simulation, with a mean increase of approximately
37%.

47

5.6. COMPARISON WITH OTHER IPSEC IMPLEMENTATIONS

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Seconds

D
at

a
T

ra
ns

fe
rr

ed
 (

M
eg

ab
yt

es
)

100Mbit/s ingress, 100Mbit/s egress
80Mbit/s ingress, 100Mbit/s egress

Figure 5.10: Transfer Rate for Limited Network Speed Simulation

5.6 Comparison With Other IPsec Implemen-

tations

Performance figures are not available for the majority of commercial IPsec
implementations. Benchmarks have, however been carried out on a variety
of open source implementations of IPsec. Linux Journal3 measured the per-
formance of the native IPsec implementation in the Linux 2.6 kernel. The
maximum throughput was found to be 42 Mbit per second between two Pen-
tium 4 2.2GHz machines. The FreeSWAN IPsec implementation for Linux
claims 36 Mbit per second for a 733MHz Pentium III4.

Dedicated embedded IPsec gateways offer excellent performance. Nokia
claims a maximum throughput of 120 Mbit per second for it’s 50i VPN
gateway and 600 Mbit per second for it’s 100i product. Cisco’s ASA 5500
line ranges from 170 Mbit per second for the ASA5510 to 325 Mbit per
second for the ASA5540. While both the ASA5540 and Nokia 100i offer
functionality apart from IPsec processing, they are extremely expensive - the
ASA5540 costs approximately US$18000 while the 100i retails at approxi-
mately US$10000.

3http://new.linuxjournal.com/article/7840
4http://www.freeswan.org/freeswan trees/freeswan-1.99/doc/performance.html

48

5.7. DISCUSSION OF RESULTS

While it is not necessarily valid to compare the performance of IPsec so-
lutions without third party testing in a controlled environment on a standard
packet load, the transfer rates presented here illustrate the difference in per-
formance between software VPN implementations and dedicated hardware
solutions.

5.7 Discussion of Results

The throughput of the gateway design was found to be dependent on packet
size. This is unsurprising - the amount of time required to encrypt and hash
a packet increases linearly with the size of the packet. The constant time
required for packet encapsulation was found to cause system throughput on
large packets to be superior to system throughput on loads dominated by
small packets. Packet delay was considerably less on small packets. This was
the expected result - smaller packets contain less data to process and hence
processing time causes less per-packet delay. Per-packet delay for a given
packet size was found to be approximated by the equation delay = size

1000
+0.13.

Per-packet delay results for all three simulations were found to be within
acceptable bounds. The ITU-T SG9 recommends an end-to-end delay of
50 ms or less for high quality video streaming and 100 ms for CD-quality
audio. The delay introduced by this gateway will not have a significant effect
on end-to-end delay.

The significant performance degradation caused by limitation of media
speeds is somewhat unexpected. The limitation of ingress speed appears to
have prevented the system from keeping the processing threads busy, wast-
ing processing resources and reducing throughput. The limitation on egress
speed appears to have increased the amount of time required to transmit
packets. This increase has lead to an increase on the amount of time pro-
cessing threads waste waiting for other threads to unlock the packet trans-
mission mutex. The implementation of a buffer between the processing units
and the transmission unit would have been likely to decrease the performance
effect of limited egress network speed. More simulations are required to fully
understand the relationship between network speed and system performance.

The large variation in packet delay is a cause for concern - some pro-
tocols require low jitter and in-order packet delivery in order to function
optimally. While the jitter observed in the simulations (0.65 ms for the typi-
cal simulation) is below the ITU-T recommended maximum for high-quality
VoIP applications (5 ms), the gateway presented here will make a significant
contribution to end-to-end jitter.

49

5.8. CONCLUSION

5.8 Conclusion

The reduction in Quality of Service caused by implementation of the VoIP
gateway analysed above in an internet connection is likely to be acceptable
for most applications. The throughput limitation imposed by the device
places restrictions on bulk-data transfers over high speed networks, but is
not a significant restriction for VoIP and other interactive traffic. Delay and
jitter were found to be within acceptable bounds for both interactive and
bulk-data transfer applications.

Improvements in the design of the system could be made to reduce jitter
and prevent out-of-order packet delivery. The addition of a large transmit
buffer to the design is also likely to reduce the effect of network speed limi-
tation on throughput.

50

Chapter 6

Conclusion

6.1 Achievement of Project Goals

The aim of the project was to investigate, design and test the software for
an implementation of a Virtual Private Networking gateway based on the
IXP2400 Network Processor.

Following an analysis of current Virtual Private Networking protocols
(Appendix B), the Internet Protocol Security protocol was chosen for im-
plementation. IPsec is a large and complex protocol family and there was
not sufficient time for the implementation of the entire protocol to be de-
signed, programmed and tested. A subset of the IPsec protocol family -
Encapsulating Security Payload operating in tunnel mode - was chosen for
implementation as the operations performed by this protocol are the most
performance critical in an IPsec implementation.

The design of a set of programs for the Intel IXP2400 Network Processor’s
Microengines was completed. The final design was chosen from the analysis
of four candidate designs, which were described in detail. Following the
selecting of the overall software designs, designs were presented for each of the
constituent programs of the IPsec implementation. Two candidates for the
design of the most critical component, the packet processor, were presented
and analysed.

The final design was implemented in Microengine C, a dialect of the C
programming language native to the Microengines of the IXP2400. An ex-
tensive performance analysis of the completed gateway was performed using
a simulation environment.

51

6.2. CONCLUSIONS FROM DESIGN AND TESTING

6.2 Conclusions from Design and Testing

The multi-cored nature of the IXP2400 processor requires that applications
be written with multiple processes, one per Microengine core. In order to
take full advantage of the capabilities of each microengine, processes which
perform extensive memory access need to be written with multiple threads.

Designing applications for this multi-process multi-threaded environment
requires a different approach to designing for traditional uniprocessor sys-
tems. Design techniques need to be conscious of the requirement for multiple
independent threads and aim to limit thread synchronisation. Despite the
unusual nature of the hardware, traditional software design approaches, such
as the finite state machine model, were found to be extremely useful in the
design of individual threads.

Designing efficient applications for multi-cored network processors is ex-
tremely difficult. Simulation of trial designs and manual design space explo-
ration are powerful tools that allow the designer to understand how design
parameters affect system performance. Automated design space exploration
is also likely to prove to be a useful tool for network processor software design.

The final system, an implementation of the Encapsulating Security Pay-
load protocol, was found to have a maximum throughput of 104 Mbit per
second. Parameters relevant to Quality of Service, such as packet delay and
jitter, were found to be within acceptable limits. The IXP2400 network
processor is well suited to the implementation of IPsec.

6.3 Future Work

The scope for future work and extensions to the work presented above is
extremely large. Pairing the design presented above with an implementation
of the IKE protocol on the IXP2400’s XScale control processor and adding
support for Security Associations to the processing program would make the
system a working IPsec implementation.

Beyond completion of the gateway, several other possibilities for future
work exist.

• Perform profiling and hotspot optimisation of the packet processing
code in order to reduce per-byte processing time.

• Investigate integration with a hardware AES implementation for im-
proved processing speed.

• Implement the full IKE and ISAKMP protocols for Security Association
establishment and maintenance.

52

6.3. FUTURE WORK

• Implement the Authentication Header protocol and tunnel mode for
AH and ESP.

• Perform interoperability tests with a reference IPsec implementation.

• Perform an automated exploration of the software design space for
IPsec implementations.

53

Appendices

54

Appendix A

The Intel IXP2400 Network
Processor

A.1 Overview

Along with the rise in broadband packet networks came the demand for pro-
cessors which could process data flowing over these networks at full network
speed. The first products designed to perform data processing tasks at line
speed relied on specialised hardware (ASICs) which offered excellent perfor-
mance at the cost of flexibility. ASIC based designs could not be modified if
requirements changed and had to be replaced instead of being extended to
perform new tasks. The reprogrammability of FPGAs made them ideal for
performing some tasks, but throughput and memory limitations, along with
high price, restricted their suitability for more complex network processing
tasks.

In response to the growing requirements of packet processing and demand
for more flexible hardware, network processors were developed. Network pro-
cessors are programmable processors which can perform data processing tasks
at line speeds. In most network processor designs, performance demands
were met by including many processing engines on a single processor. Each
processing engine is a very restricted RISC processor optimised for perform-
ing network processing tasks, including bit manipulations and checksums.
Several processing engines are combined with other specialised hardware in-
cluding medium access controllers (MACs), switch fabrics and high speed
memory to make a complete network processor.

The Intel IXP2400 Network Processor, a second generation network pro-
cessor, consists of eight Microengine v2 data processing engines, an Intel
XScale control processor, SRAM and DRAM controllers, a medium interface

A-1

A.2. ARCHITECTURE OF THE IXP2400

and a PCI controller.

Figure A.1: Block Diagram of IXP2400 architecture (from [25])

A.2 Architecture of the IXP2400

A.2.1 Microengines

The IXP2400 network processor includes eight Microengine v2 network pro-
cessing engines. These engines are very simple programmable RISC pro-
cessors which perform the majority of data plane processing tasks on the
IXP2400. The features of these microengines include:

• 256 General Purpose Registers

• 512 Transfer Registers (used for memory access)

• 128 Next Neighbour registers (used for transferring data to other mi-
croengines on the same processor)

• 16 entry Content Addressable Memory

• Zero overhead context switching for up to eight threads

• 4096 instruction control store

• Hardware signal handling of up to fifteen signals

Each microengine has access to all the other resources on the network pro-
cessor, including the memory controllers and the media and switch fabric
interface (MSF).

