An Embedded System Artefact Organisation and
Adaptation Knowledge Management System for

Embedded System Product Prototyping

A thesis submitted to the Department of Electrical Engineering,
University of Cape Town, in fulfilment of the requirements

for the degree of

Doctor of Philosophy
at the
UNIVERSITY OF CAPE TOWN

by

Simon L Winberg
BSc (CS), BSc (Hons) (CS) (University of Cape Town), MSc (CS) (University of Tennessee)

Supervisors:

Professor S. Schach (Vanderbilt University)
Professor M. Inggs (University of Cape Town)
Doctor M. Linck (University of Cape Town)

. 2
o
S e
> ’.
g e
o 3,
o <
o W
o 3
G -
> 3
7 *

University of Cape Town
December 2010

Declaration

I, Simon L. Winberg, declare that the contents of this thesis represent my own
unaided work, and that this thesis has not previously been submitted for academic

examination towards any degree in any other university.

Signature of AUThOr

Department of Electrical Engineering

Cape Town, December 2010.

To my parents

Thanks for your patience, motivation and generous support

Acknowledgements

| would like most sincerely to thank Professor Stephen Schach for his continued
support, excellent feedback, guidance, and constructive approach to research
supervision. Many thanks to Professor Michael Inggs for his constant support, many
considered opinions, and assistance in acquiring resources, organising project teams
and connecting me with collaborators in the field. Thanks to Dr Michael Linck,
particularly during the early parts of this project while the thesis was planned,
research strategies considered and project teams structured, as well as for his part in

evaluating project teams.

Thanks to Professor Martin Braae, Head of the Department of Electrical Engineering
in 2005, and Professor Trevor Gaunt, Head of Department in 2006, for the provision
of equipment, laboratory space, and funding for additional hardware. | am grateful to
the UCT and the UCT Postgraduate Funding Office for university research
scholarships.

My thanks to Dr Alan Langman (of the KAT / SKA Project) for his collaboration in
organising and evaluating the project teams. Thanks to Peter Golda and Allen Wallis
(both of the KAT / SKA Project) for their input and willingness to listen to my ideas.
Thanks to David George, Nico Gevers, Thomas Davies, Kalen Watermeyer and
Richard Lord for their feedback and testing of some of my tools and ideas. Thanks to
Regine Lord for her assistance in administrative issues. | also express gratitude to
the many members of the Radar and Remote Sensing Research Group for
discussions about my thesis, for providing an enjoyable and collegial environment,

and their general involvement and interest in my work.

Abstract

This thesis presents an innovative approach to knowledge management (KM) from
the perspective of embedded system (ES) development, a form of development that
is highly knowledge intensive and depends on specialised forms of knowledge
obtained from a variety of complex knowledge artefacts. This study follows an
experimental methodology that involves integrating a knowledge management
system (KMS) into ES product prototyping projects, in order to facilitate KM of a
specific form of knowledge, namely embedded system artefact organisation and
adaptation (ESAOA) knowledge. ESAOA knowledge is produced during ESAOA
activities, which concern organising artefacts that are used to construct an ES and
techniques by which engineers adapt and learn from these artefacts. The focus of
this thesis is narrowed to determining an effective structure for the ESAOA KMS that
facilitates successful completion of ES implementation tasks. This thesis
consequently contributes to KM research at a meso level of operations.

The research methodology involved constructing an experimental KMS, named the
ESAOA KMS, which comprises a structured collection of knowledge worker roles,
processes, and artefacts together with a collection of support tools. A pilot study was
first performed to gain insights into research methods and the KM needs of the users.
These research methods were published in order to improve them further and to
confirm their validity. Next, an initial version of the ESAOA KMS was built. This KMS
was applied by development teams in the context of ES prototyping projects. The
data obtained from this experiment were evaluated to develop a refined version of

the ESAOA KMS, and to draw conclusions for this research.

Findings from this research included the following: defining different forms of ESAOA
knowledge; establishing evaluation methods for KM of ESAOA activities; identifying
conditions that enable a KMS to facilitate ESAOA activities; assessing the factors
that affect ESAOA KM activities; determining different types of KM needs that
occurred in projects, and showing that the ESAOA workspace approach was an
effective means to integrate the knowledge worker roles, processes, artefacts and
support tools of the ESAOA KMS.

The conclusion of this thesis identifies situations in which the ESAOA KMS was
found to be beneficial, as well as conditions where the KMS was of little use or
possibly added to the difficulty of completing ESAOA activities. Generally, for the
projects investigated in this study, the ESAOA KMS was of the least benefit to users
during simple activities (a term defined in the thesis, which essentially relates to tasks
where the needed knowledge was obtained in a trivial manner or produced by
following easily remembered or routine procedures). However, users working on
complex activities (which are activities that draw on knowledge obtained previously in
the project through prior non-trivial procedures) made extensive use of the ESAOA
KMS. In such situations, the ESAOA KMS was shown to provide benefit to these
complex activities. In particular, the ESAOA workspaces improved conformity of
artefact classification and location, and assignment of the KMS roles made it easier
for team members to assign responsibilities, to divide knowledge work among each

other, and to guide knowledge production.

Further research plans that follow on from this thesis include broadening the scope of
the ESAOA KMS to support additional phases of the development lifecycle (e.g., the
requirements phase), conducting a study focused on KM for ES innovation, and
establishing a method for incrementally phasing the ESAOA KMS into longer-term

on-going projects.

List of Acronyms

ADC Analogue to digital converter
ANTCON Antenna controller

AO Artefact organisation

AOA Artefact organisation and adaptation
AOD Artefact organisation drawing

API Application Programming Interface
ARM Advanced RISC Machine

CASE Computer-aided software engineering
CKO Chief knowledge officer

CKS Communal knowledge steward

CR Component researcher

DK Data knowledge

DS Data steward

ES Embedded system

ESAOA Embedded system artefact organisation and adaptation
FA Framework analysis

FC Framework construction

GCC GNU computer collection

GPRS General packet radio service

GPS Global positioning system

GUI Graphic user interface

HDL High-level description language
HTML Hypertext mark-up language

IC Integrated circuit

Vi

IDE Integrated development environment
IE Innovation engineer

IK Innovation knowledge

IPC Inter-process communication

KB Knowledge base

KET Knowledge event type

KIT Kit for Information Technology
KM Knowledge management

KMS Knowledge management system
NPK Non-productive knowledge

PC Personal computer

PE Process engineer

PK Productive knowledge

PK Process knowledge

PTHC Partitioned Time History Calculator
SoSiG Software Signal Generator

TL Team leader

™ Team member

UDP User datagram protocol

UML Unified modelling language

URL Uniform Resource Locator

VAS Voice Activation System

VolP Voice of Internet Protocol

VUT Vehicle Usage Tracker

WA Workspace administrator

Vii

Contents

DIECIAIALION ... [
ACKNOWIEAGEMENTS ...ttt e e e e e e e ee s i
Yo (= Uex PP PPPTT iv
LISt OF ACIONYMS...ciiiiiiiitee ettt e e e e e e e e e e Vi
(070 011=T 0] (=P OTPPP PP viii
LIST Of FIQUIES .t a e s XVii
LISt Of T@DIES....eeeeeeeee e a e e XX
Chapter 1: INTrOAUCHIONoeiiiiiie e 1-1
1.1 Terminology and definitionscooiiiiiiiiiiii e 1-1
1.1.1 Embedded systems and embedded software development............... 1-2
1.1.2 ES products and prototypescoocueeeieiiiiieeiiiiiiee e 1-2
1.1.3 Computer engineering and embedded engineers.............ccccueeeeruee. 1-2
1.1.4 Tasks and activitieS..........eeeeeiiiiiiii e 1-3
1.1.5 Implementation tasksccoiiiiii e 1-4
1.1.6 Implementation artefacts and soft/hard artefact classification............ 1-5
1.1.7 ESAOA ACVILIES ..o 1-6
1.1.8 Data, Information and Knowledgecccccriiiiiiiiiiiiiiiiieeeeeen 1-7
1.1.9 Knowledge managementoooociiiiiiiiiiiiniie e 1-8
1.1.10 Knowledge management SyStemMS........ccoueeiiiiiiiiiiiieieeee e 1-9
1.2 Rationale: a KMS for ESAOA activitiesuveeiiiiiiiiiiieeee e 1-9
1.2.1 The growing demand for embedded softwareccccccoeivinnnneen. 1-10
1.2.2 The rapid expansion of Knowledge...........ccooeemiiiiiiiiiiiinicciiiieeeeenn 1-10
1.2.3 Knowledge management as a potential means to facilitate embedded
software developmMentoeiiiiiiiiii e 1-11
1.2.4 Theneed foran ESAOCAKMS ... 1-12
1.3 ThesSiS ODJECHIVE ... 1-13
1.4 Problem Statement ... 1-14
1.5 FOCUS . 1-15
1.5.1 Focusing on new product development...........ccccoviiiiiiiiiiieeeinnnnns 1-15
1.5.2 Focusing on product prototyping during a proof-of-concept............. 1-16
1.5.3 Focusing on ESAOA activities related to component integration...... 1-16
1.6 Delimitationsocoeeiiiiiiiee e 1-17
1.6.1 Task-oriented ESAOA activitiesccuveeeieiiiiiiiieeeeee e 1-18
1.6.2 Level Of deVEIOPEISuuiiiiiiiee e 1-19
1.6.3 Team size and COMPOSITION........cccuuiiiiiiiieiiii e 1-19
1.6.4 Number of experiments and case studiescccccceeiiiiiiiiieeennnn. 1-19
1.6.5 Time-frame for case studies.........ccuuueiiiiiiiiiiiii e 1-20
1.6.6 Products developed ... 1-20
1.7 ThesSiS STTUCIUIEooiiiee e 1-20
1.8 SUMMAIY e 1-21
Chapter 2: Literature review: Knowledge management and embedded system
=g To 1 a[=T=Tq oo TP PEPPP PSPPI 2-1
2.1 Methodology of the literature review............cccccooviniiiiiiieieeeeeeeeen 2-1
2.2 The ES development PrOCESScccuviiiiiuiiiiiieee e 2-4
2.3 Inefficiencies of ES developmentccccoiiiiiiiiiiiii e 2-7
2.3.1 General software engineering difficulties............ccccceeiiiiiiii, 2-7
2.3.2 Complex and lengthy learning proCeSSES........cceveeerrriiiuiiieeeeeaeeennans 2-7
2.3.3 The value and temporality of intellectual capitalccccceeirrnnins 2-8
2.3.4 Decentralised development, speed of obsolescence and availability of
TSIV (=Ted o] g o] (o)P PRTPT P 2-8
2.3.5 Embedded software maintenance iSSUES..........cccccvvrimmiiirenieeinnnnnns 2-8

2.4 Knowledge Management Terminologycccccvrmicmmiiriiieeeiiniiiieeeeeen 2-9

241 The Data, Information and Knowledge (D-I-K) Hierarchy 2-9
2411 Data, information and knowledge scenario............coeccuuvveeeeeeennn. 2-10
24.1.2 Knowledge acquisition and limitations of the D-1-K hierarchy2-11
24.1.3 Tacit and explicit Knowledgeccccviiiiiiiiiiiiciee 2-12
24.1.4 A definition of knowledge and where knowledge resides........... 2-12

2.4.2 Knowledge management (KM)ccccooiiiiiiiieiiei e 2-13
2.4.2.1 Knowledge-focused vs. information-focused streams of KM2-13
2422 The overall goal of KM ... 2-14

2.4.3 Knowledge ProCESSES.......cooiiuuiiiiiiiiee ettt 2-14

2.4.4 Knowledge FIOWS.......cooiiiiiiiiiice e 2-15

2.45 Knowledge FOMMSooiiiiiiii e 2-16

2.5 Atypology Of KM ... 2-16

2.5.1 Transactional KMoooiiiiiii e 2-19

2.5.2 Analytical KM ...t 2-19

2.5.3 Management of knowledge assets..........cccuveeeeiiiiiiiiiiiiiieeee e 2-19

2.5.4 Process-based KM.........coooiiiiiiiii e 2-20

2.5.5 Developmental KM.........coooiiiii e 2-20

2.5.6 Innovation Management.............ueeieiiiiiiiiiiie e 2-20

2.6 Knowledge management systems (KMSS).........coocuuiiiiiiiiiiiiiiiiiiieeeeeen, 2-21

2.6.1 The two principle uses of a KMS ... 2-22

2.6.2 Growth of a KMS... ... 2-22

2.6.3 Establishment and evolution of a KMS...........ccooiiiiiiiii, 2-23

2.6.4 Structure of ageneric KMS ..o 2-25

2.6.5 Visibility of @ KMSooiiiii e 2-26

2.6.6 Framework of a KMS ..o 2-27

2.7 Roles of people involved with KM...........c..oooiiiiiiieeeeeen 2-27

2.7.1 Knowledge suppliers and knowledge ConsSumers..........ccccceeeeeeeeenns 2-27

2.7.2 Chief Knowledge Officer (CKO)cooiiiiiiiiiiiiiiiieiieeiiiieeeee e 2-28

2.7.3 KIMS USEI ..ottt e e 2-28

2.7.4 KNOWIEAQE WOTKETceiiiiiiiiiiiiiiieee ettt 2-29

2.7.5 Change agentooooiiiiiiiiiie e 2-29

2.7.6 KnOWIEAQEe ENQINEEN ...cooiiiiiiiiiieiee et 2-29

2.7.7 Knowledge StEWAId..........coouiimriiiiiieie it 2-30

2.7.8 Knowledge analyst........cccoiiiiiiiiiiei e 2-31

2.7.9 KnOWIEAQe DrOKENceiiiiiiiiiieeeee e 2-31

2.8 KM in technical product development..........ccccoiiiiiiiiiniiiieeeeeeen 2-32

2.8.1 Managing development teams and their knowledge........................ 2-33
2.8.1.1 KM steering COmMmItteeceuvieiieiiiiiiiee e 2-33
2.8.1.2 Communities Of PractiCe..........oouiuiiiiiiiii i 2-33
2.8.1.3 Team [arniNgccuuuiiiiiiiiie e 2-34
2.8.1.4 Team knowledge Sharing ... 2-34
2.8.1.5 Distributed teamscoooiiiii 2-35
2.8.1.6 SUD-CONrACHINGcoi i 2-35

2.8.2 KM tools for managing individual and team knowledge.................... 2-35
2.8.2.1 Training WOrkShOPS ..o 2-35
2.8.2.2 YelIOW PAQES ... 2-35
2.8.2.3 Performance analysis...........cccvviiiiiiiiiiiiiii e 2-36
2.8.2.4 Responsibility Chars ... 2-36
2.8.25 Status traCkingcooooeieeeeee e 2-37
2.8.2.6 AT TOOIS .. 2-37
2.8.2.7 Shared BUfErs ..o 2-37

2.8.3 Managing information in technical development projects 2-38
2.8.3.1 Issues in information management...........cccccooiviiiiiiiiies 2-38
2.8.3.2 Tools for information management...........cccccooviiiiiiiiieeeec s 2-39

2.8.4 Managing knowledge of technical development processes............. 2-42
2.8.4.1 Development process knowledge: the input, in-situ and output

KNOWIEAQE LY PES ...ttt 2-42
2.8.4.2 Input, in-situ and output knowledge in embedded software
deVvelopmMENT PrOJECES.uu i 2-43
2.8.4.3 Approaches to software engineering processes
IMPFOVEMENT.....eeieee ettt e e e e e e as 2-44
2.8.4.4 Issues in software processes KM..........ccccceeeiiiiiiiiiieeiec s 2-44
2.8.4.5 Tools for managing knowledge of software development
PIOCESSES ..iieiiiiietiue e e e e et eeeet e e e e e e e e ee e e e e e e s e e e e s e e e e e e e nee e e e e e eeene 2-49
2.8.5 Managing innovation in technical product development 2-51
2.8.51 Management of innovation issues in product development 2-53
2.8.5.2 Tools for managing innovation in product development............. 2-54
2.8.6 Dealing with information overloadccccoeieeiiiiiiiiiii s 2-56
2.8.6.1 Dimensions of information overloadccccccceiiiniiiiiiennnenn. 2-57
2.8.6.2 Addressing information overloading with infomediary tools 2-57
2.9 Conceptual framework for researching a KMSccccoiiiiiiiiiiiiiennenn. 2-58
2.10 Summary and CONCIUSIONcoiuuiiiiiiiiiie e 2-60
Chapter 3: Researching embedded system artefact organisation and adaptation
(ESAOA) KNOWIEAGE ...ttt e e e as 3-1
3.1 KBY CONCEPLS ..ttt e e e e 3-2
3.1.1 ESAOA KNOWIEAGEeeiiiiiiiiei it 3-2
3.1.2 Towards a study of directed KMS evolutioncooccuiiiieeiiiiinnnns 3-3
3.1.3 Directed KMS eVOIUtION......coocuiiiiiiiiiiee e 3-3
3.2 Research objective: A KMS for ESAOA activities........ccccoecvveeeiriiiieeeine 3-4
3.2.1 Specific objective: Moving from an ad hoc to a formalised KMS........ 3-5
3.2.2 Scope and delimitation: ESAOA during component integration......... 3-6
3.3 ResearCh problemsooiiiiiiii e 3-9
3.3.1 Associative memory, time-limited knowledge, and repeated learning 3-9
3.3.2 Information Overload ... 3-10
3.3.3 Research challenges: Confidence, confusion, and lost property 3-11
3.4 Problem statement ... 3-11
3.4.1 Research QUESHION ... 3-11
3.4.2 SUD-ProbIEmMS.......oiiii 3-12
3.4.3 Research assumplion ... 3-13
3.5 ResearCh design ... 3-14
3.5.1 Research design for evolving the ESAOCA KMScccooiiiiiiiiiis 3-14
3.5.2 Overview of Experiment 1........cooo i 3-16
3.5.3 Construction of the initial ESAOA KMS ... 3-17
3.5.4 Overview of EXperiment 2...........ooooviiiiiiiieee e 3-17
3.5.,5 Construction of the refined ESAOA KMSccoviiiiiiiiiiiiieeeeee 3-17
3.6 Selection criteria: ESAOA activities..........cooviiiiiiiiiiieee e 3-17
3.6.1 ESAOA project selection and project briefs..........coooiiiiinis 3-18
3.6.2 Site SElECON. ..o 3-21
3.6.3 Selection of embedded platform, cross-compilers, and IDE 3-22
3.6.4 Participant SeleCtion ... 3-24
3.6.5 Reviewer SElEeCHON.......cociii i 3-25
3.7 Ethical considerations in the ESAOA activities..........ccccevieeiiiiiiiecinee 3-26
3.8 Data COIECHIONuuiiiiieiiii i 3-26
3.8.1 Code and desSigN rEVIEWSooiiuuiiiiieiee e 3-27
3.8.2 EmMail @rChiVecoooiiiee e 3-29
3.8.3 Group fOrUMS ... 3-29
3.8.4 ProjeCt MEEtINGSuuuiiiiiiii i 3-30
3.8.5 DeVElOPEr lOGSuuueieieieiieee ettt 3-31
3.8.6 Product demonstrations and project evaluations..............ccccccceeeee... 3-32