A-2

A.2. ARCHITECTURE OF THE IXP2400

Contexts

Microengines have support for context switching, with zero effective over-
head, between up to eight threads. Use of multiple threads decouples data
processing times with comparatively long memory access times, allowing an-
other thread to continue when one is waiting for data from the memory
controllers. Context switching is handled by a non-preemptive round-robin
hardware thread controller, implemented in hardware on each microengine.
Each of the eight hardware contexts (threads) on each microengine can be

Figure A.2: Microengine Context State Transition Diagram (from [25])

in one of four states, Inactive, Executing, Ready and Sleeping. Figure A.2.1,
from the IXP2400 Hardware Reference Manual, illustrates the possible tran-
sitions between these states.

Inactive The context is not required by the application and was disabled
at compile time.

Executing The context is currently executing instructions from the control
store. Executing contexts will continue to execute until they fetch an
instruction which would cause them to block (such as a memory access).
Only one context per Microengine can be the executing stage at a time.

Ready The context is ready to execute. When the current executing process
switches to the sleep state, the hardware selects which of the ready
contexts to run with a round robin arbitrator.

A-3

A.2. ARCHITECTURE OF THE IXP2400

Sleep The context is waiting for an external event, such as the completion
of a memory access operation.

Memory

Microengines have access to four different types of memory. Each of the
memory types represents a tradeoff between expense, size, access latency
and bandwidth.

Local On-die memory local to each microengine. It is extremely fast but
very limited in size.

Scratch A small, fast memory shared by the eight microengines on the
IXP2400. Scratch is large enough to contain small data structures and
single packets.

SRAM Static Random Access Memory is medium speed and fairly large
(depending on the system configuration).

DRAM Dynamic Random Access Memory is relatively slow but is likely to
be the largest memory available due to it’s low cost.

Table A.1: IXP2400 Types and Properties of Memory (from [12])
Memory Type Size Access Latency Bus Width
Local 2560 bytes 3 4
Scratch 16K 60 4
SRAM 256M max. 150 4
DRAM 2G max. 300 8

Table A.1 lists the maximum sizes, bus widths and access latencies of the
four memory types. Local memory on the IXP2400 microengines is similar
in performance to L1 cache on modern PC CPUs. The L1 cache on the
AMD Athlon family has an access latency of 3 clock cycles1. Local memory
should not be confused with a cache, however. Data must be assigned to
local memory manually and it does not offer the same features, such as set
associativity, that a true CPU cache does. Local memory is suitable for small
data structures which are accessed often but are not suitable for allocation
to General Purpose Registers.

Scratch memory on the IXP2400 is shared between all eight microengines
and the XScale core. It offers fairly low latency, but is severely limited in size.

1From “Calibrated Hardware Database” http://monetdb.cwi.nl/Calibrator/

A-4

A.2. ARCHITECTURE OF THE IXP2400

Scratch is useful for shared memory communication between microengines
and for storage of relatively small data structures. The IXP2400 also supports
atomic access to scratch memory, using one of 16 possible rings. These rings
make implementation of producer/consumer relationships between contexts
or microengines simple and fast.

Static RAM is fairly expensive and thus it is unlikely to be used in large
amounts in deployed systems. The IXP2400 supports up to 256MB of static
RAM which can be used for medium speed access to large data structures
and packet data.

Double Data Rate (DDR) Dynamic RAM, as used by the IXP2400, is
cheap compared to other RAM types and is therefore likely to be present in
large amounts. DRAM access is a fairly high latency operation (300 cycles
if the controller is unloaded) which, combined with the lack of caches in the
microengines, makes accessing data from DRAM slow compared to other
types of RAM. In comparison, DRAM access latency on an AMD Athlon PC
processor is 160ns (or 160 cycles on a 1GHz processor), which is effectively
reduced (by as much as 80%) in practice by the use of a multi-level cache
heirarchy[11]. In order to achieve good performance, techniques such as
explicit caching and write/read combining must be used to reduce the effect
of this high latency.

One of the largest challenges for the programmer of the IXP2400 network
processor is effectively using these types of memory to achieve acceptable
performance while keeping costs low.

Content Addressable Memory

The IXP2400 microengines each contain a 16 entry Content Addressable
Memory. CAM is equivalent to a hardware implementation of an associative
array, or dictionary. The CAM allows the microengine to perform an ex-
tremely fast lookup from a tag to an associated state. Content Addressable
Memory hardware is extremely useful for many network processing applica-
tions, such as routing.

A.2.2 XScale Control Processor

The Intel XScale processor used as a control processor in the IXP2400 is a
powerful RISC microprocessor, compliant with the ARM V5TE standard.
The V5TE standard specifies a fairly limited instruction set without support
for floating point operations. Focussing on instructions relevant to packet
processing keeps costs down while not sacrificing performance.

A-5

A.3. CONCLUSION

This core is designed to run an embedded operating system (such as
RTLinux) and oversee the operations of the microengines. It’s responsibilities
include start-time setup of the microengines and exception handling for most
of the hardware devices. For example, an ECC error in the DRAM controller
will send an interrupt to the XScale processor which will take responsibility
for ensuring that the microengine which made the failed request continues
with it’s program successfully.

The XScale processor is also suitable for implementing non-performance
critical but fairly complex protocols. The XScale core would, for example,
be perfect for implementing the IKE and ISAKMP protocols in an IPsec
implementation.

A.2.3 Media and Switch Fabric Controller

The IXP2400 communicates with the network (via a separate physical layer
controller) or with other network processors on the same board through the
Media and Switch Fabric Interface (MSF). The MSF supports a pair of inde-
pendent 32bit wide buses with clock speeds of between 25MHz and 133MHz -
one receive bus and one transmit bus. Each of theses buses can be configured
independently, using different protocols and bus speeds, if necessary.

The MSF buses support:

• Configuration as four 8bit buses, two 16bit buses or one 32bit bus.

• POS-PHY (Packet over SONET) Levels 2 and 3.

– Multi PHY master mode operation, with support for up to 32
slave ports.

– Single PHY master mode operation.

• CSIX-L1 (Common Switch Interface) with a 32bit wide bus.

• UTOPIA (Universal Test and Operation Physical Interface for ATM)
Levels 1, 2 and 3.

• CBus connection for connecting to other IXP series processors.

A.3 Conclusion

The IXP2400 is an extremely powerful and capable processor. It offers many
features extremely useful for packet processing, along with a fast and efficient
interface to network hardware.

A-6

A.3. CONCLUSION

The multi-cored nature of the IXP2400 is perfectly suited to exploiting
the data level parallelism inherent in packet streams. Multiple packets can
be processed in parallel, reducing delay and increasing system throughput.

A-7

Appendix B

Virtual Private Networking
Protocols

B.1 Internet Protocol Security (IPsec)

B.1.1 Description of Protocol

IPsec[20] is a cryptographic-based protocol which provides authentication,
encryption, replay protection and integrity to IP packets. In addition to
these functions, IPsec also provides limited flow confidentiality. IPsec is
an obligatory part of the IPv61 standard and an optional part of the IPv4
standard. This protocol provides its functions at the IP layer (layer 3) and
provides security to all protocols which use IP as a network layer protocol.

Security services are provided by two security protocols: Encapsulating
Security Payload (ESP) and Authentication Header (AH). AH[27] provides
integrity and authenticity protection (but not confidentiality) for an entire
IP packet, including the header. ESP[16] provides integrity, authenticity and
confidentiality protection for the payload of an IP packet (not including the
packet header). Each of these protocols can be used in one of two modes:
transport mode or tunnel mode. Transport mode provides host-to-host se-
curity for upper layer protocols. Tunnel mode provides gateway-to-gateway
(or portal-to-portal) security for IP packets.

The IPsec protocol suite also includes the IKE (Internet Key Exchange)
[28] and ISAKMP (Internet Security Association and Key Management Pro-
tocol) [29] protocols. ISAKMP is a standard protocol for the creation and
management of Security Associations (SA), authentication of hosts and gen-
eration of key material. IKE is a protocol for the exchange of authenticated

1Internet Protocol version 6, detailed in RFC2460[26]

B-1

B.1. INTERNET PROTOCOL SECURITY (IPSEC)

key material between hosts and provides key exchange services to ISAKMP.
IKE uses public key encryption techniques to provide a secure, authenticated
channel for the transfer of key material.

B.1.2 Analysis of Protocol

Ferguson and Schneier

In “A Cryptographic Evaluation of IPsec”[30], Ferguson and Schneier found
the IPsec is extremely complex and that its complexity has lead to a number
of security weaknesses in the design of the protocol.

“We have found serious security weaknesses in all major compo-
nents of IPsec.”[30]

The authors provide a number of recommendations for the modifications to
IPsec which would improve the security of the protocol by removing redun-
dant parts. One of the most important findings of the paper is that the ESP
protocol and tunnel mode provide a superset of the functionality of the AH
protocol and transport mode without any major shortcomings.

“Recommendation 1 Eliminate transport mode.”
“Recommendation 2 Eliminate the AH protocol.”[30]

Despite serious misgivings about the security of IPsec, the authors seem to
believe that IPsec is the best VPN protocol currently available.