3.8.7 ENd-Of-Project SUIVEYccocoiiiiiiiiiiiiiiieee et 3-38

3.8.8 Limitations of the data capture methods..........cccccconiiiiii, 3-41
3.9 Data@ @N@IYSISuueeeeiiiieie e 3-41
3.9.1 Overview of data analysisceoeriiereiiiiie e 3-42
3.9.2 Systematising the data (Step 1)cceeveiriiiiiiiiii e 3-43
3.9.3 Categorising knowledge events by knowledge type (step 2) 3-45
3.9.4 Mapping problems and solutions (step 3).......cccceveeeeeiiiiiiiiniiieeneeenn. 3-46
3.9.5 Categorising productive vs. non-productive knowledge (step 4)...... 3-46
3.9.6 Finalizing the knowledge register (Step 5)cceeveiiiiiiiiiiieenieniins 3-48
3.9.7 ANAlYSING treNASeeeeiiiiiii i 3-50
3.9.8 Analysing other forms of data...........ccccceeeiiiiiiiiiii 3-55
3.10 Data SYNENESISueeeeeiiieiieieeee e 3-56
3.11 The ESAOA Conceptual Modelling Language...........ccccceeeerinniiiineenenenn. 3-58
3.11.1 ESAOA Modelling atomsS.........eeiiiiiiiiieiiiieee e 3-59
B.11.2 CONNECIOIS ..eeiiiiiiiie ettt 3-63
Bi11 3 SPACES . .eeiiiiiiie e 3-66
3.11.4 Comments and CONSIFAINS..........uuiiiiiiiiiiiiiiee e 3-66
3.11.5 External processes and artefactSuuvvveeeiiiiiiiiiiiiiiiiiiiiiiiiiiiennns 3-67
3.12 Comparing artefact and prototype quality with KMS analysis results...... 3-68
318 CONCIUSION ...ttt e e e e 3-69
Chapter 4: First experiment findings and ESAOA KMS version 1.........cccccceeee.... 4-1
4.1 The First EXPeriment........occuiiiiiiiiiiiii e 4-2
4.2 Preliminary study to establish the data analysis method 4-3
4.2.1 Denoting artefacts and ESAOA activities inthe data..............cccce..... 4-3
4.2.2 Verification of KM mMOdEISccuumiiiiiiiiiiiiieeeee e 4-3
4.2.3 Problem-solution CYCIESooiiuiiiiiiiiie e 4-5
4.2.4 Trivial and non-trivial solution CYClesccuuuiiiiiiiiiiiiiie e 4-8
425 KNOWIEAQE EVENLS......cuiiiiiiiiiiiiiei e 4-11
4.2.6 Knowledge event types (KETS)uuueiiiiiiiiiiiiieceeeeeeeeieeeee e 4-11
4.2.7 Data, process and innovation knowledge categories............ccccce..... 4-12
4.2.8 Productive and non-productive knowledge categories..................... 4-14
4.2.8.1 Definition of non-productive and productive knowledge............ 4-15
428.2 Using dead-ends to determine non-productive knowledge........ 4-16
4.2.8.3 Backwards tracing to classify knowledge events as productive or
NON-PrOAUCTIVE ...ttt e e 4-16
4.2.9 Productive time and non-productive timecccceeeeiiiiiiiiiieeeneen. 4-18
4.2.10 Knowledge event Chainsoooiiiiiiiiiiiiiieee e 4-18
4.2.11 Visualizing event chains using event chain graphs............ccccccccee... 4-19
4.2.12 Development of the KMS analysis strategycccceeeeriviiiiiiiieennnenn. 4-21
4.3 RESUIS..eeiiiieeiee s 4-21
4.3.1 Results of data synthesis (step 1): Initial knowledge registers......... 4-21
4.3.2 Results of categorising knowledge events (Step 2)...........eevvvvveennnnes 4-22
4.3.3 Results of problem/solution mapping (step 3): Event chains and event
ChaIN TADIES ... 4-22
4.3.4 Categorising knowledge events according to productive and non-
productive KNowIedge (STEP 4)....ceeea it 4-25
4.3.4.1 Classifying knowledge events as productive or non-productive 4-25
43.4.2 Calculation of non-productive and productive time.................... 4-26
4.3.5 Finalizing the knowledge registers (Step 5)ccveeveeiiiiiiciiiiieennnenn. 4-27
4.4 Trend analysis and graphing ... 4-28
441 Results of P1-1 (SOSIG)ccoceiiiiiiiie e 4-30
4411 Productivity graphs ... 4-30
441.2 Productive and non-productive time summary tables............... 4-33
442 Results of P1-2 (ANTCON)oeiiiiiiiiie it 4-34
4421 Productivity graphs ... 4-34

Xi

4422 Productive and non-productive time summary tables............... 4-36

4.4.3 Synopsis of Experiment 1 reSultsccccveiiiieiiiicie e 4-37
4.5 Design of the second iteration of framework analysis.............ccccueeeeeenn. 4-38
4.5.1 Refinements to data capture methods for Experiment 2.................. 4-39
4511 Focusing on the knowledge-rich data sourcesccccceeee... 4-39
451.2 Changing the unit of analysis to event chainsc........ 4-40
4513 Data capture supporting event chains...........cccccceovviiiiiiieennnn. 4-41
4.5.2 Changes to the analysis methodsccccciiiiiiiiiii i 4-41
45.2.1 Refinements of data synthesis methods.........cccccconiiiin. 4-41
4522 Refinements to graphing methods...........cccciiiiin. 4-43
453 Establishing a basis for comparison between experiments using
KNOWIEAQE OCCUITENCES.....eeeeiiiieiiiiiiiiiee ettt e e 4-43

4.5.3.1 Knowledge occurrence tables and graphs for P1-1 (SoSiG)..... 4-43
453.2 Knowledge occurrence tables and graphs for P1-2 (ANTCON) 4-48

4.5.4 Overall results of Experiment 1 in knowledge occurrences.............. 4-51
4.6 First application of framework construction: ESAOA KMS version 1 4-51
4.6.1 Overview of ESAOA KMS version 1 ... 4-52
4.6.2 ESAOA workspaces and Workstationscccceevriieeeiniieee e, 4-55
4.6.2.1 ESAOA WOIKSPACES....ccciiiiiiiiiiieeee ettt 4-55
46.2.2 ESAOA WOrkstationS........oooiiiiiiiiiieeeeeeiieeeee e 4-56
4.6.3 The ESAOA knowledge ontologyccccueeeerruireeeiniiieee e 4-59
4.6.3.1 Levels of the ESAOA knowledge ontologyccceeeveriiieeeenns 4-60
46.3.2 Top-level terms of the ESAOA knowledge ontology................. 4-60
4.6.3.3 Knowledge artefacts and boundary artefactscccccceeeen. 4-62
4.6.3.4 Evolving the ESAOA knowledge ontologycccceeveriiieeeenns 4-62
4.6.4 ROIES .. 4-63
4.6.41 Representation of roles in the ESAOA modelling language...... 4-64
46.4.2 General relations between the roles..........cccoceeiiiiiieiiiieen. 4-64
4.6.4.3 Maximising support for the IE using a feed-forward approach.. 4-65
4.6.5 ESAOA artefacts for knowledge representation and transfer........... 4-67
4.6.5.1 Artefact form classifications: hard and soft artefacts 4-68
4.6.5.2 Artefact functionality classifications and functionality hierarchy 4-69
4.6.5.3 Artefact role and workspace classifications.............cccccceeeennee 4-72
46.54 Artefact organisationeeeveeiiiiiiiiiii e 4-74
4.6.55 Specialised KM artefacts..........ccccovivieiiiiiiiinc e 4-76
46.6 ESAOA KM workflows and proCeSSES.........cccuuurreeeieeiiiiiciiiieeeeeeennn 4-79
4.6.6.1 Processes of the chief knowledge officer (CKO)cccee.... 4-79
4.6.6.2 Processes of the communal knowledge steward (CKS) 4-81
4.6.6.3 Processes of the team leader (TL)oooovviiieeiiiiiiiiiiieeeeeen 4-81
4.6.6.4 Processes of the data steward (DS)........ccceeeeeiiiiiiiiiiiieeeneen. 4-82
4.6.6.5 Processes of the process engineer (PE)cccccooiiiiiiinn. 4-83
4.6.6.6 Processes of the innovation engineer (IE)........ccovvvveeiviiinnnnnn. 4-84
4.6.7 Software design of ESAOA WOrkspaces..........ccceeeeeeeeeiiiiiiiieeeenneenn 4-86
4.6.7.1 ESAOA scripts and t0olS............eeeeeiiiiiiiiiiii e 4-87
46.7.2 The Kit for Information Technology (KIT)........cooocciiieeiiiiiinnnns 4-89
46.7.3 The central server and the networking infrastructure................ 4-89
4.6.8 Implementation and distribution of ESAOA workspaces.................. 4-90
4.6.8.1 Implementation of the ESAOA communal workspace 4-91
4.6.8.2 ESAOA team and personal worksSpaceccccevvveeeeiiiieeeenns 4-96
4.6.8.3 ESAOA workstation distributioncccceeeeeiiiiiiiiieeen 4-97
4.6.8.4 Sample installation of ESAOA workspacesccccceeeeviuneenn. 4-98

4.7 Towards EXPeriment 2c.uuiiiiiiiiiiiieeeeee e 4-99
Chapter 5: The Second EXperiment.........ccccooiiiiieiiiiiee e 5-1
5.1 Overview of the second experimentccccceriiiiiiiii e 5-1
5.2 Results of the second experimenteeveeieiiiiiiiiiiie e 5-3

Xii

5.2.1 P2-1 Location-aware Tourist Information System (TIS) 5-5

522 P2-2 GPS Bus Tracker (GBT)ceeeiiiiiiiiiiieeeee e 5-10
5,23 P2-B3VIDYNEL ... 5-15
5.2.4 P2-4 MylIP Phone Station (MPS)coooiiiiiiiiiiee e 5-19
5.2.5 P2-5Home Automation System (HAS)........ccccoeeeiiiiiiiiiiieee e 5-23
5.2.6 P2-6 Automation Headlights Dimmer (AHD)ooccciiiiiiiiiinnnnns 5-27
5.2.7 P2-7 Field Sensor for Maglev Trains (FSMT)cooviiiiiiieeneeeninnns 5-31
5.2.8 P2-8 Cordless Stere0 (CST) .uuuuurirrieeeeiiiiiiiiieeee e erieeee e e e 5-35
5.2.9 P2-9 Central Alarm CIOCK (CAC) ...cceiiiiiiiiiiiiiieeee e 5-39
5.2.10 P2-10 Voice Activation System (VAS) ... 5-43
5.2.11 P2-11 Supermarket Query Device (SQD)........ccceerriiiiieiiiiiieeeee 5-48
5.2.12 P2-12 Personal Protection Device (PPD) ... 5-53
5.2.13 P2-13 Vehicle Usage Tracker (VUT)cooomiiiiiiiieiiiiiieceee e 5-56
5.3 Summary of Knowledge OCCUITENCES..........cooiuuriiiiiiiiieieeieee e 5-60
5.4 Evaluations of artefacts, prototypes and demonstrations 5-61
5.4.1 Evaluations of code and design reViews..........ccccooviiiiiiieeieeeeennes 5-62
54.1.1 Results from evaluation forms..........ccoooiiiiieen 5-62
54.1.2 Comments from knowledge production questions..................... 5-65
54.1.3 Notes from design review 3...........ccviiiiiiiiiiiiiee e 5-67
5.4.2 Review panel’s evaluationscccccoiiiiiiiiiiini e 5-67
5.4.2.1 Demonstration check sheet results ..., 5-68
54.2.2 Requirements check sheet results ..., 5-69
5.5 COMPAIISONSuiiiieiiiiee ettt e e e e e e e e e e e e as 5-70
5.5.1 Comparing requirements and demonstration check sheets scores.. 5-70
5.5.2 Comparing design reviews ratings to check sheet scores 5-71
5.5.3 Comparing design reviews to knowledge production statistics 5-72
5.5.3.1 Comparing code and design reviews to productive knowledge
(o oTo N g = g To - TSP RPPRPPPIN 5-72
5.5.3.2 Comparing code design reviews to knowledge occurrences5-74
5.5.4 Comparisons with productive innovation knowledge 5-75
5.5.4.1 Comparing productive innovation knowledge and averaged scores
fOr ChECK SNEELS ... 5-75
5.5.4.2 Comparing productive innovation knowledge to demonstration
CheCK SNEET SCOIES ... 5-76
5.5.4.3 Comparing productive innovation knowledge to requirements check
] =12 Yoo (T PR 5-76
5.5.5 Comparing check sheet scores and knowledge occurrences.......... 5-77
5.5.6 Comparing check sheet scores and proportions of knowledge........ 5-78
5.6 Team members’ evaluation of ESAOA KMSccooiiiiiiiiiiiiiiiieeeeeen 5-79
5.6.1 Quantitative data: 5-point scale rankings...........cccccveeeeeiieiiiniiiiinee. 5-79
5.6.2 Qualitative data: comments from participants...........cccceeevviiereinnnnne. 5-82
5.6.2.1 DIffICUIIES eeveeeeeeeeeeeeeeeeeeeeeee e 5-82
5.6.2.2 BeNEfitS. .o 5-82
5.7 General conclusions for ESAOA KMS version 1ccccceeeviiiiiiiiieenenenn. 5-83
5.7.1 Summary of knowledge OCCUITeNCEeSccoovueeeeiiiiiieeeeiiieee e 5-84
5.7.2 Process knowledge components: role, logistics and innovation
KNOWIEAGE ...ttt e e e e e e e ee s 5-86
5.7.3 Comparison of Experiments 1 and 2.........cccocvveeeiiiieee e 5-88
5.7.4 Trends noted from application of ESAOA KMS (version 1).............. 5-90
5.7.4.1 Emerging relationship between innovation knowledge and
quality Of ProtOtYPE ... 5-90
5.74.2 Emerging trends across event chainscccccvvvvveeiiiiiiiieienennn. 5-92
5.7.4.3 Progression towards innovation ..., 5-93
5.7.5 Variables that affected the ESAOA KMS (version 1)ccccceeennnee 5-97
5.7.6 Effect of the ESAOA KMS (VErsion 1)ccccuvviieeieeeiiiiiiiieeeee e e 5-99

5.7.7 Study of knowledge forms contributed by rolesccccveeernnnne. 5-99

5.7.8 Tool versus component knowledge OCCUITences..........cccceeeeeeennnee 5-1083
5.7.9 Logistics and role process Knowledge...........coeveeiviiiiiiiiieinneiennnns 5-105
5.8 Implications for ESAOA KMS VErSioN 2.......coccuveiiiiiiieiieiiieee e 5-107
5.8.1 ESAOA distributioncueeiiiiiiiiie e 5-107
5.8.1.1 ESAOA tools — technical installation guidelines (version 2).....5-107
5.8.1.2 Increased flexibility in ESAOA tools (version 2)........ccccceeeennee. 5-107
5.8.2 ESAOA NOIES.. ..o 5-108
5.8.2.1 TrAINING ..o 5-108
5.8.3 ESAOA technical manual...........cccoooiiiiiiiiiiiie e 5-108
5.8.4 ESAOA project managementcoooiiieeiiniiiee e 5-108
5.85 Team WOIKSPACE.......cueiiiiiiiiiiiiieiiee ettt 5-109
5.8.6 Towards ESAOA VEISION 2........uuiiiiiiiiiiiiiiiiieee e 5-109
Chapter 6: ESAOA KMS VEISION 2coiiiiiiiiiiiie e 6-1
6.1 Overview of ESAOA KMS VErSiON 2.........ooviiiiiiiiiiiiieee e 6-2
6.1.1 Use of ESAOA workspaces and workstationscccceeeeeieeinnnnes 6-3
6.1.2 Changes to roles and role support Structures...........occcuvieeeeeieeinnnns 6-3
6.1.2.1 Reducing priority of innovation and flattening role hierarchy 6-4
6.1.2.2 Towards a bi-directional flow of innovation...............cccccceeeeine 6-4
6.1.3 Revised roles and artefact classifications..........cccccoooniiiiiiinnnns 6-6
6.1.3.1 Component researcher (CR), workspace administrator (WA)..... 6-6
6.1.3.2 Revisions to the PE and IE roles..........ooocciiiiiiiiiiiiieeee, 6-6
6.1.3.3 Revision to the TL roleooooiiiii e 6-8
6.1.3.4 Role eXteNSIONuiiiiiiiii i 6-8
6.1.4 Upgrading of SUppOrt t0O0ISeeeeiiiiiiiiiiiiiieeecc e 6-9
6.1.5 Improving ESAOA documentation............ccuueiieeiieiiiiniiiieeeee e 6-9
6.2 ESAOA Knowledge ONtolOgYccceeiiiiiiiiiiiiiieee e 6-9
6.2.1 Additions to the ESAOA knowledge ontologyccccoecuveeeiiicineenenns 6-10
6.2.2 Evolving the ESAOA knowledge ontologyccccoovvriiiiieieeeneninnnnee 6-11
6.2.2.1 Maintaining the lower level of the knowledge ontology............. 6-11
6.2.2.2 Maintaining the upper level of the knowledge ontology 6-11

6.3 ESAOA version 2 WOrKSPACESceeoruiiiieiiiiieieeeiiieee e 6-13
6.3.1 Definition of an ESAOA WOrkSpaceccuuueeeeeieeiiiiiiiiieeeeee e 6-13
6.3.2 Definition of an ESAOA workstationccccocvieeiiiiiiie i 6-14
6.3.3 ESAOA workspaces implementation and access levels.................. 6-15
6.3.4 Installing workspaces using ESAOA distributions...........cccccceeeee. 6-17
6.3.5 GUI installation tool for ESAOA personal workspaces..................... 6-18
6.3.6 ESAOA version 2 distribution support documentation...................... 6-19
6.3.7 ESAOA version 2 workspace directory structuresccccceeeennee 6-20
6.3.8 The knowledge base within ESAOA workspacesccccceeeeennnnee 6-22
6.4 ESAOA SUPPOI tOOISeeeiiiiiiiiiiiieee e 6-23
6.4.1 The ESAOA file classification (fclass) t00l..........ccccveeeereeiiiiiiiiieee, 6-24
6.4.1.1 Review of version 1 of fClass........cccccouiiiiiiiee 6-25
6.4.1.2 Version 2 of fclass and addition of the PEP service 6-27
6.4.1.3 Speeding-up the operation of fclass using the PEP service 6-28
6.4.1.4 Operation of the PEP Servicecccceeiiiiiiiiieeeee 6-30
6.4.1.5 Improvements to the CSV files for storing file metadata........... 6-30
6.4.1.6 The fclass HTML generator Mode..........eevvveiiiiiiciniiieeeeeeeenns 6-32
6.4.2 Addition of the hotspot logging (hs/) tOO..........cceeeiiiiiiiiiiiiiiieiiis 6-33
6.4.3 Improvement to the esaoa-project 100lcccceiiiiiiiiiiiiiiiiins 6-36
6.4.4 Tools for synchronizing team and personal workspaces 6-36
6.4.5 Workstation-side SCriPISccccuviiiiiiiiie e 6-37
6.5 ESAOA FOIES ... 6-38
6.5.1 The WA and CRI0I€S ... 6-39
6.5.2 Chain of command............cocuiiiiiiiiiii 6-40

Xiv

6.5.3 Role responsibilitiesooueuiiiiiiiii 6-41

6.5.4 Division of labour in development team..........cccccoivniiiiiiinnne 6-45
6.5.5 Role interrelations and workspaces...........cccuueeveeeiiiiiiiiiiieeee e 6-47
6.6 ESAOA PrOCESSESuiiiiiiiiiiieiiiiee ettt 6-49
6.6.1 Processes of the chief knowledge officer (CKO)cccceveveveeeiinnnnns 6-49
6.6.2 Processes of the communal knowledge steward (CKS) 6-51
6.6.3 Processes of the team leader (TL)coovvvevviiiiiiiiiiiiiieeeeeeeeeeee 6-52
6.6.4 Processes of the component researcher (CR).........ccccvvieveeeieeiinnnes 6-55
6.6.5 Processes of the process engineer (PE)cccccoiiiins 6-56
6.6.6 Processes of the workspace administrator (WA).........cccccceeeeernnnnes 6-59
6.6.7 Processes of the innovation engineer (IE)........cooovvvvveiiiiiiiiiiiiinnnnnn. 6-60
L g (= - o1 £, 6-62
Chapter 7: Conclusions and Future WOorkc.uueeieiiiiiiiiieee e 7-1
7.1 Response to research questions and sub-problems.............cccccceeeiiniis 7-2
711 Sub-problem 1 response: Different forms of ESAOA knowledge........ 7-3
7.1.2 Sub-problem 2 response: The relative complexities of ESAOA KM
tasks were found t0 differ ... 7-4
7.1.3 Sub-problem 3 response: Difficulty of producing different forms
of ESAOA KNOWIEAQE VANIEAceeiiiiiiiiiiieiie e 7-4

7.1.4 Sub-problem 4 response: the time to complete ESAOA activities
depends on their complexity, their dependence on other activities and the

provision and understanding of KMS SUPPOIt.........ccooiiieiiiiiiieieiiieee e 7-6
7.1.5 Sub-problem 5 response: developers encounter similar types of
ESAOA KM problems and solutions in different projectscccccevviiieeenns 7-9
7.1.6 Sub-problem 6 response: although dead-ends did occur in
ESAOA knowledge production, their number was reducedc..ueeee. 7-10
7.1.7 Sub-problem 7 response: the degree to which the ESAOA KMS is
used depends on the complexity of ESAOA activities concerned.................. 7-10
7.1.8 Sub-problem 8 response: benefit of the ESAOA KMS depends on
the complexity, difficulty and duration of the activities performed 7-11
7.2 Reflection of research findings and resolution of research question....... 7-12
7.3 Summary of CONtBULIONS......ccooiiiiiiiii e 7-14
7.4 FULUIE WOIK ...ttt e e 7-14
7.41 Testing ESAOA KMS VErSiON 2......ccuviiiiiiiieie e 7-14
7.4.2 Testing ESAOS KMS on different type of ES engineering............... 7-14
7.4.3 Phasing in a KMS within existing/ongoing projects..........cccccceenneeee 7-15
7.4.4 Broadening the context for the ESAOA KMS ..., 7-15
7.45 A KMS that allows for future software and hardware developments 7-15
7.4.6 Need for further research into KM in ES development..................... 7-15
7.4.7 Focus on ES innovation knowledgeccceeeeeiiiniiiiiiiienne e 7-15
RETEIENCES ... e R-1
Appendix A: Experiment 1 appendiCes.........uuuiiiiiiiiiiiiiiiiiieee e A-1
A1 Knowledge register for first case study (P1-1) ... A-1
A.2 Knowledge register for the second case study (P1-2)cccccoeiiiiiiiinnnen. A-8
Appendix B: Experiment 2 appendiCes..........uuuiiiiiiiiiiiiiiiieieeeeeeiee e B-1
B.1 Knowledge register for Project P2-1 ... B-1
B.2 Requirements check sheets for Experiment 2cccccoiiiiiiiiiiiiinnnnns B-5
B.3 Comments from requirements check sheets for Experiment 2 B-6
B.4 Evaluation forms used to rate code and design reviews...........cccccceeeveeee B-9
B.4.1 Evaluation of concept creativity ..., B-9
B.4.2 Evaluation of design quality...........coocciiiiiiiieiiinieee e, B-10
B.4.3 Evaluation of artefact qualitycccoiiiiiiiiiii e, B-11
B.5 Design review 2 questions regarding knowledge production................... B-12
Appendix C: ESAOA KMS version 2 appendiCesccuuuieiereeeiiiiiiiiiiieeeee e C-1
C.1 Knowledge ontology for ESAOA KMS version 2.........ccccveeeiiiiieeeeiiineenn. C-1

XV

C.2 Details concerning the ESAOA modelling language..........ccccoccvveeeerinnenn. C-3

C.2.1 Further detail on CONNECIONS........uiiiiiiiiiiiiiie e C-3
C.3 Design details related to ESAOA support t0OoISccoeeviiiiiiiiiiiiiiieinnnns C-5
C.3.1 Design issues of the Personal Expert Program (PEP)..............ccec.. C-5
C.3.2 Detailed design issues related to fclass and related CSV files C-6
C.3.3 Hotspot logging (NSI) 1001 ... C-7
C.3.4 List of ESAOA SUPPOI t0O0IScoiuuiiiiiiiiiie e C-7

C.4 Kit for Information Technology (KIT).......coviiiiiiiii e C-18
C.4.1 KIT modules and UML class model............cceeeeeeiiiiiiiiiiiiieneeeeee C-13
C.4.2 KIT sample application: €S20a-apPScccvrrrereeerrriiiiiiiieeeea e C-16
Appendix D: Case study partiCipants..........ccueeeeiiiiieieirieee e D-1
D.1 Experiment 1 partiCipantS.........cccuuueiiiiiiiii e D-1
D.2 Experiment 2 partiCipantS.........ccuuueieiiiiiiiie D-1
Appendix E: Supplementary documentation............cooooiieeiiniieic e E-1
E.1 A comparison of search resultSccccooiiimiiiiiiiiiii E-1
GIOSSArYy G: GlOSSAIY......ueeieiiiieiee et G-1

XVi

List of Figures

Figure 1.1: The association between projects, tasks and activities.cceeeennn. 1-4
Figure 1.2: Examples of implementation artefacts.cccooeeeeiiiiiiii s 1-6
Figure 1.3: Thesis objective — evolving a KMS for ESAOA activities. 1-14
Figure 1.4: Visualization of the thesis focus and delimitations.ccccccoeis 1-17
Figure 2.1: Embedded system lifecycle model.............cooocumiiiiiiiiiiiiiii s 2-5
Figure 2.2: The data, information, and knowledge hierarchy, with scenario.......... 2-11
Figure 2.3: The knowledge process adapted from Radding [1998].........ccccceenneee 2-15
Figure 2.4: Flow of knowledge from supplier to consumer.occccvvveeveeeeinnns 2-16
Figure 2.5: The KM spectrum (adapted from Binney [2001]).coooviiiiiieerneernnnnns 2-18
Figure 2.6: ES project knowledge sharing chart. ... 2-37
Figure 2.7: Embedded software project KM planning template...............cccccooeee 2-41
Figure 3.1: Directed KMS eVOIULION.c.euiiiiiiiiiiicieee e 3-4
Figure 3.2: Research design for studying evolution of the ESAOA KMS............... 3-15
Figure 3.3: The CSB337 evaluation board produced by Cogent Computers......... 3-23
Figure 3.4: Consent letter emailed to participants in Experiments 1 and 2............ 3-26
Figure 3.5: Example of activitieS 10g. ...c.ooiviiiiiiiiie e 3-27
Figure 3.6: Example of email message (email #283) stored in the email archive.. 3-29
Figure 3.7: Example of a posting from the ‘Project Discussion Forum'. 3-30
Figure 3.8: Example of developer 10g.oocuiiiiiiiiii e 3-32
Figure 3.9: Example of ES prototype set up for a demonstration........................... 3-34
Figure 3.10: Demonstration check sheet for project P2-6.cccciiieiiiiiinnins 3-36
Figure 3.11: First page of the requirements check sheet.cccoiiiniis 3-37
Figure 3.12: Second page of the requirements check sheet.............cccccciiiiis 3-38
Figure 3.13: First page of questionnaire completed by a team member. 3-39
Figure 3.14: Second page of questionnaire completed by a team member. 3-40
Figure 3.15: The data analySiS ProCeSS.ccuuuiiiiiiiiiiiiiiieeeee e 3-42
Figure 3.16: Sample annotated forum posting taken from Experiment 2. 3-48
Figure 3.17: How knowledge occurrence graphs relate to event chains. 3-53
Figure 3.18: Data synthesis process, in which ecology maps were produced....... 3-57
Figure 3.19: The principal shapes of ESAOA modelling atoms...........ccccceeeeeennnes 3-59
Figure 3.20: Role modelling atoms of ESAOA KMS version 2.ccccceeeiieenee 3-60
Figure 3.21: Artefacts atoms showing general artefact, hard artefact, soft

artefact, and more specialised artefact atoms.cceevvvvveviiiiiiiiiiiee, 3-61
Figure 3.22: A team boundary data artefact.ccooeeiiiiiie i 3-61
Figure 3.23: A group-work process that involves application of knowledge. 3-62
Figure 3.24: Knowledge atom classified as process knowledge.ccccceeeennneee 3-62
Figure 3.25: List of ESAOA modelling language connector types.ccccceeeenneee 3-64
Figure 3.26: Examples of (a) explicit junction, and (b) tacit junction...................... 3-65
Figure 3.27: Model demonstrating connector labels and multiplicity. 3-66
Figure 3.28: Model showing space modeling elements.cccccooiiiiiiiiiniiiinnns 3-67
Figure 3.29: Model showing an external process and external artefact. 3-67
Figure 4.1: An initial version of the ESAOA modelling language used to describe

relations between ESAOA artefacts and activities in Project P1-1................... 4-4
Figure 4.2: The 'trivial SOlUtion CYCIE".........cooiiiiiiii e 4-9
Figure 4.3: lllustration of the ‘non-trivial solution’ cycle.............ccoceeiiiiiiinenen. 4-10
Figure 4.4: Relationship between ESAOA activities and knowledge events 4-11
Figure 4.5: Determining non-productive and productive knowledge acquisition. ... 4-17
Figure 4.6: Event chains graph..........ccoiiii e 4-20
Figure 4.7: ESAOA workspace and ESAOA workstation.ccccocoveiiiiiiieenne. 4-54

XVii

Figure 4.8: Screenshot of the Bash shell environment of an ESAOA workspace.. 4-56

Figure 4.9: Annotated screenshot of an ESAOA workstation..............ccoceeeriinneen. 4-57
Figure 4.10: Photograph illustrating the broader concept of an ESAOA

WOTKSTALION. ..ttt e e 4-59
Figure 4.11: UML diagram visualizing part of higher-level ESAOA knowledge

(0] a1 7o) (oo V2P PTPPPPPP 4-61
Figure 4.12: Roles of ESAOA KMS Version 1.........ccccociiiiiiiniiie e 4-65
Figure 4.13: Role support structure for ESAOA version 1........cccoeeviiiiiieeiiicnnennn. 4-66
Figure 4.14: The feed-forward flow from the DS, to the PE, ending at the IE........ 4-66
Figure 4.15: Screenshot showing use of the fclass program............ccccceeeiiiinnies 4-72
Figure 4.16: Model describing the classification of ESAOA artefacts. 4-74
Figure 4.17: ESAOA version 1 communal distribution directory structure............. 4-75
Figure 4.18: ESAOA version 1 team distribution directory structure. 4-76

Figure 4.19: Concept sketch created in a project P1-2 meeting (event chain 44). 4-77
Figure 4.20: Concept drawing produced in project P1-2 (part of event chain 44).. 4-78
Figure 4.21: AOD for project P1-2 (see Section 3.11 for modelling language)...... 4-79

Figure 4.22: Processes performed by the CKO. ... 4-80
Figure 4.23: Major processes performed and maintained by the CKS. 4-81
Figure 4.24: Major role interrelations and processes performed by the TL. 4-82
Figure 4.25: (a) DS training process; (b) DS search process...........cccceeeeeeerrnnnes 4-83
Figure 4.26: (a) Interaction between PE, CKO and CKS; (b) Processes performed

by the PE that involve development process knowledge.ccccceeeerinnnnes 4-84
Figure 4.27: (a) Collaboration between CKO, CKS and IE; (b) Processes and

artefacts used and managed by the [E. ... 4-86
Figure 4.28: Implementation of the esaoa-snap SCript.cccceeeriiiciiieieeeeenns 4-88
Figure 4.29: Implementation of the esaoa-fm program.cccccoiiiiiiiinnns 4-88
Figure 4.30: Consecutive loads of Bash environments for ESAOA workspaces. .. 4-90
Figure 4.31: Top-level directory structure of ESAOA communal workspace. 4-91

Figure 4.32: Using Cygwin to access a team workspace on the central server..... 4-97
Figure 4.33: Using Cygwin to access a project in an ESAOA team workspace..... 4-97

Figure 4.34: Directory structure of ESAOA workstation distribution. 4-98
Figure 4.35: Sample ESAOA workspace installation.cccccoeciieiiiniiiee e, 4-99
Figure 5.2.1 (a): Component interconnection diagram; (b): Enclosure drawing....... 5-6
Graph 5.2.1 (a): Data knowledge in P2-1. ... 5-8
Graph 5.2.1 (b): Process knowledge in P2-1.c.ooooiiiiiiiiee e 5-8
Graph 5.2.1 (c): Innovation knowledge in P2-1........ccccocoiiiiiiie e 5-9
Graph 5.2.1 (d): Productive and non-productive knowledge in P2-1....................... 5-9
Figure 5.2.2: Concept scenario for the GPS Bus Tracker (Project P2-2). 5-12
Graph 5.2.2 (a): Data knowledge in P2-2. ... 5-13
Graph 5.2.2 (b): Process knowledge in P2-2. ... 5-13
Graph 5.2.2 (c): Innovation knowledge in P2-2...........cccoiiiiiiiiiiiniee e 5-14
Graph 5.2.2 (d): Productive and non-productive knowledge in P2-2. 5-14
Figure 5.2.3: Concept drawing for Vibynet (Project P2-3).......ccoooiiiiiiiiiinnis 5-16
Graph 5.2.3 (a): Data knowledge in P2-3. ... 5-17
Graph 5.2.3 (b): Process knowledge in P2-3. ... 5-17
Graph 5.2.3 (c): Innovation knowledge in P2-3.........ccooeeiiiiiiiiii e 5-18
Graph 5.2.3 (d): Productive and non-productive knowledge in P2-2. 5-18
Figure 5.2.4: Topology of mylP Phone Station (Project P2-4)............ccoeviiiineeen. 5-20
Graph 5.2.4 (a): Data knowledge in P2-4. ... 5-21
Graph 5.2.4 (b): Process knowledge in P2-4. ... 5-21
Graph 5.2.4 (c): Innovation knowledge in P2-4...........cccoiiiiiieiiiiiee e 5-22
Graph 5.2.4 (d): Productive and non-productive knowledge in P2-4. 5-22
Figure 5.2.5: Installation diagram of Home Automation System (Project P2-5)..... 5-24
Graph 5.2.5 (a): Data knowledge in P2-5. ... 5-25
Graph 5.2.5 (b): Process knowledge in P2-5. ... 5-25