“We are of two minds about IPsec. On the one hand, IPsec
is far better than any IP security protocol that has come before:
Microsoft PPTP, L2TP, etc. On the other hand, we do not believe
that it will ever result in a secure operational system.”[30]

“We strongly discourage the use of IPsec in its current form
for protection of any kind of valuable information, and hope that
future iterations of the design will be improved. However, we
even more strongly discourage any current alternatives, and rec-
ommend IPsec when the alternative is an insecure network. Such
are the realities of the world.”[30]

Bellovin

In “Problem Areas for IP Security Protocols”[31], Steven Bellovin lists a
number of cryptographic and inherent weaknesses in IPsec. The attacks

B-2

B.2. POINT-TO-POINT TUNNELING PROTOCOL (PPTP)

presented range from chosen plain text and known plain text attacks against
the cipher implementation to direct attacks against the ciphers themselves.
This paper is extremely important as it identifies areas of IPsec which can be
implemented in a manner which provides no security, yet complies completely
with the published standard[20].

Bellovin notes that most of the attacks presented in the paper can be neu-
tralised by ensuring that encryption is never used without integrity checking
and that key material is not re-used between connections.

“It is quite clear that encryption without integrity checking is
all but useless. We strongly recommend that all systems mandate
joint use of the two options”[31]

B.2 Point-to-Point Tunneling Protocol (PPTP)

B.2.1 Description of Protocol

The Point-to-Point Tunneling Protocol (PPTP)[32] is a VPN protocol which
allows the tunneling of Point-to-Point Protocol (PPP) over an IP Network.
PPTP provides a framework for endpoints to negotiate which authentication,
encryption and compression algorithms will be used over the tunneled chan-
nel. Tunneling is provided at the packet level by encapsulating IP packets in
PPP packets and encapsulating the PPP packets in GRE[33, 34] packets.

The most widely used implementation of PPTP is Microsoft’s implemen-
tation which first shipped with Windows NT 4. It can use one of three
authentication schemes: an unencrypted clear-text password, a hashed pass-
word or challenge-response using MSCHAP-v2 (Microsoft Challenge Hand-
shake Authentication Protocol, version 2). If the third authentication option
is used, optional packet encryption can be provided with MPPE (Microsoft
Point-to-point Encryption).

Generic Routing Encapsulation (GRE)

“[GRE is] a protocol for performing encapsulation of an arbi-
trary network layer protocol over another arbitrary network layer
protocol.”[33]

Generic Routing Encapsulation provides a simple protocol for encapsulation
of packets at the network layer. Several standards specify the details of
providing encapsulated GRE channels over a number of network layer proto-
cols. PPTP builds on the IPv4 GRE standard detailed in “Generic Routing
Encapsulation over IPv4 networks (RFC1702)”[34].

B-3

B.2. POINT-TO-POINT TUNNELING PROTOCOL (PPTP)

B.2.2 Analysis of Protocol

Schneier and Mudge

In “Cryptanalysis of Microsoft’s Point-to-point Tunneling protocol” [35],
Schneier and Mudge present a number of attacks against Microsoft’s im-
plementation of PPTP. The most critical of these is an attack against MS-
CHAPv1, which was replaced with MS-CHAPv2 in response to this paper
and others.

The paper also presents a number of security weaknesses in the MPPE
encryption protocol. The most critical of these is that the protocol is keyed
using an SHA hash of the user’s password. As a result of this method of
key generation, the encryption key only has the same amount of entropy as
the user’s password - making dictionary based and brute force key recovery
attacks a possibility. The use of cryptographically secure key generation
algorithms (such as those recommended by the IPsec specification) and key
distribution algorithms (such as IKE) would have dramatically strengthened
Microsoft PPTP.

“Microsoft’s PPTP implementation is fragile from an imple-
mentation perspective, and seriously flawed from a protocol per-
spective.” [35]

Wagner, Schneier and Mudge

In response to [35], Microsoft improved their PPTP implementation by intro-
ducing MS-CHAPv2, a more secure authentication protocol. In “Cryptanal-
ysis of Microsoft’s PPTP Authentication Extensions (MS-CHAPv2).”[36],
Wagner, Schneier and Mudge present a complete analysis of the new proto-
col. Weaknesses of the new protocol against version rollback attacks (forcing
the server to use MS-CHAPv1), dictionary attacks and cryptographic attacks
are discussed. The authors conclude that the changes to authentication and
encryption in MS-CHAPv2 greatly strengthen the algorithm. The greatest
concern about the new protocol is that key generation is still based on the
user’s password.

“However, the fundamental weakness of the authentication
and encryption protocol is that it is only as secure as the password
chosen by the user.”[36]

“Our hope is that PPTP continues to see a decline in use as
IPsec becomes more prevalent.”[36]

B-4

B.3. LAYER 2 TUNNELING PROTOCOL (L2TP)

B.3 Layer 2 Tunneling Protocol (L2TP)

B.3.1 Description of Protocol

Layer 2 Tunneling Protocol (L2TP)[37] is an extension and generalisation of
the Point-to-point protocol (PPP)[38]. L2TP is a data-link layer protocol
which transports client data over an existing packet based network. L2TP
is an extremely flexible protocol, which is applicable to a large number of
applications. Most commonly it is used to provide dial-in like connections to
remote networks over the internet.

L2TP and IPsec

L2TP provides security for tunneled data using PPP encryption and authen-
tication services. These services have a number of major drawbacks: they do
not protect the control channel data and do not address integrity checking,
key management and replay protection. While PPP authentication serves to
authenticates hosts on a per-connection basis, it does not perform per-packet
authentication.

In order to use L2TP as a secure VPN protocol, L2TP can be combined
with a network layer security protocol - most typically IPsec. In “Securing
L2TP Using IPsec (RFC3193)”[39], the authors describe a protocol for pro-
tecting L2TP tunnels with IPsec’s ESP protocol in transport mode. The
IKE protocol[28] is used for key generation and distribution. This protocol
does not provide end-to-end security - it only encrypts the data for the time
it is inside the L2TP tunnel. If end-to-end security were required, an IPsec
or TLS connection could be used to secure communication between the end
points.

B.4 Transport Layer Security

B.4.1 Protocol Description

Transport Layer Security (TLS)[40] and it’s predecessor Secure Sockets Layer
(SSL) are protocols designed to provide encryption and authentication to the
connection between two applications. TLS provides security to the transport
layer of the protocol stack - it uses a reliable transport layer protocol (such
as TCP) and it’s own services to provide encryption, authentication and
reliability to application layer protocols. The TLS standard specifies two
protocols - the record protocol and the handshake protocol.

B-5

B.5. SELECTION OF PROTOCOL

The TLS record protocol provides connection privacy through use of sym-
metric cryptography and connection reliability using a keyed MAC. A variety
of symmetric cryptography algorithms are supported and can be negotiated
between client and server when the connection is established. RC4, RC2,
DES and 3DES are supported, with a variety of key lengths.

The TLS handshake protocol uses an asymmetric encryption algorithm
(RSA and DSS are supported) to provide optional authentication to one, or
both, peers. In many real-world implementations only one of the peers, the
server, is authenticated. Distribution of key matter to be used by the record
protocol is also handled by the handshake protocol. The protocol ensures
that the shared secret is distributed both securely (an eavesdropper cannot
extract the secret) and reliably (an attacker cannot modify the key in transit)
to both parties.

B.5 Selection of Protocol

B.5.1 Objective Protocol Selection

There are a number of important factors to consider in the choice of a VPN
protocol for implementation on the IXP2400 network processor. These fac-
tors include: security, simplicity and efficiency. While these three factors are
extremely important the most important single factor is industry acceptance
- it makes little sense to implement a protocol which is not widely supported.

The technique chosen to choose the ideal protocol is to assign a score to
each protocol in each of four categories - simplicity, security, efficiency and
acceptance. Weights are then applied to each category and a final score is
calculated for each protocol. This score will be a valuable tool in making the
final selection of a protocol. The score in each category for each protocol is
based, as far as possible, on reports of practical experiences of implementing
each protocol in a production environment.

Simplicity Security Efficiency Acceptance Total
IPsec 7 8 6 7 28
PPTP 8 3 6 8 25
L2TP+IPsec 5 9 3 7 24
TLS 4 6 5 6 21

Simplicity

The simplicity score is a measure of the simplicity of implementing each
protocol as a VPN gateway protocol. The complexity of the protocols them-

B-6

B.5. SELECTION OF PROTOCOL

selves, any support protocols needed and cryptographic algorithms used were
taken into account.

IPsec Only ESP and tunnel mode were taken into account - ESP can provide
all the functions of AH and transport mode is not applicable to VPN
gateways.

L2TP In order to provide acceptable security, L2TP relies on a protocol
such as IPsec, which greatly increases its complexity.

TLS While TLS can be implemented as a gateway-to-gateway VPN proto-
col, such an implementation is likely to be complex and fragile.

Security

The security score reflects the strength of the algorithms, measured by the
number and severity of any public attacks. Security features provided by
the algorithms, such as authentication, privacy, replay protection and flow
confidentiality were also taken into account.

PPTP There are a number of published attacks against PPTP and some
concerns about it’s key generation methods.

L2TP L2TP provides flow confidentiality in addition to the security services
provided by IPsec.

TLS While there is little doubt as to the security of the TLS and SSL
3.0 protocols, it is not clear whether they will provide security when
deployed as a VPN protocol.

Efficiency

This score reflects the relative performance that can be expected from a
network gateway implementing each of the protocols. Both processing time
(added latency and reduced bandwidth) and added network overhead are
taken into account.

IPsec IPsec’s performance is entirely dependent on the protocols and en-
cryption algorithms used, but has small overhead and excellent perfor-
mance in some configurations.

TLS The throughput of SSL is lower than the throughput of IPsec on the
same hardware [41].

L2TP L2TP’s performance is dominated by the performance of the IPsec
encryption used on the tunnel. Protocol overhead is larger than IPsec.

B-7

B.6. CONCLUSION

Acceptance

Acceptance reflects how widely the protocol is accepted as a gateway-to-
gateway protocol by both industry and communications researchers.

IPsec Generally accepted as the most viable protocol for implementation
in new products, IPsec has found wide acceptance in academia and
industry. An IPsec implementation is available for Windows, Linux
and many other operating systems.

PPTP The most widely spread and widely used VPN protocol, because of
it’s inclusion in Microsoft Windows. PPTP is widely deployed, used
and implemented. Implementations are available for Windows, Linux,
OSX and some other operating systems.

L2TP L2TP+IPsec is widely accepted and deployed, especially as a remote
access tunneling protocol. Implementations are available for Windows,
Linux and other operating systems.

TLS While TLS and SSL are possibly the most widely used of all the above
protocols due to their use to provide security to web applications and
their implementation in most web browsers, they are not widely used
as gateway-to-gateway VPN protocols.

B.6 Conclusion

IPsec appears to be the most suitable Virtual Private Networking protocol for
implementation in this project. Several factors are in IPsec’s favour. IPsec
is extremely widely implemented in and accepted in the communications
industry and offers superior security to it’s most direct competitor, PPTP.
IPsec was also designed as a gateway-to-gateway virtual private networking
protocol, which makes it more suitable than SSL and TLS. It is difficult
to justify the implementation of the extra complexity of L2TP for use as a
portal-to-portal VPN protocol.

B-8

Appendix C

Internet Protocol Security

C.1 The IPsec Protocol

Internet Protocol Security[20], or IPsec, was briefly introduced in Section
B.1. In this section, IPsec for IPv4 will be more completely described, with
emphasis on the Encapsulating Security Payload (ESP)[16] protocol and tun-
nel mode operation. Emphasis will also be placed on issues regarding the
implementation of IPsec on a “Bump-in-the-wire”.

C.1.1 Security Associations

The operation of IPsec is based on the concept of Security Associations. A
Security Association (SA) is a connection between two hosts which defines
security parameters for traffic being carried by the connection. Security
Associations are simplex connections - for bi-directional traffic two Security
Associations are required.

Security Associations are stored by the end points in a database. The
IPsec standard [20] recommends that IPsec compliant devices keep two databases
- a Security Association Database containing details of all the active security
associations in use by the device and the Security Policy Database which
stores general policies regarding the establishment of new Security Associa-
tions. Each network interface on an IPsec device needs a two sets of databases
- one for inbound traffic and one for outbound traffic.

C.1.2 Transport Mode and Tunnel Mode

The IPsec protocols support two modes of operation.

C-1

C.1. THE IPSEC PROTOCOL

Transport Mode

Transport mode applies the IPsec protocols to packets as they are sent over
the network, providing protection to upper-level protocols and packet data,
including the TCP header. Figure C.1 illustrates which parts of the original
IP packet are protected using the ESP protocol in transport mode. In this
figure, sections of the packet containing data from the original packet have
a hatched background. As can be clearly seen from this diagram, some data
which may be interesting to an attacker, including the IP header of the
original packet, is not encrypted or authenticated by the ESP protocol.

Encryption and authentication are performed on all upper level protocol
headers of the IP packet and it’s entire data payload. For applications that
demand authentication and encryption of packet data but do not require
stream anonymity or enhanced replay protection, the reduced overhead of
transport mode when compared to tunnel mode makes this mode attractive
for end-to-end implementations. Transport mode is not suitable for gateway-
to-gateway or bump-in-the-wire IPsec implementations.

Original
IPv4
Header

ESP
Header

TCP
Header

Original Packet
Payload

ESP
Trailer

ESP
Auth

Authenticated

Encrypted

IPv4
Options

Figure C.1: ESP Transport Mode (from [20])

Tunnel Mode

IPsec operating in tunnel mode encapsulates the contents and headers of the
IP packets it is protecting within an outer IP packet. This encapsulation for
tunnelling is similar to the operation of other IP-over-IP tunneling protocols,
such as GRE. The ESP protocol operating in tunnel mode offers confiden-
tiality and authentication protection for the entire IP packet, including all
headers.

Tunnel mode ESP is illustrated in figure C.2. The entire inner IP packet
(marked with a grey background in the figure) is protected. This affords
greater stream anonymity and replay protection that ESP operating in trans-
port mode.

Tunnel mode is suitable for both end-to-end and gateway-to-gateway im-
plementations and is more simple to implement without knowledge of the

C-2

C.1. THE IPSEC PROTOCOL

New
IPv4
Header

ESP
Header

Original
IPv4
Header

TCP
Header

Original Packet
Payload

ESP
Trailer

ESP
Auth

Authenticated

Encrypted

Figure C.2: ESP Tunnel Mode (from [20])

state of either the source or destination. These properties make tunnel mode
ideal for bump-in-the-wire (IPsec gateway) implementations.

C.1.3 Encapsulating Security Payload

Described in the paper “IP Encapsulating Security Payload (ESP)” by Kent
and Atkinson, is a header designed for use with IPsec, which provides a set
of security services to IP traffic. ESP can be applied to both IPv4 and IPv6
traffic with few modifications. The security services provided by ESP include
authentication, confidentiality, integrity, sequence integrity and traffic flow
confidentiality, depending on the details of the Security Association (SA)
between the hosts using the protocol. Users can select to use either confi-
dentiality (and associated services), authentication (and associated services)
or both - but not neither.

The ESP Header

Sequence Number

Payload Data (variable)

Padding (variable)

Pad Size Next Hdr

Authentication Data (variable)

Security Parameters Index (SPI)

Figure C.3: The ESP Header (from [20])

The ESP header consists of seven fields, as illustrated in figure C.3:

C-3

C.1. THE IPSEC PROTOCOL

Security Parameters Index The SPI uniquely identifies the security as-
sociation used for transmission of the packet.

Sequence Number The sequence number is a counter value which must be
increased by the sender for each packet which is sent. If the sequence
number counter were to roll over, a new Security Association must be
negotiated.

Payload Data In tunnel mode, this field contains the entire encapsulated
datagram in encrypted form. Initialization vectors for the ciphers used
are also transferred in this section.

Padding Payload data must be padded prior to encryption to fit into an
integral number of cipher blocks.

Pad Size The length of the pad.

Next Header The protocol contained in the payload, uses one of the IANA
assigned protocol values.

Authentication Data A cryptographic hash of the entire ESP header.

C.1.4 Internet Key Exchange

Security Associations (SAs) between IPsec hosts are established, maintained
and removed using the Internet Key Exchange (IKE) protocol[28]. The IKE
protocol, in turn, depends on the Internet Security Association and Key
Management Protocol (ISAKMP) which is an extremely complex framework
for the definition of security association negotiation protocols and a partial
Security Association establishment and maintenance protocol.

Security Association between two IPsec hosts occurs in two phases. The
first phase is the establishment of a ISAKMP Security Association between
the hosts. The seconds phase uses this ISAKMP SA to negotiate a pair of
IPsec security associations. Negotiation of a pair of Security Associations
requires the two hosts (or gateways) to agree on which authentication (SHA-
1, MD5, etc) and encryption algorithms (DES, NULL, AES, etc) will be
allowed, encryption parameters such as key length and Initialization Vector,
and how long the SA will last before it is re-negotiated.

Diffie-Hellman Key Exchange

The IKE protocol uses an authenticated version of the cryptographic tech-
nique known as Diffie-Hellman Key Exchange for the exchange of a pair of

C-4

C.2. OVERHEAD OF IPSEC

encryption keys. Diffie-Hellman allows to hosts to exchange encryption keys
(or any other information) securely, without any prior knowledge or shared
information, even if the network between them is insecure.

A simplification of the Diffie-Hellman protocol proceeds as follows:

1. Alice and Bob swap, over the open network, a large primes p and a
generator g

2. Alice chooses a random natural number, Aa as her private key

3. Bob chooses a random natural number, Ba as his private key

4. Bob calculates Bb = gBa modulo p and sends it to Alice, over the open
network

5. Alice calculates Ab = gAa modulo p and sends it to Bob, over the open
network

6. Bob calculates k = (Ab)
Ba modulo p and Alice calculates k = (Bb)

Aa

modulo p

7. Alice and Bob now have the same value k

The Diffie-Hellman protocol is described more completely in “Diffie-Hellman
Key Agreement Method” by Eric Rescorla, RFC2631[42].

C.2 Overhead of IPsec

In this section we will consider the transfer size overhead of implementing
IPsec on a typical packet network, such as an Ethernet. We will consider
IPsec for IPv4 in both tunnel mode and transport mode with the Encapsu-
lating Security Payload (ESP) protocol.

Overhead of ESP

The base size of the ESP header is 10 bytes, including the SPI, Sequence
Number, Pad Size and Next Header fields. In addition to these fields, in a
typical implementation such as the one we present, a 12 byte (96 bit) HMAC-
SHA-1-96 authentication block will be present. The payload also needs to
be padded to a multiple of the cipher’s block length. The AES cipher used
in the IPsec implementation we present uses a block length of 16 bytes -
therefore a maximum of 15 bytes of padding will be needed.

The total size of the ESP header is between 22 bytes and 37 bytes, de-
pending on the amount of padding needed.

C-5

C.2. OVERHEAD OF IPSEC

Tunnel Mode Overhead

In addition to the ESP header, a packet protected using IPsec’s tunnel mode
will require an IP packet header. The minimum size of the IPv4 header, if
no options are used, is 20 bytes. In transport mode a second IP header is
not required, so no extra overhead will be introduced.