XViii

Graph 5.2.5 (c): Innovation knowledge in P2-5..........cccooiiiiiiiiiiiie e 5-26

Graph 5.2.5 (d): Productive and non-productive knowledge in P2-5...................... 5-26
Figure 5.3.6: Installation of the Automation Headlight Dimmer (Project P2-6). 5-28
Graph 5.2.6 (a): Data knowledge in P2-6.cccveiiiiiiiiiiee e 5-29
Graph 5.2.6 (b): Process knowledge in P2-6.cccuviiiiiiiei i 5-29
Graph 5.2.6 (c): Innovation knowledge in P2-6.............ccooeeiiiiiiiiiiiii e 5-30
Graph 5.2.6 (d): Productive and non-productive knowledge in P2-6...................... 5-30
Figure 5.2.7: Component interconnection diagram (Project P2-7).ccccoevvee. 5-32
Graph 5.2.7 (a): Data knowledge in P2-7. ... 5-33
Graph 5.2.7 (b): Process knowledge in P2-7. ... 5-33
Graph 5.2.7 (c): Innovation knowledge in P2-7..........oocoiiiiiiiieiiiiiiee e 5-34
Graph 5.2.7 (d): Productive and non-productive knowledge in P2-7...................... 5-34
Figure 5.2.8: Concept drawing for the Cordless Stereo (Project P2-8). 5-36
Graph 5.2.8 (a): Data knowledge in P2-8. ... 5-37
Graph 5.2.8 (b): Process knowledge in P2-8.cccuviiiiiieii i 5-37
Graph 5.2.8 (c): Innovation knowledge in P2-8.............coooeiiiiiiiiiiiiiieee 5-38
Graph 5.2.8 (d): Productive and non-productive knowledge in P2-8...................... 5-38
Figure 5.2.9: Installation diagram for Central Alarm Clock (Project P2-9). 5-40
Graph 5.2.9 (a): Data knowledge in P2-9. ... 5-41
Graph 5.2.9 (b): Process knowledge in P2-9.cooovvviiiiiiiiiiiieeeeeeee 5-41
Graph 5.2.9 (c): Innovation knowledge in P2-9..........ccccoiiiiiiiieiiiiiie e 5-42
Graph 5.2.9 (d): Productive and non-productive knowledge in P2-9. 5-42
Figure 5.2.10 (a): First scene in the concept cartoon (Project P2-10). 5-44
Figure 5.2.10 (b): Second scene of concept cartoon for operation of VAPs.......... 5-45
Graph 5.2.10 (a): Data knowledge in P2-10.ooociiiiiiiieeee e 5-46
Graph 5.2.10 (b): Process knowledge in P2-10.coovvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 5-47
Graph 5.2.10 (c): Innovation knowledge in P2-10........cccovvviiiiiiiiiiiiiiiiieeeeeeeeeeeee 5-47
Graph 5.2.10 (d): Productive and non-productive knowledge in P2-10. 5-48
Figure 5.2.11: Concept diagram of Supermarket Query Device (Project P2-11)... 5-49
Graph 5.2.11 (a): Data knowledge in P2-11. ... 5-50
Graph 5.2.11 (b): Process knowledge in P2-11. ... 5-51
Graph 5.2.11 (c): Innovation knowledge in P2-11.......cccoovviiiiiiiieeee e 5-51
Graph 5.2.11 (d): Productive and non-productive knowledge in P2-11................. 5-52
Figure 5.2.12: Concept poster for Personal Protection Device (Project P2-12)..... 5-53
Graph 5.2.12 (a): Data knowledge in P2-12. ... 5-54
Graph 5.2.12 (b): Process knowledge in P2-12. ..o 5-54
Graph 5.2.12 (c): Innovation knowledge in P2-12. ... 5-55
Graph 5.2.12 (d): Productive and non-productive knowledge in P2-12. 5-55
Figure 5.2.13: Component interconnection diagram (Project P2-13). 5-57
Graph 5.2.13 (a): Data knowledge in P2-13. 5-58
Graph 5.2.13 (b): Process knowledge in P2-13.ccoviiiieiee i 5-58
Graph 5.2.13 (c): Innovation knowledge in P2-13.........oovviiiiiiiiiiiieeee e 5-59
Graph 5.2.13 (d): Productive and non-productive knowledge in P2-13.................. 5-59

Figure 5.7.1: Bar chart showing percentage breakdown of productive and
non-productive knowledge occurrences per knowledge category for projects. 5-85
Figure 5.7.4 (a): Model of a productive episode (top) and corresponding

knowledge occurrence graphs (DOtTOM)........coieiiiiiiiiiiiiiee e 5-96
Figure 5.7.4 (b): Model of a non-productive episode (top) and corresponding
knowledge occurrence graphs (DOtOM).......ccovvviiiiiiiiiiiiiieeee e 5-97
Figure 5.7.7: Pie charts showing contribution of each role............cccoooiiiieenn. 5-103
Figure 6.1: The role support structure and flow of knowledge around which

ESAOA KMS version 2 is deSigned..........coeiiiiiiiieiiiiieee e 6-8
Figure 6.2: UML model for part of the high level ESAOA knowledge ontology...... 6-10
Figure 6.3: Screenshots from ESAOA ontology manager...........oooecuviveeeeeeeennnnns 6-12
Figure 6.4: Model showing composition of an ESAOA workspace...........c.cccuuee... 6-15

XiX

Figure 6.5: The three types of ESAOA WOrKSPace.occcueeeiriiieieeiiiiiee e 6-16
Figure 6.6: Screenshot of prototype personal workstation installation program. ... 6-19

Figure 6.7: ESAOA version 2 team distribution directory structure. 6-21
Figure 6.8: Scenario showing access to integrated knowledge base using fclass. 6-23
Figure 6.9: Screenshot of fclass Version 2...........ccooiieiiiiiiieee e 6-24
Figure 6.10: UML model of relationships between fclass, PEP and related files. .. 6-28
Figure 6.11: UML diagram showing software design of the fclass program. 6-29
Figure 6.12: Scenario demonstrating interaction between fclass and PEP. 6-31
Figure 6.13: Screenshot showing sample HTML output of fclass.ccccceene. 6-33
Figure 6.14: Examples of hotspots taken from Project P2-2.cccccccveiiinnis 6-34
Figure 6.15: UML diagram showing overview of the HSL tool’s software design. . 6-35
Figure 6.16: Role support provided by the WA.o, 6-40
Figure 6.17: Chain of command for ESAOA KMS roles.cccooveiiiiieeiiieeeeeeeeeee, 6-41
Figure 6.18: Team members and their knowledge specialisations........................ 6-43
Figure 6.19: A potential scenario providing a fair division of labour. 6-46
Figure 6.20: Role support structure for ESAOA version 2............cooecvieeeeeeenninns 6-48
Figure 6.21: Processes performed and maintained by the CKS. 6-51
Figure 6.22: Processes maintained and carried out by the CKS..............cccoceeee. 6-52
Figure 6.23: Processes performed and maintained by the TL.............cccccceeiiiniis 6-53
Figure 6.24: Decision and allocation of roles. ... 6-54
Figure 6.25: Processes of the CR..........coooiiiiiiii e 6-55
Figure 6.26: CR training PrOoCESS.cuiiiiuiiie ittt 6-56
Figure 6.27: Main processes carried out by the PE. ... 6-57
Figure 6.28: The PE training ProCesS.ooccuuviiiiiiieiiieiiieeee e 6-58
Figure 6.29: Processes involved in the interaction between the PE and IE........... 6-59
Figure 6.30: Processes and role interactions concerning the WA. 6-60
Figure 6.31: Processes and artefacts used and managed by the IE..................... 6-61
Figure 6.32: Training the [E. ... 6-62
List of Tables

Table 1.1: Examples of ESAOA activities for certain implementation tasks 1-7
Table 1.2: Summary of delimitationsccooiiiiiiiiii 1-18

Table 2.1: Commonly used infomediary tools and dimensions of information
overload they address [Ho & Tang, 2001; Berghel, 1997].vvvvvvrrivierrnreninnnnns 2-58

Table 3.1: Overview of the projects studied in Experiment 1 and 2....................... 3-20
Table 3.2: Project Meetings.coueeiiiiiieei e 3-30
Table 3.3: Schedule of Experiment 1 demonstrations.ccccovvviiiiiiieeenneeennes 3-33
Table 3.4: Schedule of Experiment 2 demonstrations...........cccovvvveveeiiiieee e 3-33
Table 3.5: Except of initial knowledge register from Project P1-2.cc.ccoooees 3-45
Table 3.6: Except of the knowledge register for Project P2-1. ... 3-49
Table 3.7: Productive and non-productive knowledge per knowledge type........... 3-54
Table 3.8: Proportions of data, process and innovation knowledge produced. 3-55
Table 3.9: Commonly used artefact classification acronyms............ccccccceeeeiinnns 3-61
Table 3.10: Process classifications..........ooouiiiiiiiiiiie e 3-62
Table 3.11: Classification acronyms for knowledge atoms.ccccocieeeiiiineenn. 3-63
Table 4.1: Description of projects for the first experiment.ccooiiiiinnes 4-2
Table 4.2: Excerpt from Project P1-1 ... 4-5

Table 4.3: Demonstration of problem-solution cycles observed in Experiment 1. ... 4-6
Table 4.4: Types of Knowledge eVents.uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeees 4-12
Table 4.5: Scenario for hierarchy of data, process and innovation knowledge...... 4-13
Table 4.6: Taxonomy of knowledge for embedded system KM.............ccccceerrnnes

XX

Table 4.7: Number of knowledge events in each of the data, process and

innovation knowledge Categories.ccuuuiiiiiiii i 4-22
Table 4.8: The event chains for Project P1-1 (SOSIG).oooviiiiiiiiiiiis 4-23
Table 4.9: The event chains for Project P1-2 (ANTCON).cooviiiiiiiiiiiiiieeeeeee 4-23
Table 4.10: Number of knowledge events per knowledge category for P1-1. 4-26
Table 4.11: Number of knowledge events per knowledge category for P1-2. 4-26
Table 4.12: Breakdown of knowledge acquisition times for P1-1 (SoSiG)............. 4-27
Table 4.13: Breakdown of knowledge acquisition times for P1-2 (ANTCON)......... 4-27
Table 4.14: Breakdown of knowledge acquisition times for P1-1 (SoSiG)............. 4-34
Table 4.15: Breakdown of knowledge acquisition times for P1-2 (ANTCON)......... 4-37
Table 4.16: Excerpt from knowledge register for Project P1-1 (SoSiG). 4-42
Table 4.17: Knowledge occurrences per knowledge type for P1-1.cccccooenis 4-44
Table 4.18: Productive and non-productive knowledge within knowledge types. .. 4-44
Table 4.19: Productive and non-productive time percentages for P1-1................. 4-44
Table 4.20: Differences of results between analysis methods for Project P1-1..... 4-44
Table 4.21: Proportions of data, process and innovation knowledge for P1-1....... 4-45
Table 4.22: Knowledge occurrences per knowledge type for P1-2.c...cooe. 4-48
Table 4.23: Productive and non-productive knowledge within knowledge types. .. 4-48
Table 4.24: Breakdown of knowledge acquisition times for P1-2. 4-48
Table 4.25: Differences of results between analysis methods for Project P1-2..... 4-48
Table 4.26: Proportions of data, process and innovation knowledge for P2-2....... 4-49
Table 4.27: Average of productive and non-productive knowledge for knowledge

categories for EXPeriment e 4-51
Table 4.28: Total productive and non-productive knowledge for Experiment 1. 4-51
Table 4.29: Roles of ESAOA VEISION 1. ..ot 4-61
Table 4.30: Roles of ESAOA VEISION T.......uuuuuuuuiiiiiiiiiiiiiiiiinieeeneiieneeeennnnennnnnnnneene 4-64
Table 4.31: Excerpt of artefact functional classes...........ccccevvveeriieiieiiiiiiiiiiiiiiininns 4-70
Table 4.32: List of commonly applied role classifications.............coccccviieeeiiiiinnns 4-73
Table 4.33: ESAOA KMS version 1 distributions.cceeuveeiiiiiiiiiiiiiiiiieiiienennns 4-91
Table 4.34: ESAOA communal SCHPLS. .oooiiiiiiiiiiieiee e 4-92
Table 4.35: ESAOA communal ProgramsS.eeeeeiurreeeeiiieeeessreeee e 4-94
Table 4.36: ESAOA communal templates.coooiiiiiiiiiiiiei e 4-96
Table 5.1: List of Experiment 2 Projects.uuveiiiiiiiiieeeeee e 5-2
Table 5.2.1 (a): Productive and non-productive knowledge per knowledge type... 5-10
Table 5.2.1 (b): Proportions of data, process and innovation knowledge in P2-1.. 5-10
Table 5.2.2 (a): Productive and non-productive knowledge per knowledge type... 5-15
Table 5.2.2 (b): Proportions of data, process and innovation knowledge in P2-2.. 5-15
Table 5.2.3 (a): Productive and non-productive knowledge per knowledge type... 5-19
Table 5.2.3 (b): Proportions of data, process and innovation knowledge in P2-3.. 5-19
Table 5.2.4 (a): Productive and non-productive knowledge per knowledge type... 5-23
Table 5.2.4 (b): Proportions of data, process and innovation knowledge in P2-4.. 5-23
Table 5.2.5 (a): Productive and non-productive knowledge per knowledge type... 5-27
Table 5.2.5 (b): Proportions of data, process and innovation knowledge in P2-5.. 5-27
Table 5.2.6 (a): Productive and non-productive knowledge per knowledge type... 5-31
Table 5.2.6 (b): Proportions of data, process and innovation knowledge in P2-6.. 5-31
Table 5.2.7 (a): Productive and non-productive knowledge per knowledge type... 5-35
Table 5.2.7 (b): Proportions of data, process and innovation knowledge in P2-7.. 5-35
Table 5.2.8 (a): Productive and non-productive knowledge per knowledge type... 5-39
Table 5.2.8 (b): Proportions of data, process and innovation knowledge in P2-8.. 5-39
Table 5.2.9 (a): Productive and non-productive knowledge per knowledge type... 5-43
Table 5.2.9 (b): Proportions of data, process and innovation knowledge in P2-9.. 5-43
Table 5.2.10 (a): Productive and non-productive knowledge per knowledge type. 5-48
Table 5.2.10 (b): Proportions of data, process and innovation knowledge P2-10.. 5-48
Table 5.2.11 (a): Productive and non-productive knowledge per knowledge type. 5-52
Table 5.2.11 (b): Proportions of data, process and innovation knowledge P2-11.. 5-52

XXi

Table 5.2.12 (a): Productive and non-productive knowledge per knowledge type. 5-56
Table 5.2.12 (b): Proportions of data, process and innovation knowledge P2-12.. 5-56
Table 5.2.13 (a): Productive and non-productive knowledge per knowledge type. 5-60
Table 5.2.13 (b): Proportions of data, process and innovation knowledge P2-13.. 5-60
Table 5.3.1 (a): Knowledge occurrences for each Experiment 2 project. 5-61
Table 5.4.1 (a): Breakdown of creativity ratings per project.cccoceeeeeieinnnnnns 5-63
Table 5.4.1 (b): Breakdown of design ratings per project..........cccooeccvmiieeeeeeinnnnnns 5-63
Table 5.4.1 (c): Breakdown of artefact ratings per project.ccccvvveeeeeeirinnnns 5-64
Table 5.4.1 (d): Totals of the code and design review ratings per project............. 5-64
Table 5.4.1 (e): Commonly reported knowledge production methods.................... 5-66
Table 5.4.2 (a): Demonstration check sheet scores for each project. 5-68
Table 5.4.2 (b): Section scores for each requirements check sheet...................... 5-69
Table 5.4.3 (a): Demonstration check sheet scores compared to requirements.... 5-70
Table 5.5.2 (a): Design review averages compared to review panel scores. 5-71
Table 5.5.2 (b): Correlation reSUIS.coviiiiiiiieieee e 5-71
Table 5.5.3 (a): Correlations between code and design review scores and

productive knowledge occurrences across all projects. ..., 5-72

Table 5.5.3 (b): Correlations between review scores and knowledge occurrences.5-74
Table 5.5.4 (a): Percentage of productive innovation knowledge occurrences

compared to requirements check sheet SCOres.uuuvuvuiiiiiiiiieeiiiiiiiiiiiieennenenns 5-75
Table 5.5.4 (b): Percentage productive innovation knowledge occurrences

compared to demonstration check sheet SCOres...........uuuuviuiiiiiiiiiiiiiiiiiiiiiiiiiiiiens 5-76
Table 5.5.4 (b): Percentage productive innovation knowledge occurrences

compared to requirements check sheet SCOres.uuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieenns 5-77
Table 5.5.5: Correlations between check sheet scores and categories of

KNowledge ProdUCTION.eeiiiiieee et 5-77
Table 5.5.6: Correlations between check sheets and proportions of

KNOWIEdge ProAUCTION. ...t 5-78
Table 5.6.1: Summary of evaluation data.cccceiiiiiiiii e 5-80
Table 5.7.1 (a): Percentage of productive and non-productive knowledge............ 5-85
Table 5.7.3 (a): Experiment 1 averages for productive and non-productive........... 5-89
Table 5.7.3 (b): Experiment 2 averages for productive and non-productive........... 5-89
Table 5.7.4 (a): Emerging trend indicating relationship between productive

innovation knowledge and quality of the prototype.ccccoiiiiiiiiiiiniiiiiieeeeen, 5-91
Table 5.7.4 (b): Trends emerging across the event chains.cccccvvvviiiiinnnns 5-92
Table 5.7.7 (a): Excerpt from Project P2-1 knowledge register...........ccccceeeeeenn. 5-100
Table 5.7.7 (b): Contribution of knowledge forms per role for Project P2-1......... 5-101
Table 5.7.7 (c): Contribution of knowledge forms per role for Project P2-2.......... 5-101
Table 5.7.7 (d): Contribution of knowledge forms per role for Project P2-10....... 5-102
Table 5.7.8 (a): Excerpt from Project P2-1 knowledge register...........cccceeeeeeenn. 5-104
Table 5.7.8 (b): Tool versus component knowledge occurrences.ccce...... 5-105
Table 5.7.9: Separation of role, logistics, and other knowledge.c.cccueee.. 5-106
Table 6.1: ESAOA version 2 distributions.euvveuiiiiiiiiiiiiiiiiiiiieeeeenns 6-18
Table 6.2: A tabular view of a .fci file in an ESAOA personal workspace............... 6-26
Table 6.3: A tabular view of a .fcl file in an ESAOA personal workspace............... 6-26
Table 6.4: Tabular view of a second version “.fcl’ file.ccccciiiiiiiii s 6-31
Table 6.5: Tabular view of a second version “.fos’ file.........cccccciiiiiiii s 6-32
Table 6.6: Examples of a .fhl file corresponding to Figure 6.14.ccccoeeeienes 6-34
Table 6.7: Roles of ESAOA KMS VEISION 2.coeiiieeiiiiiiiiiieee e eeieeeeee e e 6-38
Table 6.8: Examples of artefacts and role classification.cccocciinis 6-39
Table 6.9: Team member specialisations. ... 6-42
Table 6.10: Artefacts of the EMASO KMS. ... 6-62

XXii

Chapter 1:

Introduction

In this thesis a specific aspect of embedded system (ES) development, referred to as
embedded system artefact organisation and adaptation (ESAOA) is studied. This
thesis is an exploratory study that focuses on the development and evaluation of a
knowledge management system (KMS) for ESAOA.

This chapter starts by defining terminology related to the broad area that this thesis is
situated in, and the specialised terms that are used in this thesis (Section 1.1). The
next section (Section 1.2) explains the rationale behind this research project,
highlighting challenges of new ES product development and the need to speed up
the process of developing these products. The thesis objective is introduced in
Section 1.3. The problem statement that leads on from the thesis objective is
presented in Section 1.4, and the focus of the thesis is described in Section 1.5. The
delimitations of the thesis, including details of the scope and constraints of the study,
are elaborated upon in Section 1.6. The final section, Section 1.7, sets out the

structure of the thesis and briefly outlines the subsequent progression of chapters.