C.2.1 Overhead calculations

Protocols such as FTP and HTTP generate large packets. If we assume these
packets are all 1500 bytes (the Ethernet MTU) long after encapsulation, the
the overheads will be as follows. For tunnel mode:

1− Savg

Stunnel

= 1− 1443

1443 + 57
= 3.8%

For transport mode:

1− Savg

Stransport

= 1− 1463

1463 + 37
= 2.5%

In neither case does the ESP and IPsec overhead make a significant contri-
bution to the packet size.

For protocols and applications which generate small packets, such as
VOIP and Telnet, the bandwidth overhead of IPsec can be significant. As-
suming an average packet size of 64 bytes, and worst case padding the over-
heads will be as follows. For tunnel mode:

1− Savg

Stunnel

= 1− 64

64 + 57
= 47%

For transport mode:

1− Savg

Stransport

= 1− 64

64 + 37
= 37%

In both these cases, the IPsec packet size overhead could be extremely sig-
nificant. Implementation if ESP in tunnel mode could reduce the amount of
VoIP traffic a network can transfer by as much as 50%. If other IPsec related
services are used - such as UDP encapsulation of IPsec packets for purposes
of NAT and firewall traversal, this overhead will be increased even further.

C-6

C.3. SECURE HASH ALGORITHM (SHA-1)

C.3 Secure Hash Algorithm (SHA-1)

C.3.1 Background

A hash function is a function which maps a large input space onto a consider-
ably smaller output space. Cryptographic hash functions are functions which
perform this mapping in a way which them useful for implementing message
authentication and other security operations. There are three important
measures of the security of a cryptographic hash function (from [43]):

Collision resistance It is computationally infeasible to find x, y, x != y
such that H(x) = H(y).

Preimage resistance Given an output value y, it is computationally infea-
sible to find x such that H(x) = y.

Second preimage resistance Given an input x’, it is computationally in-
feasible to find x such that H(x) = H(x’).

Simply stated, Collision Resistance a measure of the difficulty of finding two
pieces of data which have the same hash value. Preimage Resistance is the
difficulty of extracting the original data from the hashed value and Second
Preimage Resistance is a measure of the difficulty of finding data which has
the same hash value as another, given, piece of data.

The most important properties hash function used to provide authen-
tication in a protocol such as ESP is Second Preimage Resistance. This
is because the hash is used to indicate that the message contained in each
packet has not been altered. If it were possible to find a message with a
different meaning to the one contained in the packet but with the same hash,
the hash would not be effective in ensuring that message data has not been
altered.

There are many hash functions which are used widely in industry. Possi-
bly the most well known and widely spread is MD5. The second most widely
well known and implemented is SHA-1, which has seen wide adoption follow-
ing growing concerns about the security of MD5[44]. Other hash functions,
such as RIPEMD-160 and the other members of the SHA family - SHA-
224, SHA-256, SHA-384 and SHA-512 - are also widely used in real-world
implementations.

The selection of SHA-1 as the cryptographic hash function primitive to
use in the implementation of IPsec was one that was carefully considered.
Despite recent breakthroughs in finding collisions in SHA-1 hashes (see sec-
tion C.3.4 on page C-9), it is still considered secure enough[43] for use as

C-7

C.3. SECURE HASH ALGORITHM (SHA-1)

a hash function to be combined with HMAC. SHA-1 offers superior perfor-
mance to the rest of the SHA family and RIPEMD-160, while being simpler
to implement. MD5 is attractive because of it’s excellent performance and
simplicity, but recent attacks have shown that it’s collision resistance is ex-
tremely weak[44]. Although the WHIRLPOOL hash function (which shares
a common ancestor, the Square block cipher, with AES) is believed to be
secure, is fairly simple and can be implemented extremely efficiently on most
hardware it is not suitable because its lack of wide adoption would effectively
limit interoperability.

C.3.2 The Keyed-Hash Message Authentication Code
(HMAC)

IPsec uses the HMAC[45] algorithm, along with a cryptographic hash algo-
rithm, to provide message authentication codes for use with the ESP and
AH protocols. The HMAC algorithm is a keyed function which makes use
of a block of key data and a cryptographic hash function to generate key-
dependent digests of a specified length.

The definition of HMAC

Given a cryptographic hash function H with block size B, a block of data D
and a block of key data K, HMAC defines a simple procedure for calculating
a message authentication code. The algorithm proceeds as follows:

1. Define ipad to be the value 0x36 repeated B times and opad to be the
value 0x5C repeated B times

2. Pad the key data K with 0x0 bytes to a total length of B bytes

3. XOR the padded key data with the ipad and append the data block,
D, to the result

4. Calculate the hash value I of the data and key block

5. XOR the padded key data with the opad and append the hash value I
to the result

6. Calculate the hash value R of the key and I block

Thus, HMAC calculates the value R = H(K ⊕ opad|H(K ⊕ ipad|D)) where
K is the padded key data, ⊕ is the XOR (bitwise exclusive OR) operator and
| is the concatenation operator.

C-8

C.3. SECURE HASH ALGORITHM (SHA-1)

Truncation

In order to use the output of HMAC with a protocol such as ESP, the out-
put must be truncated. RFC2404[46] specifies the use of HMAC-SHA-1-96
with ESP and AH. HMAC-SHA-1-96 means that the MAC expected is the
first 96 bits (12 bytes) of the output of HMAC using SHA-1 as a cryp-
tographic primitive. This truncation is only performed on the final out-
put of the HMAC function - it is not performed on the output of the in-
ner hash function. For example, if the 160 bit output of HMAC-SHA-1
is 0x4c1a03424b55e07fe7f27be1d58bb9324a9a5a04 then the 96 bit output of
HMAC-SHA-1-96 would be 0x4c1a03424b55e07fe7f27be1.

C.3.3 The definition of SHA-1

A complete explanation of the SHA-1 algorithm is presented in FIPS-180-
1 and FIPS-180-2[21] and a similar explanation and sample code can be
found in RFC3174[47]. Complete C code, written by the author, for an
implementation of HMAC-SHA-1 is on the Compact Disc attached to this
document.

SHA-1 functions by taking the data to be hashed, padding it to fit into a
number of 64 byte blocks and repeatedly perturbing each byte of the block.
The inner loop which performs the perturbations is fairly simple, but still
provides a good basis for a hash function. In C, the loop appears as follows:

for (t = 0 ; t < 80 ; t++)
{

T = ro t l 5 (a)+f t (b , c , d , t)+e+kt (t)+sched . data [t] ;
e = d ;
d = c ;
c = ro t l 3 0 (b) ;
b = a ;
a = T;

}
Where rotl is a bitwise left rotation, ft is a bitwise mixing function and kt is
a constant.

C.3.4 Security of SHA-1

In August 2005, researchers Xiaoyun Wang, Yiqun Yin and Hongbo Yu from
Shandong University announced a new attack against SHA-1[48], which can
produce two distinct messages with the same hash with complexity 263 (ap-
prox. 1019), instead of the 280 (approx. 1024) which would be required for a

C-9

C.4. ADVANCED ENCRYPTION STANDARD

brute force search. This attack makes finding collisions in SHA-1 practical,
which severely reduces it’s usefulness as a cryptographic hash function.

These attacks are not currently relevant to the use of SHA-1 as a hash
function in the context of IPsec. Security researchers currently believe that
the use of SHA-1 with HMAC is still safe, as the addition of key mate-
rial makes the presented attacks impractical. In “Deploying a New Hash
Algorithm”[43], Bellovin and Rescorla write:

“Furthermore, HMACs are probably safe, since the unknown
component - the key - of the inner hash function makes it im-
possible to generate a collision at that stage; this in turn helps
protect the outer hash.”

C.4 Advanced Encryption Standard (AES)

C.4.1 Background

In September 1997, the National Institutes of Standards and Technology
(NIST), from the USA, made a call for the submission of encryption algo-
rithms to a competition to find the replacement for the Defence Encryption
Standard (DES). The purpose of the AES competition was to replace DES
with a fast (in hardware and software on a number of platforms) and secure
symmetric block cipher which could be used in both commercial and govern-
ment applications. Fifteen different ciphers were submitted to the compe-
tition — CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97,
MAGENTA, RC6, Rijndael, SAFER+, Serpent and Twofish. Each of these
algorithms was presented at the first AES conference in August 1998.

At the second AES conference, held in March 1999, papers were presented
detailing the cryptanalysis of many of the ciphers presented in the first round.
Following this conference, a shortlist of five ciphers was announced: MARS,
RC6, Rijndael, Serpent and Twofish. In December 2000, the Rijndael cipher
was selected, with some minor modification, as the AES.

AES, as standardised in FIPS 197[49], is symmetric block cipher based
on a substitution permutation network. It has a block size of 16 bytes (128
bits) and supports key sizes of 128, 192 and 256 bits.

C.4.2 Use of AES with IPsec

The original IPsec specification [20, 16] specified two encryption algorithms
for use with ESP. These algorithms are the Defense Encryption Standard
(DES) which has severely limited key size and is not believed to be secure

C-10

C.4. ADVANCED ENCRYPTION STANDARD

enough for sensitive applications and the NULL algorithm which is a place-
holder to represent no encryption. Following the completion of the AES cer-
tification process, the use of the AES algorithm with ESP was standardised
in “The AES-CBC Cipher Algorithm and Its Use with IPsec (RFC3602)” by
Frankel, Glenn and Kelly.

AES has several advantages over DES. AES supports longer keysizes than
either DES or triple DES, making it more secure against brute force attacks
and is believed to be a more secure cipher. AES is also significantly faster
and more efficient than DES in software and hardware implementations.

C.4.3 Elements of The AES Algorithm

Finite Field Arithmetic

All byte-level arithmetic operations in AES are done with bytes representing
elements in the Galois Field GF(28) with the reducing polynomial m(x) =
x8 +x4 +x3 +x+1, the first irreducible polynomial of degree 8. Explanations
of the algorithms for arithmetic operations in this space can be found in “The
Design of Rijndael” by Daemen and Rijmen[50] along with a justification of
the choice of this field for the cipher.

The SubBytes Transformation

Each byte in the 16 byte AES state block is replaced with the corresponding
byte in an 8bit S-box. The values of the S-box are calculated using an affine
transformation of the multiplicative inverse for the number in AES’s finite
field. For each byte x in the box, the multiplicative inverse y is found, such
that x×y = 1 in the finite field, then the bits of y, [y0 . . . y7], are transformed
using the following affine transformation:

z0

z1

z2

z3

z4

z5

z6

z7

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

y0

y1

y2

y3

y4

y5

y6

y7

+

1
1
0
0
0
1
1
0

The inverse SubBytes transform is similar to the forward transform, with a
change of S-Box. The S-Box used for the inverse transform is the inverse of
the one used for the forward SubBytes transform.

C-11

C.4. ADVANCED ENCRYPTION STANDARD

The ShiftRow Transformation

In this transformation, each row of the AES state is shifted over by a num-
ber of bytes. The first row is not shifted, the second row is shifted left one
byte, the third left two bytes and the fourth left three bytes. Refer to Fig-
ure C.4 for a graphical representation of this transformation. The ShiftRow
transformation ensures good mixing between the columns of the state.

a
b
c
d

e
f
g
h

i
j

k
l

m
n
p
q

a
b

c
d

e
f

g
h

i
j

k
l

m
n

p
q

Figure C.4: The AES Shift Rows Transform

The inverse of the ShiftRow transformation is trivial - the first row is not
shifted, the second shifted right by one element and so on.

The MixColumns Transformation

For the MixColumns transformation, each column of the AES state treated
as polynomials in GF(8). The transform multiplies each column polynomial
by c(x), modulo x4 + 1 where c(x) = 3x3 + x2 + x + 2. This transformation
is also representable as the matrix multiplication:

y0

y1

y2

y3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

x0

x1

x2

x3

The inverse transform is similar - a multiplication with d(x) modulo x4 + 1
where d(x) = 11x3 + 13x2 + 9x + 14

The AddRoundKey Transformation

In this transformation each byte of the round key (derived from the key
schedule, see Section C.4.4 on page C-13) is bitwise exclusive ORed (XOR)
with the corresponding byte of the AES state. Due to the symmetry of the
XOR function (y ⊕ (x ⊕ y) == x) the AddRoundKey transformation is it’s
own inverse.

C-12

C.4. ADVANCED ENCRYPTION STANDARD

a
b
c
d

e
f
g

h

i
j

k
l

m
n
p
q

a
b
c
d

i
j

k
l

m
n
p
q

Multiply with c(x)

r
s
t
u

Figure C.5: The AES MixColumns Transform

C.4.4 AES Key Schedule

The Key Schedule is an algorithm for deriving the round keys from the cipher
key. The cipher key needs to be expanded to 128(R + 1) bits of round keys
where R is the number of cipher rounds. The first four 32 bit words of the
cipher key are copied directly to the expanded key. A simple algorithm is
followed for the rest of the expansion, illustrated by this pseudocode:

def gen key (key) :
exp key [0 : 4] = key [0 : 4]
for i in range (4 , 44) :

w = exp key [i −1]
i f (i&0x3) == 0 :

w=r o l (w)
w=bytesub (w)
w=wˆ rcon ((i −4)/4)

w = wˆexp key [i −4]
exp key . append (w)

return exp key

The SubByte function is equivalent to the forward SubByte transformation
discussed above, executed on each byte of a 32 bit word. The RotByte func-
tion takes a 32 bit word and performs a logical left rotate by 8 bits. Rcon is
defined as:

Rcon[i] =
({

1 for i = 1
2Rcon[i− 1] for i > 1

)
� 24

with multiplication taking place in AES’s finite field and � 24 representing a
bitwise left shift by twenty four bits. The Rcon function can be implemented
with a simple lookup table.

const unsigned char rcon data [1 0] = {0x01 , 0x02 , 0x04 ,
0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0x1b , 0x36 } ;

rcon [i] = rcon data [(i −4)>>2] << 24

C-13

C.4. ADVANCED ENCRYPTION STANDARD

C.4.5 The AES Algorithm

AES Forward Transform (Encryption)

The AES encryption operation (referred to as the Forward Transform in some
literature) consists of ten rounds for 128bit keys, twelve rounds for 192bit
keys and fourteen rounds for 256bit keys. The number of rounds is increased
with the key length to ensure that indirect cryptanalytic attacks (attacks
that do not involve key guessing) do not become relatively easier to perform
than brute force attacks as key lengths increase.

Each round of the cipher involves the Sub Bytes transformation, the Shift
Rows transformation, the Shift Columns transformation and mixing of key
material, in that order. A pseudocode representation of the encryption func-
tion for a 128bit key (176 bytes of key data) appears as follows:

def enc ipher (s ta te , key) :
add round key (s tate , key [0 : 4])
for round in range (1 , 10) :

sub bytes (s t a t e)
s t a t e = sh i f t r ow s (s t a t e)
mix columns (s t a t e)
add round key (s tate , key [4∗ round : (4∗ round+4)])

sub bytes (s t a t e)
s t a t e = sh i f t r ow s (s t a t e)
add round key (s tate , key [4 0 : 4 4])
return s t a t e

Each round of the forward transform can be simplified to a number of lookups
into a set of four 1024 byte tables. This approach offers superior performance
to the naive implementation described above, especially on 32bit hardware
(such as the Intel IXP2400). The process of generating the required lookup
tables and a proof that the lookup table approach is equivalent to the naive
algorithm is presented in Section 5 of [50].

The AES Reverse Transformation (Decryption)

Two versions of the AES decryption algorithm are presented in the AES
documentation [49, 50]. The first of these uses the same key schedule as the
forward transform, but the reverse order of operations. While this decryption
algorithm is conceptually simple (it “unwraps” the operations of the forward
transform), it cannot be optimised to use a series of lookup tables on 32bit
hardware.

C-14

C.4. ADVANCED ENCRYPTION STANDARD

A more suitable decryption algorithm for optimisation on 32bit hardware
is referred to as the “Equivalent Inverse Cipher”. This algorithm uses the
same order of operations as the forward transform algorithm (using the in-
verse of each operation), but uses a modified key schedule. Following the
expansion of they key, all but the first four and last four 32bit words of
the expanded key are processed with the Inverse Mix Column operation,
described above. While the added complexity does make the key schedule
slower, this loss of performance can easily be made up for (in all but the
most key-agile and memory limited environments) by the fact that it allows
lookup table optimisations on 32 bit hardware.

A naive pseudocode implementation of the equivalent inverse cipher for
128bit keys is:

def dec ipher (s ta te , key) :
add round key (s tate , key [4 0 : 4 4])
for round in range (10 , 1) :

i nv sub byte s (s t a t e)
s t a t e = i n v s h i f t r ow s (s t a t e)
inv mix columns (s t a t e)
add round key (s tate , key [4∗ round : (4∗ round+4)])

sub bytes (s t a t e)
s t a t e = i n v s h i f t r ow s (s t a t e)
inv add round key (s ta te , key [0 : 4])
return s t a t e

C.4.6 Modes of Operation

Two IETF standards specify the use of AES with IPsec. The first standard,
“The AES-CBC Cipher Algorithm and Its Use with IPsec”[19] specifies the
use of AES in Cipher Block Chaining mode while the second standard, “Using
AES Counter Mode with IPsec” specifies the use of AES in Counter Mode.
Five modes of operation are commonly used with block ciphers - Electronic
Code Book (ECB), Counter Mode, Cipher Block Chaining (CBC), Output
Feedback (OFB) and Cipher Feedback(CFB).[51, 52, 53]

The most obvious usage mode for a block cipher is one where each block
of the input is enciphered independently to produce a single block of the
ciphertext — a mode known as Electronic Code Book (ECB). This mode of
operation, while simple, does not provide adequate security for production
use. This is because ECB mode does not hide statistical patterns in the
plaintext, vastly simplifying the task of cryptanalysis. An example of pat-

C-15

C.4. ADVANCED ENCRYPTION STANDARD

terns remaining after encryption in ECB mode is presented in Figure C.61.

(a) Original Image (b) Image Encrypted
in ECB Mode

(c) Image Encrypted
in CBC Mode

Figure C.6: Data Patterns Evident in Electronic Code Book Ciphertext (from
[52])

The most common alternative to ECB mode is Cipher Block Chaining
(CBC). In this mode of operation, the ciphertext of the previous block is
bitwise exclusive ORed (XOR) with the plaintext of the current block before
the block is encrypted. The first block of plaintext is XORed with an Initial-
isation Vector (IV) which is known by the party decrypting the data stream.
CBC mode effectively hides patterns in the plaintext.