1.1 Terminology and definitions

This section defines the terms that are used in this thesis. The first of these are
embedded system (ES) and embedded software development. The differences
between ES products and ES prototypes are explained, which is followed by a
description of computer engineering and embedded engineering. Next, differences
between project tasks and project activities are identified, from which the definition of
implementation tasks is derived. This leads into a definition of implementation
artefacts, which are used during implementation tasks. Finally, the concept of

embedded system artefact organisation and adaptation (ESAOA) activities is defined.

1-1

1.1.1 Embedded systems and embedded software development

An ES, alternatively referred to as an embedded computer, is a specialised computer
system that is built into a larger system (or product) and is dedicated to performing a
specific task within that larger system [Catsoulis, 2002]. The design of an ES can be
highly optimised because the operations that the system needs to perform are tightly
bounded [Berger, 2002]. As a result, such systems are realised in the form of
specialised hardware platforms constructed from microprocessors or
microcontrollers, which run embedded software, and are connected to application-
specific peripherals. Embedded software is the dedicated software that runs on an
ES and that coordinates and controls the hardware to make the system perform
useful operations [Labrosse et al., 2008].

1.1.2 ES products and prototypes

In general, a prototype serves as an early product sample that is built to test a
concept [Floyd, 1984] or to determine experimentally an effective process through
which a product or product range can be produced [Brinkkemper et al., 1996]. For
instance, if an ES development company decides to create a new type of product,
the company may first develop a prototype of the product to assess a range of
issues, such as an effective choice of features, power consumption, and an accurate
cost estimate for a production version of the product [Berger, 2002]. Once the
prototype has been built (or possibly sooner), the developers may decide that the
concept is a good one (and may thus start to create a production version of the
product); alternatively the developers may decide that the concept is ineffective and
abandon the idea [Ulrich & Eppinger, 1995].

1.1.3 Computer engineering and embedded engineers

ES development has traditionally been divided between hardware design and
software design [Berger, 2002]. Hardware design involves tasks such as the creation
of schematics, the implementation of circuits, and the analysis and testing of signals
[Koopman, 1996; Berger, 2002]. The hardware aspect of ES design is considered to
fall within the discipline of electrical engineering [Sangiovanni-Vincentelli & Pinto,
2005; Seviora, 2005]. The software aspect of ES development relates to the field of
software engineering, and involves the design and implementation of hardware
drivers, signal processing routines and application code [Barr, 1999]. The low-level
coding aspects of embedded software development, such as writing device drivers
and coding in a hardware description language (e.g., Verilog or VHDL), are

commonly referred to as firmware development [Sutter, 2002].

1-2

The separation of engineering teams between hardware engineers and software
engineers remains a common practice; but boundaries between the software and
hardware aspects of ES design are becoming blurred [Franke & Purvis, 1991]. For
example, system-on-a-chip (SoC) technologies are providing cost effective,
commercial-off-the-shelf (COTS) products that can replace entire subsystems
previously developed in-house [Rowen & Leibson, 2004]. Hardware description
languages, such as VHDL and Verilog, used to program field programmable gate
arrays (FPGASs) are replacing circuits previously implemented on comparatively bulky
printed circuit boards (PCBs) and offer better performance with more robust
packages (e.g., [Sommerville, 2006]). Computer engineering (CE) concerns the
construction and maintenance of computing systems, and involves aspects of both
electrical engineering and computer science [Coates et al., 1971]. A computer
engineer is expected to have skills related to both hardware and software
development, such as programming and software engineering abilities, as well as
proficiency in reading PCB schematics, datasheets and diagnosing hardware faults
[Soldan et al., 2004; Shackelford et al., 2006]. The term ‘embedded engineer’ or ‘ES
engineer’ refers specifically to a CE who specialises in the development of ES
products [Berger, 2002], rather than of other forms of computer systems (e.g.,

constructing supercomputers and notebook PCs).

1.1.4 Tasks and activities

This thesis adapts the definition of tasks and activities from descriptions used by the
Project Management Institute [2004]. In this thesis, a project is considered to
comprise a collection of tasks. A task is in turn accomplished through the completion
of a set of activities that are performed by team members®. A task has a specific aim,
depending on the work performed. For example, in an ES development project, a

task may involve coding a device driver for a temperature sensor.

An activity is an action carried out by one or more members of a development team
(e.g., an embedded software developer in the case of an ES development project).
An activity may be task-oriented, in which case it specifically furthers the progress of
a task, or peripheral, if the activity is not directly related to a task (this categorisation
is derived from a discourse by Hallows [2002], which indicates that activities of an

employee tend to be either centred on a certain project, or peripheral to a project). An

! Note that the definition of an activity in this thesis is not equivalent to an activity as defined
by the Rational Unified Process (RUP) [Kroll & Kruchten, 2003].

1-3

example of a task-oriented activity, for example one that is related to the task of
constructing a temperature sensor driver, is writing lines of C code for the device
driver module; an example of a peripheral activity, however, is doing a file backup
(i.e., a peripheral activity may be crucial even though it might not further the progress
of a project). Figure 1.1 illustrates the differences between projects, tasks, task-
oriented activities, and peripheral activities.

Project
(e.g., ES Development Project)

Task
(e.g., develop driver for temperature sensor

Peripheral

Task-oriented Activity
Activity Task-oriented
Activity
Y Y
Example Activity Example Activity Example Activity
Edit a C code file Check syntax of code Install anti-virus
using a text editor file using C compiler software

Figure 1.1: The association between projects, tasks and activities.

1.1.5 Implementation tasks

A development project can be divided into different phases, with each phase
involving a collection of tasks [Berger, 2002]. Section 2.2 presents an ES
development process model (an adapted version of the waterfall model [Royce,
1970]) that divides a project into seven phases, namely: 1) requirements, 2)
specification, 3) design, 4) implementation, 5) integration, 6) testing, and 7)
maintenance and upgrade. The separation of a project into phases is used in this
thesis foremost as an analytical tool to isolate certain tasks and activities in a project.
The division of a project into phases is not absolute; for example, tasks and activities

are often revisited in other phases [Schach, 2005].

The term implementation tasks relates to tasks generally performed in the
implementation phase of a development project, as per the description of the

implementation phase given by Schach [2005].

In this thesis, use of the term implementation task refers specifically to tasks in the
context of developing embedded software as part of an ES development project (see
Section 1.1.4 for examples of implementation tasks that can occur in these projects).

1.1.6 Implementation artefacts, and soft/hard artefact classification

In this thesis, the term artefact (or ES artefact) refers to a file or object worked on, or
used by, developers during a development project (this definition is based on the
description of an artefact used in the RUP [Kroll & Kruchten, 2003]). An
implementation artefact is an artefact used or worked on during an implementation
task. The definition of an implementation artefact is intentionally broad; for example,
it includes development tools (e.g., compiler and linkers), hardware components
(e.g., a microcontroller) and computer files (e.g., PDF datasheets and code

modules). Figure 1.2 shows further examples of implementation artefacts.

In this thesis, artefacts are classified as hard artefacts or soft artefacts. Soft artefacts
are defined as digital files stored on a computer, or paper documents (e.g., a printout
of a datasheet or soft artefact). Hard artefacts are physical objects that an ES
engineer works with in a laboratory, such as electronic components, hardware
devices, tools, equipment and the embedded system being constructed. In Figure
1.2, the code file, datasheet and schematic illustrate soft artefacts; whereas the
platform, debugging component, and microcontroller demonstrate hard artefacts. The
term design artefact refers to soft artefacts that are more closely related to the design
phase of development (see Section 2.2), such as hardware block diagrams,
component diagrams and UML class diagrams [Schach, 2005], which together direct
the construction and adaptation of implementation artefacts.

;. Metrowerks CodeWarrior
i arch Project Window Help
oz @ ad a0 odsilm

Platform

-
we ANST headers.

.
#1include <stdio.h>

#= Hovell headers.
us

#inelude <nlm_prefix.h>
#include <mwdsapi.h>
#include <nwapidef.h>

=
+ 8
5]
5}
=1
=]
&

int main (void)
{

ccode;
tHandle context;
usertame (114
userPasswort
ssarchAttril
info:

ttriames; Sies T 7
attributeVe o Tn RS T —
valueFound;

TION iterHand:

Stertount; Code

attributeName [MAX_DH_CHARS):

syntax: H

valCount: flle
2 e
nstrg contextName [MAX_DH_CHARS+1); /= or

s

[0 — —

Debugging Component

Tolelol®

- Awiiji]] i

AImE
Microcontroller = Schematic Datasheet

Figure 1.2: Examples of implementation artefacts®.

1.1.7 ESAOQOA activities

Embedded system artefact organisation and adaptation (ESAOA) involves the
classification and structuring of implementation artefacts, collectively termed acts of
artefact organisation, and actions of physically manipulating or creating
implementation artefacts en route to making the artefacts part of a product or product

prototype, which is referred to as artefact adaptation.

Since ESAOA activities are defined to relate specifically to implementation artefacts,
task-oriented ESAOA activities can generally be considered as part of an
implementation task, and therefore relate to the implementation phase of the
development project. As stated earlier (see Section 1.1.5), the classification of a
project into phases is abstract and not absolute, which implies that a particular
ESAOA activity may extend over multiple phases of the development process;
similarly, an ESAOA activity may have an impact on multiple phases of a
development process.

2 Images obtained from http://www.atmel.com, http://www.freescale.com,
http://www.macraigor.com and http://www.piconomic.co.za.

http://www.piconomic.co.za/

ESAOA activities can be separated into two broad categories: 1) artefact

organisation (AO) activities, and 2) artefact adaptation (AA) activities. Table 1.1 lists

examples of ESAOA activities, indicating the AO and AA classifications, together with

the higher-level implementation tasks to which they relate.

Table 1.1: Examples of ESAOA activities for certain implementation tasks.

High-level Implementation
task

Artefact Adaptation (AA)
activities

Artefact Organisation (AO)
activities

Creating start-up code for an
embedded software program

Creating a new C file to hold
the start-up code.

Making a directory called
‘Code’ to hold code files.

Adding lines of code to the
new C file.

Saving the new file as
‘start.c’.

Writing a device driver for a
temperature sensor

Changing the code of the
driver so that a different
value is written to a hardware
register.

Copying an existing device
driver module and naming it
‘tempsensor.c’.

Creating a file for use in
regression testing of the
device driver.

Placing the regression testing
file in the directory ‘test’

Source: adapted from development activities described by Berger [2002] and Fowler [2007].

1.1.8 Data, Information and Knowledge

Data, information and knowledge are usually understood as forming a hierarchy,

commonly referred to as the ‘D-I-K hierarchy’ (see Section 2.4.1), in which there is a

process through which data lead to information, and information becomes knowledge

[Groff & Jones, 2003]. Data exist at the lowest level of the hierarchy, and have no

significance besides their existence [Davenport & Prusak, 2000]. Bits, numbers and

characters are elements of data. Information is formed by giving context and

meaning to data. The particular context determines the way in which data are

assembled into information. Knowledge exists in the minds of people, and occurs

when information is combined with understanding and capability [Groff & Jones,

2003]. Capability is a person’s ability to take action. A person’s understanding is the

way in which that person interprets information. Understanding and capability are

mutually dependent: understanding is built through learning new ways to take action,

which develops capability. Conversely, by performing actions, made possible through

capability, information can be revealed to build understanding. Section 2.4.1

elaborates upon the D-I-K hierarchy by means of a scenario and a discussion of

different opinions concerning this view of knowledge.

1.1.9 Knowledge management

Knowledge management (KM) takes place across multiple disciplines, and is used in
a wide range of applications [Wilson, 2002]. KM should be considered as a

movement with specific values, rather than a discipline [Bennet & Bennet, 2004].

There are many interpretations of what KM is. Generally, KM describes processes for
collecting data, formulating information and using knowledge [Davenport & Prusak,
1998]. In general, there are two types of knowledge that need to be managed: explicit
knowledge and tacit knowledge [Nonaka & Takeuchi, 1995]. Knowledge assets can
therefore be tangible (e.g., documents) or intangible (e.g., experience). This thesis is
concerned with tangible, rather than intangible, knowledge assets.

As is the case with ‘knowledge’, KM is explained by different people in different ways.
Broadly speaking, there are two contrasting streams of KM [Ortenblad, 2007]. The
first is the ‘knowledge-focused stream’, whereas the second stream is the
‘information-focused stream’ [McDermott, 1999a]. Both steams study the ways in
which knowledge is created, captured, stored, and shared in an organisation
[Davenport & Prusak, 1998]. Section 2.4.2.1 further explains these streams and what

is meant in this case by an organisation.

This thesis uses a definition of KM that is based on work by Drucker et al. [1998], and

follows the information-focused stream of KM, namely:

KM is the way knowledge workers (of which embedded software
developers are an example) create, capture, store and share

knowledge in an organisation.

Using the above definition, ESAOA KM can be viewed as a method to treat
information, artefacts related to the information, and the interaction between people
interested in that information, in a context of ESAOA activities performed during the

development of embedded software.

1.1.10 Knowledge management systems

A knowledge management system (KMS) encapsulates the way in which people,
processes, and artefacts work together to create, capture, store, and share

knowledge [Drucker, 1998]. A KMS thus involves the people, processes and artefacts

1-8

that comprise knowledge work, as well as including how these elements work
together to support the creation, capture, storage and dissemination of knowledge
[Holsapple, 2003; Maier & Hadrich, 2006]. A KMS is dependent on the type of
knowledge work being done, and the context in which this knowledge work is
performed. The study of a KMS typically focuses on the ways in which the ‘know-
how’ and ‘know-who’ of knowledge workers is managed in an organisation to solve
problems, make decisions, learn facts, and find the knowledgeable people in certain
specialised areas within the organisation (Sections 2.6 and 2.7 elaborate on the

research literature concerning KM within engineering fields).

Based on the above description, this thesis defines an ESAOA KMS as follows:

An ESAOA KMS is an effective system that coordinates the way
in which people, processes, and artefacts work together to
creature, capture, store and share knowledge, in a context of
ESAOA activities performed during the development of

embedded software.

1.2 Rationale: a KMS for ESAOA activities

Recent studies have shown that the completion of embedded software development
projects is frequently late and over budget [Child, 2001; Grenning et al., 2004; Hall et
al., 2005; Charette, 2005; Ganssle, 2007]. Embedded software development is often
affected by the same problems that affect traditional non-embedded software
[Grenning et al., 2004], such as commercial pressures, unclear requirements,
unfamiliar technologies, complex projects, miscommunication and makeshift
practices — among other difficulties [Charette, 2005; Hall et al., 2005]. In addition to
these more traditional software problems, embedded software faces further
difficulties, including limited resources, real-time timing constraints, late integration
with target hardware and separate environments for program development and

program execution [Grenning et al., 2004].

1.2.1 The growing demand for embedded software

The number of projects that involve the development of embedded software is
expected to continue growing for many years to come [Graaf et al., 2003; Ganssle,
2007]. The sophistication of these products is expected to increase in the future as

they become more varied and ubiquitous [Ganssle, 2007]. For example, the iPhone

1-9

has combined a set of comparatively limited predecessors, namely, the cellphone,
the iPod palmtop computer and an internet connection device [Apple, 2009]. As the
complexity, number and diversity of ES products increases, the companies that
produce these products are experiencing difficulties in achieving sufficient product
quality while keeping projects on-time and on-budget [Graaf et al., 2003]. In order to
improve the quality, timeliness and productivity of embedded software development,
companies need to adopt more effective approaches for their specific situations
[Ganssle, 1999; Edwards, 2003; Grenning et al., 2004].

1.2.2 The rapid expansion of knowledge

The field of computers, and particularly computer engineering, has been especially
affected by the expansion of knowledge [Nienaber & Barnard, 2007]. A major
challenge faced by ES engineers, and one which significantly influences the success
of a project, is the assimilation and application of new technologies, development
tools and methods in development projects [Linn, 2001; Graaf et al., 2003], and
avoiding the problems associated with information overload [Kass & Stadnyk, 1992;
Lyytinen & Robey, 1999]. The exponential increases in device counts and computer
performance are expected to continue for another decade and possibly longer
[Kanellos, 2003]. Whether another type of technology will succeed silicon and
continue this exponential trend is less clear, but Kurzweil [2001] observes that the
history of computing demonstrates that, when the growth of one technology levels
off, another technology emerges to continue the exponential trend. A similar
exponential increase is occurring in communication system bandwidth, both wired
and wireless, and this is sometimes called Moore’s law for communication bandwidth
[Cherry, 2004]. Consequently, embedded software is predicted to become more
powerful, more complex and more interconnected [Jerraya & Wolf 2005; Jerraya,
2004; Jantsch & Tenhunen, 2003]. ES applications are expected to expand into a
growing number of new areas, and as the number and power of embedded
computers grows, an increasing number of novel applications are likely to emerge

[Committee on Networked Systems of Embedded Computers, 2001].

ES developers thus face the challenges of rapid growth in new technologies and
market demands, and the consequential need to obtain technical knowledge and
create efficient development strategies so that products are aligned to market trends,

and that projects remain on-time and on-budget [Graaf et al., 2003].

1-10

1.2.3 Knowledge management as a potential means to facilitate

embedded software development

Curtis et al. [1988] performed a survey of large software development companies in
1988, in which it was shown that software engineers spent significant amounts of
time learning and experimenting with new technologies for use in projects.
Embedded software has further demands for technical knowledge, such as acquiring
knowledge of specialised operational contexts and application domains
[Sangiovanni-Vincentelli & Pinto, 2005].

The role of programmability (and software adaptability and specialisation) has
expanded further, placing greater demands on embedded software developers to
assimilate and apply knowledge related to new technologies, such as system-on-a-
chip (SoC) components [Sgroi et al., 2001], software frameworks [Fayad et al., 1999],
and intellectual property (IP) blocks [Keutzer, 2002]. Embedded software engineers
are thus faced with the compounding challenges of meeting demands for new and
increasingly complex products, while obtaining the knowledge needed to make use of
the new technologies and identifying appropriate development methods to develop

software for these products [Berbers, 1999; Douglass, 2000; Berger, 2002].

Recent studies of ES projects indicate that the application of new technologies, while
adhering to projects’ time and budget constraints, remains a challenge for software
engineers [Komi-Sirvio et al., 2002; Graaf et al., 2003; Ko et al., 2007b]. There are
many strategies which address this problem, such as: more comprehensive
integrated development environments (e.g., MPLAB [Microchip, 2008]), easier to use
embedded operating systems [Baskiyar & Meghanathan, 2005], simulator
advancements (e.g., the Crossware ARM simulator [Crossware, 2009]) and model-
integrated solutions [Karsai et al., 2003], to name a few. While these advancements
can significantly speed up the process of development, these solutions are not
necessarily available to all developers (e.g., due to high licensing costs or

incompatible architectures); moreover, these tools also take time to learn.