In counter mode, the block cipher is used to encrypt a counter (a mono-
tonically increasing value in most implementations), which produces a value
which is then XORed with the plaintext to provide the ciphertext. In this
mode of operation, a block cipher can be used as a stream cipher. In counter
mode, unlike CBC mode, multiple blocks of plaintext can be encrypted in
parallel, which can increase the performance of the cipher on parallel archi-
tectures.

C.4.7 Security of the Advanced Encryption Standard

There have been several attacks published on reduced round variants of the
AES algorithm which perform better than a brute force search of the key
space. The best attack, currently, can break seven (out of ten) rounds of
the AES algorithm for 128 bit keys. This attack is presented in the paper
“Improved Cryptanalysis of Rijndael” by Ferguson, et al[54]. It uses a chosen

1Tux image copyright Larry Ewing (lewing@isc.tamu.edu), used with permission.

C-16

C.4. ADVANCED ENCRYPTION STANDARD

plaintext attack which can break seven rounds of the cipher with a complexity
of between 2120 and 2172, depending on key length and the amount of memory
used.

The same attack can break eight rounds of the cipher for 192 and 256bit
keys. Another attack, using “related keys”, is presented in the same paper
and can break nine rounds of 256bit AES with a time complexity of 2224.
The authors of the paper do not appear to believe that these attacks can be
extended to the full number of rounds of AES.

“Our results have no practical significance for anyone using the
full Rijndael.”[54]

Investigations of the mathematical properties of AES (especially it’s S-
Boxes) have recently revealed that these boxes do not provide the amount
of nonlinearity to the cipher that the original authors claimed. In “Crypt-
analysis of Rijndael S-Box and Improvement”, Jing-mei, et al[55]. present
an improved version of the S-Box that they claim will increase the amount
of nonlinearity in the cipher and imply that this will increase the security of
the AES algorithm. Whether these findings, and other similar findings, will
lead to successful attacks against the current AES algorithm is unclear.

Based on a study conducted by the National Security Agency (NSA)
of the United States of America, the Center for National Security Studies
(CNSS) has accepted the AES for protection of Classified, Secret and Top
Secret information in that country. This is significant as AES is the first a
published algorithm has been accepted for use with Top Secret information
in the United States.

“(6) The design and strength of all key lengths of the AES al-
gorithm (i.e., 128, 192 and 256) are sufficient to protect classified
information up to the SECRET level. TOP SECRET informa-
tion will require use of either the 192 or 256 key lengths.” CNSS
Policy 15 [56]

The Advanced Encryption Standard is rapidly becoming the industry
standard for deployment in a wide variety of systems, including Virtual pri-
vate networks. Current research indicates that this cipher is strong enough
to ensure that data encrypted with it will remain private for the foreseeable
future.

C-17

Appendix D

Implementation of Design

D.1 Microengine C

The design presented in Chapter 4 was implemented in Microengine C[57],
a dialect of the C programming language supported by the Intel Developer
Workbench 4.0 IDE and compiler.

While Microengine C is a complete language, it does not support many of
the features expected by C programmers on general purpose microprocessors.
Features which are unsupported include:

• A call stack or local data stack. Variables local to functions are allo-
cated to memory or registers at compile time. Memory and registers
allocated to automatic variables (local variables which are not static)
can be used by multiple functions, as long as their scopes do not over-
lap.

– “Function calls are implemented by loading a register with the
return address and jumping to the function.”[57].

• Misaligned or byte aligned access. Pointers to external memory must
point to a four byte (for SRAM) or eight byte (for DRAM) aligned
address. Byte aligned access can be performed with compiler intrinsics.

• The standard C library. A very minimal subset of the C library is
provided.

• Floating point arithmetic. The IXP2400 microengines do not have a
floating point unit and the compiler does not provide floating point
emulation support.

D-1

D.2. DETAILS OF IMPLEMENTATION

• Recursive functions. Due the the lack of a call stack, recursive functions
are not supported by the compiler.

• Function pointers. Pointers to functions and pointers to types which,
when dereferenced, would become pointers to functions are not sup-
ported.

• The address operator (&) can not be applied to variables which are
stored in registers.

The development tools for the IXP2400 network processor support two lan-
guages - Microengine C and Microengine Assembler. Microengine assembler
is a rich, high level assembly language exposing a very limited instruction set
with high per-instruction functionality. Programming the IXP2400 Micro-
engines in assembler would have allowed better use of the advanced features
of the Microengines which are not fully exposed by compiler intrinsics.

Despite this advantage of assembler, Microengine C was chosen for the
implementation of the IPsec gateway design. This choice was made based
on several advantages of C over assembly language. A high level language
such as C allows code to be developed more quickly - the programmer does
not have to be concerned with the underlying instruction set. C code is also
easier to read and debug than assembler code — this makes the code more
valuable to others who wish to analyse or extend it.

The use of a high level language simplified the design of the software as
details such as memory addresses and register allocation did not have to be
included in the design. The Intel Microengine C compiler supports exten-
sive compile-time optimisation of C code. It is likely that an inexperienced
assembler programmer would be unable to produce code which runs faster
than compiler produced code.

D.2 Details of Implementation

D.2.1 Receive Program

The receive program was broken up into four source files. Interfacing with
the MSF and packet receive functionality was placed in rx.c. The multiple
producer-consumer ring buffer code was included in mcprb.c while the main
program functionality was split into test.c and packetprocess.c.

D-2

D.2. DETAILS OF IMPLEMENTATION

File Description Lines
rx.c MSF Receive Interface 154
mcprb.c Multiple Consumer Ring Buffer 168
packetprocess.c Packet Processor Arbiter 137
test.c Main Program 122

Total 581

The total number of lines of Microengine C code in the receive program is 581.
In order to simplify the code in packetprocess.c, this file was written to be
modified by the C preprocessor and included six times — one per processing
microengine. Due to this, the total number of lines that are compiled for the
receive program is 1266.

D.2.2 The Packet Processing Program

The C preprocessor was used to produce six similar packet processing pro-
grams with different addresses and variable names. The majority of packet
processing functionality was placed in hash engine template.c which is cus-
tomised for each ME and included in hash engine[123456].c to form the main
program of the packet processor.

File Description Lines
sha1.c SHA-1 and HMAC implementation 388
aes fast.c AES implementation 289
hash engine template.c Template for Packet Processor 119
hash engine1.c Main Program 107

Total 903

The SHA-1 and HMAC implementations was placed in sha1.c and hmac-
sha1.c. The AES implementation was placed in aes fast.c, and automatically
generated AES lookup tables were placed in aes table.h. Support programs,
written for a PC, were used to automatically generate lookup tables for the
AES implementation.

D.2.3 The Transmit Program

The transmit program is considerably simpler than the receive and packet
process programs. All the functionality was included in a single source file,
tx engine.c.

File Description Lines
tx engine.c Main Program 286

Total 286

D-3

D.3. SUPPORT PROGRAMS

D.3 Support Programs

The support programs required for development and testing of the project
were written in the Python programming language.

AES Table Generation

A program was written to calculate the lookup tables required by the fast
AES implementation. The method for calculating these lookup tables is
detailed in [50]. This program calculates the tables and exports them in the
form of a C header file for convenient inclusion in Microengine C code.

Log Processor

The logs produced by the Developer Workbench simulator are not conve-
niently formatted for the collection of packet processing statistics. The log
processor program takes the receive and transmit log files produced by the
simulator, pairs the received and transmitted packets and output the data
in a comma separated value text file.

The .csv files produced by this program can be imported into a spread-
sheet program (such as OpenOffice Calc) or matlab which can then be used
to analyse and graph the data.

TCPDump Processor

Packet size statistics were collected by running the tcpdump1 program on
a number of workstations. A processing program was written to analyse
these logs and output packet size statistics and data files for import into a
spreadsheet or matlab .

D.4 Conclusion

The implementation, as completed, consists of 1770 lines of Microengine C
code. In the process of comparing alternative designs, a considerably larger
number of lines of code were written, tested and discarded.

1tcpdump is an open-source packet capture program which can be found at
http://www.tcpdump.org/

D-4

D.4. CONCLUSION

Program Lines of Code Percentage
Receive 581 33%
Process 903 51%
Transmit 286 16%

Total 1770

The complete source code for the implementation can be found on the in-
cluded CD (see Appendix E) along with the code of all the support and
analysis programs, reference implementations of AES and SHA-1 and other
code.

D-5

Appendix E

Project CD

E.1 Directory Structure

CD Root
— Programs executables

— Gateway IPsec Gateway Microengine C code

— Support Support Programs

— Reference Reference code for AES and SHA

— Literature Selected Papers and Resources

— AES and SHA The AES and SHA Algorithms

— IETF RFCs RFCs and Standards from the IETF

— IPsec IPsec related papers

— IXP2400 Papers related to network processors

— VPNs Papers related to VPN protocols

— Report The Project Report

— Sources Project report LATEX and bibTEX source

— Diagrams Diagrams included in the report

— Simulations Simulation Data

E-1

Tools Used

The following tools were used for the completion of the project:

• Intel Developer Workbench 3.51 and 4.0

• Microsoft Visual C++ 6.0

• GNU Emacs

• The GNU Compiler Collection

The following software and tools were used for preparation of the report

• Kile, KDE Integrated Latex Environment 1.8.1

• GNU Emacs 21

• LATEX2ε and pdfLATEX

• Mathworks matlab R14

• GNU Image Manipulation Program 2.2

• Python 2.3

• Dia 0.94

E-2

Bibliography

[1] C. Falk, “The Ethics of Cryptography,” Master’s thesis, Purdue Univer-
sity, May 2005.

[2] Wikipedia, “Categorical imperative — wikipedia, the free encyclope-
dia,” 2005. [Online; accessed 4 October 2005].

[3] D. Ermann, M. Williams, and C. Gutierrez, Computers, Ethics and
Society. Oxford University Press, first ed., 1990.

[4] C. Xenakis and L. Merakos, “IPsec-based end-to-end VPN deployment
over UMTS,” Elsevier Computer Communications, May 2004.

[5] A. Godber and P. Dasgupta, “Secure wireless gateway.” Arizona State
University, 2002.

[6] A. Keromytis, J. Ioannidis, and J. Smith, “Implementing ipsec.” Aug.
1997.

[7] “Microsoft windows 2000 internet protocol security (ipsec) review,” tech.
rep., Network Associates, Inc., Oct. 2003.

[8] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An ap-
proach for quantitative analysis of application specific dataflow archi-
tectures,” in Application-Specific Systems, Architectures and Processors,
1997, July 1997.

[9] S. Rajagopal, J. Cavallaro, and S. Rixner, “Design space exploration
for real-time embedded stream processors,” IEEE Micro, August 2004.
Accepted.

[10] “Ipsec forwarding application level benchmark implementation agree-
ment,” tech. rep., Network Processing Forum, July 2003.

[11] A. Tanenbaum, Structured Computer Organization. Prentice Hall,
fourth ed., 1999.

E-3

BIBLIOGRAPHY

[12] R. Yavatkar, Network Processors: Building Block for Programmable Net-
works. Intel.

[13] R. Szymanek, Constraint-Driven Design Space Exploration for Memory
Dominated Embedded Systems. PhD thesis, Lund University, July 2004.

[14] R. S. Pressman, Software Engineering: A Practitioner’s Approach. Mc-
Graw Hill, sixth ed., 2004.

[15] C. A. R. Hoare, “Monitors: An operating system structuring concept,”
Communications of the ACM, Oct. 1974.

[16] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP).”
RFC 2406 (Proposed Standard), Nov. 1998.

[17] R. Glenn and S. Kent, “The NULL Encryption Algorithm and Its Use
With IPsec.” RFC 2410 (Proposed Standard), Nov. 1998.

[18] C. Madson and N. Doraswamy, “The ESP DES-CBC Cipher Algorithm
With Explicit IV.” RFC 2405 (Proposed Standard), Nov. 1998.

[19] S. Frankel, R. Glenn, and S. Kelly, “The AES-CBC Cipher Algorithm
and Its Use with IPsec.” RFC 3602 (Proposed Standard), Sept. 2003.

[20] S. Kent and R. Atkinson, “Security Architecture for the Internet Pro-
tocol.” RFC 2401 (Proposed Standard), Nov. 1998. Updated by RFC
3168.

[21] N. I. of Standards and Technology, “Secure Hash Standard (FIPS-180-
2),” Aug. 2002.

[22] Intel, Intel IXP2400 Network Processor Development Tools User’s
Guide, Mar. 2004.

[23] S. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,” Sept. 2004.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications.” RFC 3550 (Standard),
July 2003.

[25] Intel, IXP2400 Network Processor Hardware Reference Manual, Nov.
2003.

[26] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifi-
cation.” RFC 2460 (Draft Standard), Dec. 1998.

E-4

BIBLIOGRAPHY

[27] S. Kent and R. Atkinson, “IP Authentication Header.” RFC 2402 (Pro-
posed Standard), Nov. 1998.

[28] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE).” RFC
2409 (Proposed Standard), Nov. 1998. Updated by RFC 4109.

[29] D. Maughan, M. Schertler, M. Schneider, and J. Turner, “Internet Secu-
rity Association and Key Management Protocol (ISAKMP).” RFC 2408
(Proposed Standard), Nov. 1998.

[30] N. Ferguson and B. Schneier, “A Cryptographic Evaluation of IPSec.”
Counterpane Internet Security Systems, Inc, Feb. 1999.

[31] S. M. Bellovin, “Problem Areas for IP Security Protocols,” in Proceed-
ings of the Sixth Usenix Unix Security Symposium, July 1996.

[32] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn,
“Point-to-Point Tunneling Protocol.” RFC 2637 (Informational), July
1999.

[33] S. Hanks, T. Li, D. Farinacci, and P. Traina, “Generic Routing Encap-
sulation (GRE).” RFC 1701 (Informational), Oct. 1994.

[34] S. Hanks, T. Li, D. Farinacci, and P. Traina, “Generic Routing Encap-
sulation over IPv4 networks.” RFC 1702 (Informational), Oct. 1994.

[35] B. Schneier and Mudge, “Cryptanalysis of Microsoft’s Point-to-Point
Tunneling Protocol (PPTP).” Counterpane Internet Security Systems,
Inc, 1998.

[36] B. Schneier, D. Wagner, and Mudge, “Cryptanalysis of Microsoft’s
PPTP Authentication Extensions (MS-CHAPv2).” Counterpane Inter-
net Security Systems, Inc, Oct. 1999.

[37] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter,
“Layer Two Tunneling Protocol ”L2TP”.” RFC 2661 (Proposed Stan-
dard), Aug. 1999.

[38] W. Simpson, “The Point-to-Point Protocol (PPP).” RFC 1661 (Stan-
dard), July 1994. Updated by RFC 2153.

[39] B. Patel, B. Aboba, W. Dixon, G. Zorn, and S. Booth, “Securing L2TP
using IPsec.” RFC 3193 (Proposed Standard), Nov. 2001.

E-5

BIBLIOGRAPHY

[40] T. Dierks and C. Allen, “The TLS Protocol Version 1.0.” RFC 2246
(Proposed Standard), Jan. 1999. Updated by RFC 3546.

[41] A. Alshamsi and T. Saito, “A technical comparison of IPsec and SSL.”
2004.

[42] E. Rescorla, “Diffie-Hellman Key Agreement Method.” RFC 2631 (Pro-
posed Standard), June 1999.

[43] S. Bellovin and E. Rescorla, “Deploying a new hash algorithm.” 2005.

[44] V. Klima, “Finding MD5 Collisions - a Toy For a Notebook.” Cryptology
ePrint Archive, Report 2005/075, 2005.

[45] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication.” RFC 2104 (Informational), Feb. 1997.

[46] C. Madson and R. Glenn, “The Use of HMAC-SHA-1-96 within ESP
and AH.” RFC 2404 (Proposed Standard), Nov. 1998.

[47] D. Eastlake 3rd and P. Jones, “US Secure Hash Algorithm 1 (SHA1).”
RFC 3174 (Informational), Sept. 2001.

[48] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1.”
Aug. 2005.

[49] N. I. of Standards and Technology, “Advanced Encryption Standard
(FIPS-197),” Nov. 2001.

[50] J. Daemen and V. Rijmen, The design of Rijndael: AES — the Advanced
Encryption Standard. Springer-Verlag, 2002.

[51] M. Dworkin, “Recommendation for block cipher modes of operation,” in
NIST Special Publications 800, vol. SP800, National Institute of Stan-
dards and Technology, 2001.

[52] Wikipedia, “Cipher block chaining — wikipedia, the free encyclopedia,”
2005. [Online; accessed 10 October 2005].

[53] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source
Code. Wiley, Oct. 1995.

[54] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and
D. Whiting, “Improved cryptanalysis of rijndael.” Counterpane Internet
Security Systems, Inc, 2000.

E-6

BIBLIOGRAPHY

[55] L. Jing-mei, W. Bao-dian, C. Xiang-gao, and W. Xin-mei, “Cryptanal-
ysis of Rijndael S-Box and Improvement.” July 2005.

[56] CNSS, “National policy on the use of the Advanced Encryption Stan-
dard (AES) to protect National Security Systems and National Security
Information,” June 2003.

[57] Intel, Intel IXP2400/IXP2800 Network Processors Microengine C Lan-
guage Support Reference Manual, Nov. 2003.

[58] Intel, Intel IXP2400 Network Processor Programmer’s Reference Man-
ual, Nov. 2003.

E-7

	Introduction
	Introduction
	Aims of the Project
	Justification of Project Goals
	Ethical Implications of VPNs

	Literature Review
	Introduction
	Design and Implementation of IPsec Gateways
	Performance Analysis of Systems
	Comparison of Virtual Private Networking Protocols
	Conclusion

	Comparison of Alternative Designs
	Required Operations
	Naive Design
	Pipelined Design
	Parallel Design
	Comparison Of Designs
	Conclusion
	Design Optimisation of Packet Processor

	Final Software Design
	Introduction
	The Receive Program
	The Transmit Program
	The Packet Processing Program
	Processing of Received IPsec Packets

	Analysis of Software Design
	Simulation Environment
	Voice Over IP
	Large Packet Simulation
	Typical Internet Simulation
	Limited Network Speed Simulation
	Comparison With Other IPsec Implementations
	Discussion of Results
	Conclusion

	Conclusion
	Achievement of Project Goals
	Conclusions from Design and Testing
	Future Work

	The Intel IXP2400 Network Processor
	Overview
	Architecture of the IXP2400
	Conclusion

	VPN Protocols
	Internet Protocol Security (IPsec)
	Point-to-Point Tunneling Protocol (PPTP)
	Layer 2 Tunneling Protocol (L2TP)
	Transport Layer Security
	Selection of Protocol
	Conclusion

	Internet Protocol Security
	The IPsec Protocol
	Overhead of IPsec
	Secure Hash Algorithm (SHA-1)
	Advanced Encryption Standard

	Implementation of Design
	Microengine C
	Details of Implementation
	Support Programs
	Conclusion

	Project CD
	Directory Structure