Knowledge and the practice of effective knowledge management (KM) methods have
been acknowledged as essential to successful development projects by many
prominent authors, such as Davenport [1998; 2002], Drucker [1998], Nonaka &
Takeuchi [1995], Sveiby [1997], and Senge [1990]. These authors have also

recognised that KM, like knowledge itself, is partly dependent on the context in which

1-11

it is used, as well as on the knowledge artefacts (or objects) with which it is used
[Knorr-Cetina, 1997; 1999; Arias & Fischer, 2000; Knorr-Cetina & Brugger, 2002]. For
example, a specialised form of development project needs a specialised form of KM,
which typically involves the process of adapting a selection of existing KM
approaches and establishing new practices [Groff & Jones, 2003; Firestone &
McElroy, 2005]. Improvements to the KM practices used by software engineers
during the acquisition and use of technical knowledge has been identified as a
means to increase the success rate of these software development projects
[Dingsgyr & Conradi, 2002; Komi-Sirvio et al., 2002; Rus & Lindvall, 2002].

1.2.4 The need for an ESAOA KMS

Based on the current literature, KM research initiatives specific to embedded
software development are less common than those related to other forms of software
development®. The literature shows that KM studies related to embedded software
development are generally focused at a high level of project management, related
more to broad issues of development and its impact on the products (e.g., [Hahn &
Subramani, 2000; Davenport, 2002; Dingsgyr & Conradi, 2002; Rus & Lindvall,
2002)), or collaboration and organisational learning techniques (see Section 2.8.4 for
details). Organisational activities occur at the macro, meso, and micro level [House et
al., 1995]. The literature predominantly covers KM at the macro level of software
development, which comprises processes that operate at a strategic level. There is
also a growing literature on the micro level of KM, such as expert networks, web
portals, document and content management tools [Lindvall et al., 2001]. However,
there is little literature concerning meso level KM of embedded software
implementation activities. Meso level tasks involve the integration of macro and micro
processes [Rousseau & House, 1994], such as approaches that facilitate the way in
which embedded software developers experiment with code, organise data and files,
and learn how to modify components use a range of development tools. These meso
level tasks can account for a significant portion of the time an embedded software
developer spends on a project (as discussed in Section 1.2.3). ESAOA activities are
at the meso level of the product development process, and may therefore have a
potentially significant effect on the progress of development. For these reasons, the
researcher decided to investigate the KM of implementation phase development
activities, with the intention of addressing this research gap in the field of KM for

embedded software development.

*Based on a comparison of search results using Google Scholar (see Appendix E1), the
combined result for embedded software was 4.2% of those for more general software.

1-12

1.3 Thesis Objective

This thesis builds on existing work in the field of KM for software development [Rus
et al., 2001; Trimble, 2000; Rus & Lindvall, 2002; Dingsgyr & Conradi, 2002]. As the
preceding discussion has identified, embedded software is highly knowledge
intensive [Ganssle, 1999; Ball, 2002] and dependent on a variety of complex
knowledge artefacts, such as new types of development tools and components that

result from the new technologies [Kettunen, 2003].

The broad objective of this thesis is an explorative investigation of KM within a
specific area of embedded software development, namely certain forms of activity
that are mainly performed during the implementation phase of these projects. These
activities are referred to as embedded system artefact organisation and adaptation
(ESAQA) activities. ESAOA activities involve organising (i.e., classifying and
structuring) implementation artefacts and the adaptation of these artefacts during a

development project (see Section 1.1.7).

The specific objective of this thesis is the construction, evaluation and evolution of an
experimental KMS, referred to as the ESAOA KMS, with the intention of determining
an effective structure for the implementation of such a KMS that will facilitate
knowledge production to promote successful completion of ES implementation tasks.
The ESAOA KMS is intended for use in ESAOA activities within the context of new
projects that involve prototyping novel ES products. The ESAOA KMS is expected to
incorporate KM strategies that are both more visible and more systematically applied
during a project, than is the case for an ad hoc KMS that evolves naturally during a
project (see Figure 1.3). The ESAOA KMS also needs to incorporate an analysis
system to measure the performance of KM operations performed by users of the
KMS. The main research activities in this study consequently include studying ad hoc
KM strategies used by novice ES engineers, and refining these initial methods to
create a more visible and refined KMS applied consistently by subsequent groups of

novice ES engineers. See Chapter 3 for details.

1-13

uses uses

/71 N\ /71 N\ Team of Team of /71 N\ /7T N\
(=) (&) mouee e s \e))
’USES

KMS
Evolution

.

A S
aadd

Evolved
KMS

Ad hoc
KMS

Figure 1.3: Thesis objective — evolving a KMS for ESAOA activities.

1.4 Problem Statement

This thesis argues that new projects that involve the development of novel ES
products can be facilitated by the application of a specialised KMS, namely the
ESAOA KMS, applied within the context of ESAOA activities. These ESAOA
activities are performed by embedded software developers mainly in the

implementation phase of a project (see Section 1.1.5).

The investigation is restricted to the specific context of novice engineers (see Section
3.6.4) working on newly initiated ES projects that concern the development of ES

prototypes. Section 1.6 provides further details on the delimitations of this study.

This thesis uses the definition that knowledge is understood to reside within the mind
of an individual [Polanyi, 1958; Grant, 1996; Davenport & Prusak, 1998] (see Section
1.1.8). Based on this definition, knowledge itself is thus difficult to measure, because
it is defined as existing exclusively within a person’s mind [Polanyi, 1958].
Consequently, the emphasis of this problem statement, and the thesis as a whole, is
not on knowledge itself, but rather on knowledge-based activities, the development of
an ESAOA KMS, and the effect such a KMS would have on the creation of products.

From this research project, the following overarching research question, developed
after an investigation of the literature and a preliminary study* (see Section 4.2), was

used to guide this research:

* Since this is an exploratory study, the research question and analysis methods were
developed after an initial investigation of ES development practices, which was the original
objective of the preliminary study. Thus, the same Experiment 1 data was used in both the
preliminary study and in the initial data analysis — see Chapter 4).

1-14

Research question:
What is an effective structure for the ESAOA KMS (i.e., the roles, activities,
artefacts, etc.) that will contribute to the successful completion of ES

implementation tasks?

The research design developed to address this research question is the topic of
Chapter 3.

1.5 Focus

This thesis focuses on ESAOA activities performed by embedded software
developers during new product development projects. The focus is further refined in
the following three ways:
¢ New product development: studying projects that involve the development of
new products;
¢ Product prototyping: investigating projects that aim to produce a product
prototype as part of a proof-of-concept project; and
o Component integration: examining ESAOA activities related to writing, or
learning how to write, component integration code.

The subsections that follow elaborate upon this focus.

1.5.1 Focusing on new product development

In a study of European ES development companies performed by Graaf et al. [2003],
it was found that the companies generally started new projects that were based on
previous projects. Thus new projects tended to reuse resources (such as
requirements specifications and development tools) from previous projects. While
companies that have developed ES projects previously are likely to reuse previously
developed artefacts and tools, as shown by Graaf et al. [2003], this thesis focuses on
new product development in which a development team starts a new project to
produce a new product that is not based on an upgraded version of a previous
product. Developers working in either the context of building from scratch or reusing
previous artefacts are likely to encounter similar issues; however, teams that build on
previous projects have many advantages, such as the use of systems, procedures
artefacts and tools left behind from previous developers — an aspect highlighted by
Leonard-Barton [1992] in a study of multiple development projects. In this thesis, the

focus is on teams comprising first-time developers who need to develop project

1-15

resources from scratch and who do not have access to previous projects or project

resources that they can reuse”.

1.5.2 Focusing on product prototyping during a proof-of-concept

The objectives of development products can vary. For example, the aim of production
projects is to produce a quantity of marketable projects; whereas the purpose of
research and development (R&D) projects relates more to experimentation,
establishing development methods [Brinkkemper et al., 1996], and exploration of
concepts [Lewis, 2006]. A proof-of-concept project involves the possibly incomplete
creation of a product concept; these projects aim to demonstrate the feasibility of a
product idea, or to verify that an aspect of the concept is feasible [Erdogmus, 2002].
This thesis focuses on proof-of-concept projects in which an ES prototype is built. A
proof-of-concept project (more so than a larger scale R&D project) generally has a
specific concept to test and a corresponding plan for an experiment to perform
[Erdogmus, 2002] (whereas part of an R&D project may involve conceptualising a
concept to test). An ES product prototype built as part of a proof-of-concept project
may be functionally limited (in contrast to a marketable version of the product) and
intended only to test certain design strategies [Floyd, 1984] (Section 1.1.2 discusses

ES prototypes).

1.5.3 Focusing on ESAOA activities related to component integration

The implementation phase of product development involves the integration of a
component into an incomplete product using development tools, or the application of
development tools to make adjustments to the way in which a component is
integrated into a product, or part of a product [Schach, 2005]. The term ‘component’
refers to the parts from which a product is built (a component can be considered to
be a special form of implementation artefact). Development tools include software or
hardware tools that embedded software developers use in projects; examples include

web browsers, scripting tools, cross-compilers and remote debuggers [Sutter, 2002].

ES product development can be viewed as a process of forming a product from a set
of hardware and software components [Marwedel, 2003]. A component can be a
hardware component (e.g., a microcontroller) or software component (e.g., a code

module). In this thesis, the term component integration refers to a process by which a

® The teams have access to resources on the Internet in the public domain.

1-16

software developer writes or adapts code to connect components. This study focuses

on ESAOA activities related to component integration.

While component integration may overlap both the implementation phase and the
integration phase of a project, the focus remains on activities related to
implementation tasks, more specifically activities in which the software developer
modifies code components®. Component integration studied in this thesis includes
connecting software components with other software components, and connecting
software components to hardware components’ (e.g., creating or modifying a device
driver). The connection of hardware components to other hardware components

does not fall within the scope of this study.

1.6 Delimitations

The focus of this study, as elaborated upon in Section 1.5, is on KM for ESAOA
activities performed by software developers in the context of implementation tasks
performed in new proof-of-concept development projects in which an ES product

prototype is constructed (Figure 1.4 visually models the focus and delimitations of

this study).
Embedded Software
Development

\ Proof-of-concept projects

\ Prototype development /

\mplementation phase/

\ Esmor /

Delimi-
tations

Figure 1.4: Visualization of the thesis focus and delimitations.

Although the focus narrows down the research area, a wide variety of possible
projects still fit the research focus. For example, such projects could be done entirely

by an individual developer, alternatively by a highly proficient team of professional

® In this text, the integration phase can be considered as the integration of completed product
components, and to a lesser extent the writing of code that connects components.
" This is generally referred to as hardware/software interfacing [Patterson & Hennessy, 2005].

1-17

engineers, or possibly by a decentralised team, among other possibilities. The
delimitations outlined below indicate the specific type of development projects
investigated in this study. Although these delimitations restrict the generalisation of
the results produced, the study can still provide potentially useful insights, or suggest
strategies that may be beneficial to the wider area of the research focus, and
contribute to the knowledge in this field.

The six main aspects of the delimitation are outlined in Table 1.2, and are refined in

the subsections that follow.

Table 1.2: Summary of delimitations

Aspect Delimitation imposed
Activities studied Task-oriented ESAOA activities only
Level of developers Novice engineers

Team size and structure Small teams, of two to three members each

Number of case studies Two case studies in Experiment 1, thirteen in Experiment 2

Time-frame Experiment 1 projects studied for three months; Experiment 2
project studied for eight months
Products developed All prototypes built using the same hardware platform and

selection of development tools

1.6.1 Task-oriented ESAOA activities

This study is focused on ESAOA activities in which component integration is
performed, as explained in Section 1.5.3. Only task-oriented ESAOA activities are
investigated (i.e., peripheral activities were ignored). The emphasis is on ESAOA
activities used by developers while attempting® to learn about, or performing,
component integration. These forms of component integration are restricted to:
¢ Incorporating a software artefact (e.g., a code file) into an existing application;
e Modifying code so that one code module connects to another; and

e Coding a software module to make it communicate with a hardware device.

Only activities in a single project are studied, the study does not investigate how

activities in one project relate to those in concurrent, past or future project).

® The emphasis is on ‘attempting’ because all acts of component integration are not
necessarily immediately successful; many failed attempts may be made before a successful
strategy is discovered.

1-18

1.6.2 Level of developers

The study focuses on novice engineers, who have completed two years of a
university computer engineering programme (further detail for this delimitation is

given in Section 3.6.4).

1.6.3 Team size and composition

A developer’s knowledge of implementation tasks results from his/her underlying
skills that are essential to the type of development concerned [Jackson & Caspi,
2005; Grimheden & Toérngren, 2005]. For example, in ES development, fundamental
software development skills include the developer’s ability to write source code in a
particular programming language, and an understanding of how the source code is
turned into an executable object. Members of project teams in knowledge-creating
companies are often assigned certain roles, such as: a team leader, a knowledge
owner, or a research specialist [Abell & Oxbrow, 1999]. Each team member can
perform more than one role. Having more than one member in a team allows the
potential for capturing explicit inter-person communication (e.g., email or discussion
points recorded in meetings) between individuals filling specific roles (the generation
of such explicit knowledge would not be as natural or automatic in the case of one-
member teams). However, large teams (e.g., five or more people) can complicate the
study, such as logistic problems of getting all team members to attend meetings
[Milton, 2005]. Consequently, teams in this study are limited to two or three members

to avoid unnecessarily complicated team structures, thus keep the research focused.

1.6.4 Number of experiments and case studies

The research design involves two experiments. The first experiment (Experiment 1)
was a pilot study comprising two projects, with each project performed by two
developers. Experiment 1 was an initial investigation in the chosen research field,
which led to the design of ESAOA KMS version 1 (see Chapter 4). The second
experiment (Experiment 2) was a larger study that involved thirteen projects, each
performed by a team of three members using ESAOA KMS version 1 (see Chapter

5). Chapter 3 provides further detail on the design of these two experiments.

1.6.5 Time-frame for case studies

A requirement for this research project was to complete the acquisition of data from
case studies within a two-year period. The time period for capturing data from
projects was chosen to be three months for Experiment 1, and eight months for

Experiment 2. The rationale for these time periods is given in Section 3.2.2.2.

1-19

1.6.6 Products developed

All projects in the study involve the construction of ES prototypes (as described in the
research focus in Section 1.5). The prototypes were all built using the same
evaluation board (the CSB337 [Cogent Computers, 2005]) and the same set of
development tools. The teams acquired and interfaced additional external hardware

and software as required. Section 3.2.2 provides detail on this delimitation.

1.7 Thesis Structure

This thesis is structured around seven chapters. The progression of the thesis, and

the focus of each chapter, is as follows:

1. Chapter 1 introduces the research area, the rationale for this research and
the focus of the thesis, together with contextual and background information.

2. Chapter 2 overviews current literature on KM, and focuses in on the research
literature on KM in software engineering and related fields. A meta-analysis of
the literature identifies KM-related issues, KM strategies and KM tools
applied, and the impact these have on product development processes.

3. Chapter 3 outlines the research design and research methods developed for
the study and evolution of the ESAOA KMS.

4. Chapter 4 presents the results of the first experiment, in which an ad hoc
KMS was applied. The results showed that, when using an ad hoc KMS, ES
developers spend more non-productive than productive time during ESAOA
activities [Winberg & Schach, 2007]. There was also a greater occurrence of
non-productive knowledge events than productive knowledge events. This
chapter also explains the first KMS prototype (ESAOA KMS version 1).

5. Chapter 5 presents the results of the second experiment, which used an
experimental research methodology that involved testing ESAOA KMS
version 1. The results indicate that the application of ESAOA KMS version 1
caused more productive knowledge events than non-productive knowledge
events than did the first experiment.

6. Chapter 6 develops the structure of ESAOA KMS version 2 based on the
findings from the first and second experiments.

7. Chapter 7 concludes the thesis, presenting recommendations and areas for

further research.

1-20

1.8 Summary

This thesis studies a specific aspect of ES development, referred to as ESAOA. It is
motivated by the growing demands for embedded software and the need for
improvements to ES development projects so that more of these projects can be
completed on-time and on-budget [Child, 2001; Grenning et al., 2004; Hall et al.,
2005; Charette, 2005; Ganssle, 2007] (see Section 1.2). KM is a potential means of
addressing these problems (see Section 1.2.3). The specific objective of this thesis is
the construction, evaluation and evolution of an experimental KMS, referred to as the
ESAOA KMS. This KMS is intended for use in ESAOA activities within the context of
new projects that involve prototyping ES products. This thesis centres on how ES
projects are facilitated by the application of the ESAOA KMS. This research study is
focused on new product development that involves proof-of-concept projects
performed by novice engineers. Further delimitations are applied to narrow the study
(see Section 1.6). The next chapter (Chapter 2) provides a literature review that

overviews the current literature and builds towards the research design (Chapter 3).

1-21

1-22

Chapter 2:

Literature review: Knowledge management and

embedded system engineering

This chapter begins, in Section 2.1, by describing the focus of the literature review
and the methodology used in its construction. A funnelled approach is then followed,
in which Section 2.2 reviews fundamental terminology and theories related to
embedded system (ES) theories, embedded software development, and knowledge
management (KM). Section 2.3 elaborates on the thesis rationale outlined in Chapter
1 — highlighting the inefficiencies of embedded software development and KM
methods as a means of addressing the problems of information overload and the
management of technical knowledge. Section 2.4 discusses general theory and
terminology related to KM, clarifying how these terms should be interpreted in the
context of this thesis. Section 2.5 presents a topology of KM that maps out and
defines major categories of KM based on current research reported in the literature.
Section 2.6 details the concept of a knowledge management system (KMS),
highlighting the difficulties and principles according to which these types of systems
are designed and deployed. Section 2.7 concerns roles that people take on when
involved with a KMS. In Section 2.8, the literature review hones in on research
performed in the disciplines of electrical engineering and computer science,
reviewing state-of-the-art studies that are related to KM as a potential means of
reducing information overload and improving knowledge acquisition. Section 2.9
draws on the earlier sections of this chapter to develop the theoretical framework that
is used in the research design (see Chapter 3). Section 2.10 ends with a brief

summary and conclusion of this chapter.

2.1 Methodology of the literature review

The literature reviewed was separated into six parts, with each part focusing on a
specific topic related to the positioning of this thesis within a general field of research.

Sections 2.2 to 2.8 correspond to the topics reviewed, namely:

2-1

ES development processes (Section 2.2);

Inefficiencies of ES development (Section 2.3);

General knowledge management concepts and terminology (Section 2.4);
Typology of KM strategies (Section 2.5);

Knowledge management systems (Section 2.6);

Roles of people involved with a KMS (Section 2.7); and

N o a bk~ b=

Use of KM in embedded software development (Section 2.8).

The literature reviewed for topics 1, 3, 5 and 6 above was based predominantly on
books, as these are fundamental concepts. The literature investigated for topics 2, 4
and 7 included mainly journal articles, conference proceedings, and reports; the

focus was on publications after 2000.

Topic 7, which narrows down the focus on studies that deal with KM in technical
product development contexts, is the most detailed part of the literature review. This
part is most closely related to the specific area of this thesis. The literature chosen for

this part was required to be empirically based and to be as recent as possible.

For each part of the literature review, the information searches that were done
captured many articles describing empirical research. Most of these were of an
evaluative nature that concerned the implementation and effects of using KM in
contexts of technical product development. The conference papers and journal
articles generally directed the researcher towards book-length studies, book
databases (e.g., IEEE Press), technical reports, and Masters and Doctoral
dissertations (these findings further motivated parts of the literature review to focus

on these types of sources).

Extensive internet searches were performed using the ACM portal, Emerald,
Engineering Village, the IEEE portal, Proquest, Science Direct, Scopus, Springerlink,
Taylor and Francis, and Web-of-Knowledge (IS1). Keywords used in these searches
included terms such as ‘embedded system’, ‘embedded software’, ‘knowledge
management’, ‘development procedures’, ‘organisational learning’, ‘implementation’
and ‘techniques’. Searches of the following journal databases were also done:
Administrative Science Quarterly, Al Communications, Automated Software
Engineering, Communications of the ACM, Computer, Computer-aided Design,
Concurrent Engineering, Decision Support Systems, Empirical Software Engineering,

European Management Journal, Expert Systems with Applications, Information and

2-2

Software Technology, IEEE Transactions on Automation Science and Engineering,
IEEE Transactions on Knowledge and Data Engineering, IEEE Transactions on
Engineering Management, IEEE Transactions on Software Engineering, International
Journal of Software Engineering and Knowledge Engineering, International Journal
on Software Tools for Technology Transfer, Journal of Engineering and Technology
Management, Journal of Management Information Systems, Journal of Systems and
Software, MIS Quarterly, Organisational Science Journal, Software Engineering
Journal, Software Quality Journal, The Sloan Management Review, and Research in

Engineering Design.

Conference and workshop databases searched included the following: Proceedings
of the IEEE Conference on Control Applications, Proceedings of the Joint
Conferences on Knowledge-based Software Engineering, Proceedings of the
International Conferences on Product-focused Software Process Improvement
(PROFES), Proceedings of the International Conferences on Software Engineering
Advances (ICSEA), Proceedings of the International Conference on Software
Engineering and Knowledge Engineering (SEKE), Proceedings of the International
Conferences on Software Product Lines, Proceedings of the IEEE International
Conferences and Workshops on the Engineering of Computer-based Systems,
International workshop on Learning Software Organizations, Proceedings of the IEEE
International Conferences on Services Computing (SCC), Proceedings of the
International Conference on System Sciences, Proceedings of the International
Workshops on Principles of Software Evolution, Proceedings of the IEE International
Conference and workshop on the Engineering of Computer-based Systems (ECBS),
Proceedings of the IEEE Annual Symposium on Reliability and Maintainability
(RAMS), Proceedings of the Annual NASA Software Engineering Workshop,
Proceedings of the International Conference on Knowledge Acquisition, Proceedings
of the International Conference on Modelling and Management, Proceedings of the
International Joint Conference on Atrtificial Intelligence (IJCAI), Proceedings of the
International Conference on Management of Information and Communication
Technology, and Proceedings of the International Conference on Software
Engineering (ICSE).

A review of the articles that met the inclusion criteria was performed, focusing on the
issues identified for KM, the KM strategies or systems adopted, the tools used for
KM, and the effect of KM strategies and tools. There were very few studies that

focused on specialised, or adapted, forms of KM for use by ES engineers as a

2-3

means of defining, guiding and improving the way in which developers address
knowledge-related difficulties associated with ES product development, although
there were studies of KM in related fields such as software engineering and
information and communication technologies (e.g., [Abrahamson et al., 2003; Lindvall
et al., 2004]). The existing KMS literature, even when it is located in technical
contexts, tends to address project management rather than KM (as defined in
Section 2.4.2), and also tends to focus more on business processes rather than
development; however, many of the strategies and tools developed for collaboration,
knowledge sharing, and other knowledge-related activities can be adapted to KM

needs (as is shown in Section 2.8.2).

2.2 The ES development process

At a high level, the design process of an ES development project can be divided into
seven main phases (as is shown by Berger [2002] and by Mantyniemi et al. [2004]).
Figure 2.1 shows an adapted view of the waterfall model [Schach, 2005], which
reflects an amalgamation of the ES development models described by distinguished
authors in the field, namely models by Labrosse et al. [2008], Fowler [2007], and
Berger [2002]. The model shown in Figure 2.1 is not identical to the original version
of the waterfall model [Royce, 1970], since a testing phase has been added in
accordance with the emphasis on testing by these authors. Although the phases
presented by these authors are not identical, the authors’ descriptions of their models
are generally consistent with the model shown in Figure 2.1, and as elaborated upon
in the text below. For example, Berger [2002] uses the name ‘specification’ to collect
activities of the first phase, whereas Labrosse et al. [2008] use the name
‘requirements’; in contrast, Fowler [2007] chooses to name the first phase
‘requirements and specifications’, and he describes an ES development model that is
a hybrid waterfall and spiral model. This thesis uses a variant of the waterfall model

chiefly as a means of clarifying the position of this study.

As Figure 2.1 shows, an ES project generally starts by gathering requirements for the
product to be developed. This ‘requirements’ phase usually involves defining and
documenting the features and functionality of the product [Labrosse et al., 2008]. In
this phase, requirements are commonly documented in a rapid and informal manner
[Schach, 2005].

2-4

1: Requirements
Determining needs for the product -,

S~

~ -
P / Retirement

l//

2: Specification including partitioning
into hardware and software components

N2

3: Design separated into software and
hardware design, including microprocessor
/ microcontroller selection

7: Maintenance and Upgrade such as
repairing and refining products (this phase
itself may encapsulate a whole new project)

6: Testing software modules, hardware
components; leading towards acceptance
testing and product release

v

4: Implementation including schematic
creation, coding of embedded software,
firmware, HDL, and possible development
of host-based (e.g., PC) software.

IT

5: Integration including software with
software integration, hardware with
hardware integration and software with
hardware integration

Figure 2.1: Embedded system lifecycle model (an adaptation and amalgamation of
models by Schach [2005], Labrosse et al. [2008], Fowler [2007] and Berger [2002]).

The specification phase can be seen as building on the requirements phase, in which
formal documentation is produced that explicitly, and precisely, describes the
functionality of the product, often including a description of the specific inputs and
outputs of the system, as well as of the constraints on the product operation [Schach,
2005]. The specification phase may also include the development of a particular

system architecture for the ES to be built [Labrosse et al., 2008].

The design phase involves refining and developing the structure of the product,
essentially working at an abstract level to determine how the product is going to
provide the functionality required [Schach, 2005]. In terms of ES design, this is often
divided between software and hardware design. The hardware design aspect
includes activities such as developing schematics for printed circuit boards and the
selection of hardware components (e.g., displays, buttons and sensors). The
software design aspect may include UML modelling, and deciding which boot loader
and operating system to use. The selection of microcontrollers or microprocessors to
use in a product is an important decision, one that should arguably be made as early
as possible, since it has a far-reaching impact on the development process (i.e., in
terms of choosing design tools and the system architecture) [Berger, 2002].

Accordingly, the design phase is sometimes split into two parts; for example,

2-5

Labrosse et al. [2008] indicate that processor selection should take place before the

design phase starts.

The implementation phase can be separated into hardware aspects and software
aspects [Labrosse et al., 2008]. Software implementation involves writing code for
the embedded software, including application code, driver modules, boot loaders,
configuration files, and scripts — all of which may be needed to create and install
executable programs that the product will use [Fowler, 2007]. Typically, in order to
implement embedded software, the developers need to learn how to use a ‘cross-
compiler tool chain’ [Ganssle, 2007]. A tool chain is a set of tools used to develop
software; these tools are often applied in sequence so that the output of one tool
feeds into the input of the next [Wiktionary, 2008]. A cross-compiler tool chain is a
tool chain capable of creating executable code for a platform that is different to the

one on which the tool chain is run.

The hardware aspect includes activities such as writing HDL code and fabricating
printed circuit boards [Shetler, 1996; Riesgo et al., 1999]. As mentioned in Section
1.5.3, this thesis focuses on implementation phase activities, with some overlap of

integration issues.

The integration phase occurs at three levels: 1) the integration of software with
software (e.g., connecting code modules together); 2) the integration of hardware
with hardware (e.g., physically connecting a microcontroller to an external
peripheral); and 3) the integration of software with hardware (e.g., making software

work with hardware) [Labrosse et al., 2008].

Testing generally happens as an ongoing process (e.g., compiling and testing code
as it is being developed). The testing phase can range from quick and simple tasks
(e.g., compiling and running a code module on a PC) to more elaborate and time-

consuming undertakings (e.g., a factory acceptance test [Fowler, 2007]).

The maintenance and upgrade phase occurs after the product has been accepted by
the client [Schach, 2005]; studies have established that this phase commonly
involves the most effort and engineering expense for a development company
[Sommerville, 2006]. The terms ‘upgrade’ and ‘maintenance’ tend to be used
interchangeably in the literature; however, the term ‘maintenance’ generally relates to

fixing an existing product [Fowler, 2007], whereas ‘upgrade’ tends to refer to the

2-6

development and release of a new version of an existing product [Berger, 2002]. The
team that performs the maintenance and upgrade of a project often differs from the
team that originally developed the product, which is one of the difficulties inherent in

this phase of the development lifecycle [Berger, 2002].

2.3 Inefficiencies of ES development

Recent studies have shown that embedded software development projects are
frequently late and over budget [Child, 2001; Grenning et al., 2004; Hall et al., 2005;
Charette, 2005; Ganssle, 2007]. The number of embedded software projects is also
expected to continue growing [Graaf et al., 2003], and the complexity of these
products is likely to increase further [Ganssle, 2007]. These trends were highlighted
in Section 1.2 as motivation for the need for more efficient approaches to embedded

software development.

Many factors contribute to the inefficiencies of ES development. This section focuses
on five of the major causes that, based on the recent literature, may be made more
efficient by using appropriate KM techniques. The causes focused on are: 1) general
software engineering difficulties; 2) complex and lengthy learning processes; 3) the
value and temporality of intellectual capital; 4) decentralised development, speed of
obsolescence and availability of new technology; and 5) embedded software

maintenance issues. These points are elaborated upon below.

2.3.1 General software engineering difficulties

The inefficiency of embedded software projects are caused by many of the difficulties
that are found in non-embedded software development [Grenning et al., 2004], for
example, dealing with vague requirements, makeshift practices and unfamiliar
technologies [Charette, 2005; Hall et al., 2005]. However, embedded software
developers also need to address additional challenges, which are not usually faced
by non-embedded software developers, such as working with resource limited
platforms, and using separate environments for software development and program

execution [Grenning et al., 2004].

2.3.2 Complex and lengthy learning processes

Added to the issues above and a likely contributing factor to the problems such as
time and budget overruns, are the difficulties with regard to learning and knowledge

acquisition found in embedded software development. For instance, an engineer

2-7

generally does not know the particular implementation methods to use in a project at
the start of a project [Kitchenham et al., 1995; Ganssle, 1999]. Rather, the
implementation methods tend to develop as the engineer’s knowledge of the target
hardware, development tools and other development artefacts grows, as the project
progresses. This knowledge often develops from time-consuming activities, such as
reading datasheets, finding examples of code, discussing solutions with colleagues,

and experimenting with code [Ganssle, 1999; Labrosse et al., 2008].

2.3.3 The value and temporality of intellectual capital

Intellectual capital (IC) is the most valuable asset of a software development
organisation [Rus & Lindvall, 2002], as is the case for many other technology-based
enterprises [Sveiby, 1997]. A major difficulty for a software development firm is that
the individual engineers do not necessarily stay at the same firm; when an engineer
leaves the firm, a portion of that firm’s knowledge leaves as well [Rus & Lindvall,
2002]. Knowledge management is seen as a means of assisting with these types of

problems.

2.3.4 Decentralised development, speed of obsolescence and

availability of new technology

Software development practices are changing rapidly [Herbsleb et al., 2001; Rus &
Lindvall, 2002]. For instance, work performed on a project is being done by engineers
working on different phases simultaneously, as well as by people working in different
parts of the world [Von Krogh et al., 2003]. In these situations, developers have
additional difficulties, such as locating and sharing technical knowledge, which
provides further motivation for more effective KM in software development [Rus &
Lindvall, 2002].

2.3.5 Embedded software maintenance issues

Factoring maintenance into the development process of an ES product is important,
because changes to a product and its embedded software, after it has been delivered
and installed, are often a necessity [Lindvall et al., 2003]. There are many reasons for
the high costs and low productivity of implementing changes in any type of software,
especially if appropriate allowances for maintenance considerations have not been
made; common problems, based on findings by Lindvall et al. [2003], include the

following:

2-8

1. The personnel that maintain the system are often not the ones who originally
developed the system.

2. In some cases, maintenance is performed by developers who are relatively
inexperienced and unfamiliar with the application domain.

3. Maintenance tends to have a poor image among software engineers; as a
result, it is often seen as a less advanced process that is allocated to junior
staff.

4. The software being maintained is often poorly documented or the provided
documentation is inconsistent with the code used.

5. In some case, a separate team, which does not include the original designers,
produces the documentation.

6. The structure of the modified software tends to degrade, as further changes
are made to it (making further changes increasingly more difficult).

7. Changes are often not carried out in a consistent and guided manner.

Many of the difficulties described above could be facilitated by appropriate KM
techniques that account for maintenance needs. Especially valuable would be
methods that help maintenance workers to learn previously established development
methods, and to avoid making the same mistakes as those made by the original

developers while formulating these methods [Dingseyr & Conradi, 2002].

2.4 Knowledge Management Terminology

This section focuses on defining important terms related to KM. Many of these terms
are not unanimously agreed upon in the literature, as evidenced below. These terms
are defined according to their application in this thesis, highlighting interpretations of
the terms where relevant. This section builds outwards from fundamental definitions
of data, information and knowledge, towards the increasingly complex notions of KM

and knowledge flows that lead to a typology of KM approaches (in Section 2.5).

2.4.1 The Data, Information and Knowledge (D-I-K) Hierarchy

As outlined in Section 1.1.8, data, information and knowledge can be seen as a
hierarchical process, through which data lead to information, and information
becomes knowledge. This hierarchy is commonly termed the D-I-K hierarchy [Patrick,
2008; Rennolls & Al-Shawabkeh, 2008; Tian et al., 2009]. This notion of how

2-9

knowledge is formed is used in this thesis to elaborate on issues of KM and the

acquisition of knowledge.

Data exist at the lowest level of the hierarchy, and have no significance besides its
existence [Davenport, 2002]. Bits, numbers and characters are elements of data.
Information is formed by giving context and meaning to data. A particular context
determines the way in which data are assembled into information. Knowledge exists
in the minds of people, and occurs when information is combined with understanding
and capability [Groff & Jones, 2003]. Capability is a person’s ability to take action. A
person’s understanding is the way in which that person interprets information
[Madhavan & Grover, 1998]. Understanding and capability are mutually dependent:
Understanding is built through learning new ways to take action [Kogut & Zander,
1992], which develops capability; conversely, by performing actions, which are made

possible through capability, information builds understanding.

2.4.1.1 Data, information and knowledge scenario

Figure 2.2 shows a scenario in which the differences between data, information and
knowledge are illustrated (the scenario is an adaptation of one by Groff and Jones
[2003]). In this scenario, data exist in the form of twelve numbers. These numbers
relate to a bank account, with account number 1234567, and transactions affecting
this account. Some of the transactions are withdrawals, and are thus classified as
debits, while others are deposits, and thus classified as credits. These remaining
numbers reflect the balance in the bank account after a transaction has occurred.
Since the transactions follow a certain sequence, they are ordered according to the
time at which they occurred. This procedure of classifying and organising data
elements gives the data context, and turns it into information. The specific process
involved depends on what the information is likely to be used for. In this case, the
bank statement belongs to an individual, named John, who plans to use the
information as part of a procedure for withdrawing cash from his bank account. For
this objective, John needs specific levels of understanding and capabilities to
interpret the information provided on his bank statement. He needs to understand
how to read a bank statement, and he also needs to know the procedure of
withdrawing cash from an ATM. He also needs the capability to withdraw cash from

an ATM (e.g., having access to an ATM and being in possession of his cash card).

2-10

Knowledge is information QO
combined with understanding | have a credit
and capability:

Knowled ge John uses his understanding of balance so | ca

bank statements, to interpret
the information contained in the
document, thereby deciding an

withdraw cash

action to perform. John
A Bank
Information is data in context: Statement for 04/06
The numbers are put into Account: 1234567
labeled columns. A heading - -
. is provided according to the debit | credit |balance
Information context. Additional data is $0 | $0 | $50
added relating to the context
concerned, such as the bank $0 $100 | $150
name, date and account $20 $0 $130
number.
$10 $0 $120

Data exists:
Twelve numbers exist, ranging
from 0 to 150.

Data

Figure 2.2: The data, information, and knowledge hierarchy, with scenario illustrating
how data in the form of numbers become information, which leads to actions (adapted
from Groff & Jones [2003)).

2.4.1.2 Knowledge acquisition and limitations of the D-I-K hierarchy

Although the hierarchy shown in Figure 2.2 indicates that knowledge is built from
information, it must be noted that knowledge is by no means derived directly from the
availability of information, nor is it derived from information alone [Patrick, 2008].
Knowledge is gained through a complex interaction between ideas, concepts and
thought patterns, which may be coupled with information, prior experience, personal
needs, and many other factors [Bennet & Bennet, 2004]. Accordingly, knowledge can
be considered as a phenomenon that emerges through complex patterns, and is
dependent on factors such as an individual’s objectives, and the context concerned,
in addition to the existence of information. It should also be remembered that the D-I-

K hierarchy can be challenged (as shown by Bellinger [2000]).

Data consist of unsystematised information. There are forms of data, however, that
are extremely complex and that require complex information systems for purposes of
data management [Espinosa et al., 2007]. Similarly, there are forms of data that are
fairly simple. The link between data, information, and knowledge is not necessarily

always hierarchical; nevertheless, it can be said that the more complex the data is,

2-11

the more complex the information system and the more complex the knowledge
forms will be [Galliers & Newell, 2001; English, 1999].

2.4.1.3 Tacit and explicit knowledge

There are two major categories of knowledge: tacit knowledge and explicit
knowledge. Tacit knowledge is personal knowledge that is embedded in individual
experience, relating to intangible factors such as the individual’s personal values,
perceptions and beliefs [Polanyi, 1958]. Tacit knowledge has been described as
being more about ‘know-how’ as opposed to ‘know-what’ (facts), ‘know-why’
(science) and ‘know-who’ (networking) — for instance, Johnson et al. [2002] discuss
that it is easy to write down rules for playing tennis (know-what) and who the good
players are (know-who); but it is difficult to make explicit the skilful behaviour of
tennis pros (i.e., the know-how). Tacit knowledge is generally difficult to transfer
[Argote & Ingram, 2000].

Explicit knowledge is codified tacit knowledge; or more precisely, explicit knowledge
is tacit knowledge expressed in a formal language, such as having been spoken or
documented [Nonaka & Takeuchi, 1995]. Explicit knowledge can be much easier to
transfer than tacit knowledge [Argote & Ingram, 2000]. Sveiby [2001] estimates that
possibly 1 percent, or less, of all knowledge can be made explicit. However, research
has not shown that explicit knowledge is always easier to transfer than tacit
knowledge. For instance, there are certain situations where tacit knowledge is easily
transferred directly from one individual to another without using explicit knowledge; in
such situations the communicating individuals may be close together and have

similar experience levels [Dhanaraj et al., 2004; Eraut, 2000].

2.4.1.4 A definition of knowledge and where knowledge resides

As this section has shown, knowledge is an abstract concept, which is expressed in
the way it is used. An analysis of recent literature [Bennet & Bennet, 2004; Davenport
& Prusak, 2000; Sveiby, 2001] shows a common theme for defining knowledge as

information combined with capability and understanding.

A number of authors indicate that knowledge lives in the mind of people [e.g.,
Patriotta, 2004; Polanyi, 1958; Groff & Jones, 2003], which may imply that ‘explicit
knowledge’ refers to a form of information since it can be stored outside a person’s
mind. Many authors do not add this caveat, in particular Rumizen [2002], Davenport
& Prusak [2000], and Senge [1990]. It may be debatable whether or not knowledge

2-12

exists only in the minds of people; for example, an expert system mimics the way in
which a human expert makes decisions based on a diagnosis and prior experience
[Grundspenkis, 2007; Apshvalka & Grundspenkis, 2005]. If the implementation of an
expert system is considered to be a method of codifying knowledge, then this
example indicates that the codification of knowledge can lead to more than just

information.

2.4.2 Knowledge management (KM)

As mentioned in Section 1.1.9, KM is a movement taking place across multiple
disciplines [Wilson, 2002]. The name ‘knowledge management’ is therefore better
considered a label rather than a descriptive title for the movement [Hahn &
Subramani, 2000] and is consequently explained by different people in many different

ways.

2.4.2.1 Knowledge-focused vs. information-focused streams of KM

Broadly speaking, there are two contrasting streams of KM, referred to as the
‘knowledge-focused’ stream and the ‘information-focused’ stream. Both streams
involve the way in which knowledge is created, captured, stored, and shared in an
organisation, with the intention of leveraging this knowledge inwards within an
organisation (e.g., helping developers to understand common difficulties experienced
by other teams), and outwards to people outside the organisation (e.g., assisting
customers in solving problems) [Rus et al., 2001; Wiig, 1997]. In these definitions, the
term organisation can refer to a variety of different collaborations in which people are
involved; it is not limited to corporate concerns, in that an organisation could also
refer to a team of individuals not necessarily employed by the same company, but

working towards a common purpose [McDermott, 1999b].

The knowledge stream focuses on leveraging knowledge that occurs in different
forms, such as the form of knowledge encountered in meetings compared to the form

encountered in solving problems [Sveiby, 2001; Nonaka, 1994].

The information stream, by comparison, is focused on methods for treating
information, and the interaction of people interested in that information [McDermott,
1999a]. This form of KM involves capturing explicit information and the way in which
the captured information is stored, categorised, and then recovered and interpreted
to create, recall, or apply knowledge in certain contexts [Groff & Jones, 2003; Sveiby,
2001; Grant, 1996].

2-13

2.4.2.2 The overall goal of KM

The goal of KM is to make the enterprise act as intelligently as possible to secure its
viability and overall success [Wiig, 1997]. Based on the definition of KM by Davenport
& Prusak [1998] (see Section 1.1.9), KM can be seen as enhancing processes of
sharing, distributing, creating, capturing and understanding a company's knowledge
[Davenport et al., 1998]. Some important aspects of KM are to survey, develop,
maintain and secure the intellectual and knowledge resources of the enterprise, to
determine the knowledge and expertise required to perform work tasks, to organise
knowledge, to make the requisite knowledge available, to ‘package’ it, to ‘distribute’ it
to relevant points of action, and to provide the ‘knowledge architecture’ so that the
enterprise's facilities, procedures, guidelines, standards, examples, and practices

facilitate and support its activities [Wiig, 1995].

2.4.3 Knowledge Processes

Radding [1998] describes the concept of a ‘knowledge process’, a mostly unseen
relation of actions that takes place in the use and creation of knowledge. Radding
[1998] describes a knowledge process as consisting of four steps: 1) capture, 2)
storage, 3) processing and 4) communication. Figure 2.3 illustrates this progression
of steps, accentuating the way in which these aspects tend to become increasingly

complex. The points below elaborate upon each step.

1. Capture: The organisation (or individual) captures explicit and tacit knowledge
in the form of data or higher-level information, termed ‘raw knowledge’.

2. Storage: The captured raw knowledge (data and information) must be stored
in a place, such as a data warehouse, where it can be managed, secured and
made accessible to others.

3. Processing: Raw knowledge is transformed into valuable business knowledge
during the processing step. Processing may involve sorting, filtering,
organising, analysing, comparing, correlating, mining or a number of different
techniques. It may involve a little more than just labelling the knowledge so
that others can easily find it when they need it, or it may entail sophisticated,
complex, statistical analysis to uncover hidden relationships and insights. It is
here that human intuitiveness and experience come into play in making
decisions, and it is here that the ‘meaning’ contained in that knowledge is
determined.

4. Communications: In order for knowledge to be truly valuable, it must be

shared with others. Communications can be active or passive. Knowledge

2-14

can be transmitted via information systems or passed on through personal
interaction. Alternatively, it can simply be placed in an accessible storage

receptacle, ready and accessible by users when they need it.

X

R

Figure 2.3: The knowledge process adapted from Radding [1998].

2.4.4 Knowledge Flows

Based on the knowledge supplier/consumer concept for KM, knowledge can be
modelled as flowing from supplier to consumer [Milton, 2005]. In this model,
knowledge can flow either directly between people, or indirectly via a knowledge

base. Figure 2.4 illustrates these two forms of knowledge flow.

Knowledge flows directly between people when they communicate in person, such as
in discussions during meetings, by telephone or by email. Knowledge flows indirectly
between people through a more elaborate process whereby the knowledge supplier
codifies key elements of explicit knowledge, organises this information in a
knowledge base, and then publishes the information so that it can be accessed by

knowledge consumers.

2-15

0]
People Knowledge base

Communicating Collecting
People
From : —
Accessing and Organizing
publishing
Knowledge
base

Figure 2.4: Flow of knowledge from supplier to consumer (diagram adapted from Milton

[2005]). Knowledge flows either directly between people, or via a knowledge base.

2.4.5 Knowledge Forms

The classification of knowledge into multiple ‘knowledge forms’ is a technique
commonly used by scholars in the KM field [e.g., Polanyi, 1958; Allee, 1997; Galliers
& Newell, 2001; Alavi & Leidner, 2001]. KM authors often use this method of
classification to focus on the nature of knowledge that emerges from KM processes
[Galliers & Newell, 2001]. KM authors divide knowledge in many different ways
depending on the context of study; for example a study of KM in project management
may differentiate between technical and strategic knowledge forms [Galliers &
Newell, 2001]. Commonly used knowledge classifications are those of ‘tacit
knowledge’ and ‘explicit knowledge’ [Polanyi, 1958; Spender, 1996] (see Section
2.4.1.3).

2.5 A typology of KM

A broad range of literature related to KM has been produced, including journal
articles, papers, and books. Most are concerned with the more managerial aspects of
KM [Davenport & Prusak, 1998] and the rewards associated with being a knowledge-
based or learning organisation [Leonard, 1999]. The effective implementation of a
sound KMS and the transformation of corporations into ‘knowledge-based

organisations’ are seen as a mandatory condition for companies to succeed in the

2-16

knowledge economy [Leonard, 1999]. However, becoming a knowledge-based

organised requires appropriate planning [Edvinsson & Malone, 1997].

The literature on KM derives predominantly from the fields of business science [Alavi
& Leidner, 1999], management [Davenport & Prusak, 1998; Martensson, 2000;
Sveiby, 1997; Teece, 1998], marketing [Davenport & Klahr, 1998], and information
technology [Guthrie & Petty, 1999; Newell et al, 1998]. Specialist forms of KM, such
as the management of technical innovation [Leonard, 1999; Nonaka & Takeeuchi,

1995], are a growing concern to researchers in the field.

The broadness of the field and the wide range of topics covered make a review of the
literature a complex undertaking. Each new piece of reviewed literature presents a
view of KM from that author’s particular interest and perspective. For this reason,
Binney’s [2001] meta-analysis of KM applications is drawn on to give a brief overview
of the general KM applications described in the literature, before addressing the

literature on KM within technical product development.

Binney [2001] clusters KM applications around common ideas, which include:
creating new knowledge; improving processes and methods; understanding patterns
in vast amount of data; tapping expertise in organisations; and developing employee
capabilities and competencies. Binney [2001] then separates the KM applications
into six main categories, which are referred to as transactional KM, analytical KM,
management of knowledge assets, process-based KM, developmental KM, and
innovation management. Alternate typologies have been provided, such as Earl
[2001]; however, the intention of this section is to provide the reader with a

broadened view on KM issues, which Binney [2001] provides.

Each type of KM described in Binney’s [2001] meta-analysis is explained in the

subsections that follow. Figure 2.5 provides a summary of the meta-analysis.

2-17

Transactional Analytical Asset Process Developmental Innovation and
management creation
= Case-based = Data = |ntellectual =TQM = Skills = Communities
reasoning warehouse property = Bench development = Collaboration
(CBR) m Data = Document marking = Staff = Discussion forums
= Help desk mining managem/t = Best competencies = Networking
applications = Business = Knowledge practices = | earning = \/irtual teams
= Customer intelligence valuation = Quality = Teaching = Research and
Service = Managem/t = Knowledge managem/t = Training development
) applications information repositories = Business = Multi-disciplinary
_5 = Order entry systems = Content process re- teams
§ applications = Decision managem/t engineering
%_ = Service agent support = Process
% Support systems improvem/t
E applications = Customer = Process
relationship automation
managem/t = | essons
(CRM) learned
= Competitive = Methodology
intelligence = SEI/CMM
1SO9000, Six
Sigma
= Expert = |ntelligent = Document = Workflow = Computer = Groupware
systems agents managem/t managem/t based training | = Email
= Cognitive = Web tools = Process = Online training | = Chat rooms
technologies crawlers = Search modelling = \/ideo
= Semantic = Relational & engines tools conference
networks object = Knowledge = Search
= Rule-based DBMS maps engines
8 expert = Neural = |ibrary = \/oice mail
cO» systems computing systems = Bulletin
© | = Probability = Push boards
% networks technologies = Push
9 | =Rule = Data technologies
8’ induction, analysis and = Simulation
% decision reporting technologies
T trees tools
= Geospatial
information
systems
= Portals,
internet,
intranets,
extranets

Figure 2.5: The KM spectrum (adapted from Binney [2001]).

2-18

2.5.1 Transactional KM

Transactional KM involves the application of technologies in the course of completing
a transaction or a unit or work, such as entering an order or handling a customer
query or problem. Davenport and Klahr [1998] describe this type of KM as ‘case-
based reasoning’ in a customer service application, where knowledge is ‘packaged’
for the user in the course of interacting with a system and can be accessed through
help desks, customer service, order entry and other field support applications. In
transactional KM systems, users can choose what to do with the knowledge

presented; but its access methods and presentation forms are usually not optional.

2.5.2 Analytical KM

Analytical KM interprets or creates new knowledge from significant amounts of
material or from highly disparate sources [Binney, 2001]. In analytical KM
applications, large amounts of data are used to derive trends and patterns. This
involves turning data into information that can become knowledge if a person makes
use of it. Analytical KM applications tend to focus on customer-related information
that assists marketing or product development [Yoon et al., 1999]. Competitive
intelligence applications, another example of analytical KM, are used by companies
and government agencies to analyse and understand their marketplace and assess
competitive activity [O’Dell et al., 2003; Fuld, 1994]. The most common method used
in these applications is scenario planning [Cushman et al, 1999] — used if one needs
to provide quick answers to complex questions; an example of this would be an
engineer solving a question, such as “what would | need to know about hardware

interfaces in order to develop a cellular telephone that can communicate with a PC?”

2.5.3 Management of knowledge assets

The management of knowledge assets involves the management of explicit
knowledge that has been codified in some way [Guthrie and Petty, 1999], an
example being the management of intellectual property (IP) and the processes
surrounding the identification, exploitation and protection of IP [Teece, 1998]. This
type of KM is analogous to a library, with the knowledge assets being catalogued in
various ways and made available for unstructured access and use. Knowledge
assets are often created as a by-product of ‘doing business’ and are kept for future
uses, these uses often being unknown at the time the assets are created, captured
and stored. What differentiates asset management from analytical systems is that the
assets are often more complex [O’Dell et al., 2003]; they may also require some level

of intervention in order to codify them. For example, the capture of project or product

2-19

development history typically requires user intervention, in addition to certain types of

prior experiences and a working product.

2.5.4 Process-based KM

Process-based KM includes the codification and improvement of processes, work
practices, procedures and problem-solving methods. Process-based KM is often an
outgrowth of other disciplines such as total quality management (TQM) and process
reengineering. The knowledge assets produced in this category are also known as
‘engineered assets’ in that they often involve working with specialists to document
best practices in standard formats [Henniger, 1997b]. Process knowledge assets are
often improved through internal (or in-house) lessons, formalised processes,
publicised best practices, and benchmarking [Feltus, 1995; Hill, 1999; O'Dell &
Grayson, 1999].

2.5.5 Developmental KM

Developmental KM applications focus on increasing the competencies of an
organisation's knowledge workers. This is also referred to as investing in human
capital [Edvinsson & Malone, 1997]. These applications cover the transfer of explicit
knowledge via training sessions (e.g., training ES engineers on a new compiler tool
chain), or the planned development of tacit knowledge through developmental
interventions [Elliott, 1999] (e.g., arranging to capture and systematise informal
knowledge during a project). In addition to traditional training in ‘explicit knowledge’,
developmental KM relates to products, methods and technologies, with emerging
emphases on developing a ‘learning organisation’ [Senge, 1990] and ‘communities of

practice’ [Wenger et al., 2002] to enable the exchange of ideas and experiences.

2.5.6 Innovation management

Innovation-based KM applications focus on providing an environment in which
knowledge workers can collaborate in the creation of new knowledge. While there is
still a necessity for a certain amount of individual innovation, innovation increasingly
comes from interdisciplinarity and teamwork. This category of KM is summarised by
Nonaka & Konno [1998], who claim that knowledge is manageable only insofar as

leaders in an organisation are able to accept and nurture knowledge creation.

Nonaka et al. [2001a] uses the term ba, a Japanese word, to express the concept of

an environment in which knowledge workers of various disciplines can come together

2-20

to create new knowledge. The role of top management is to provide ba for knowledge

creation, and to manage ‘knowledge emergence’ [Nonaka & Konno 1998].

The most common application referenced in the literature concerning innovation

management is the creation of new products or company capabilities [Binney, 2001].

2.6 Knowledge management systems (KMSs)

Broadly speaking, a KMS refers to a system for managing knowledge within an
organisation, which supports the creation, capture, storage and dissemination of
knowledge among members of the organisation or a broader, related community
[Alavi & Leidner, 2001; Dalkir, 2005]. A KMS is often a component of a broader KM
initiative that may in time be part of a higher-level and organisation-wide initiative
involving various forms of upgrade and improvement, such as overhauling technical
support infrastructures [Alavi & Leidner, 2001]. Maier & Hadrich [2006] emphasise
that the term ‘KMS’ is used ambiguously in the literature and that the notion of a KMS

generally refers to an abstraction of enabling technologies for effective KM.

According to the current literature concerning KMS development (such as Holsapple
[2003], Groff and Jones [2003], and Maier and Hadrich [2006]), the implementation of
a KMS generally comprises three parts. Based on Groff and Jones [2003], these
parts are more in the form of phases, which may be revisited as the KM initiative

progresses; the phases are:

1. The initial step is to develop an overall strategy for a KM initiative, which
identifies the organisation’s goals and how to achieve them.

2. Next, processes and activities that facilitate KM are implemented, as well as
methods for collecting and distributing knowledge across the organisation.

3. The processes and activities decided in the second step are then enhanced
through the development of tools and other artefacts (collectively referred to

as the KMS framework in this thesis) to support these KM processes.

In software engineering contexts, a KMS is likely to have as its ultimate goal the
reduction of software development costs, ideally together with improvement in
software quality and reduction in the workload of software engineers [Dingséyr &
Conradi, 2002]. The management, collection and distribution of knowledge involved

in such an initiative is likely to be done by the project managers and software

2-21

developers themselves (considering the complexity of this knowledge), or it could be
done by a separate team (see ‘knowledge brokers’ in Section 2.7.9). An example of a
tool to support this form of KM, where operational information or knowledge can be
found by different practitioner groups of a company (e.g., developers, project
managers, quality management) usually tend to be in the form of corporate intranet
systems where explicit knowledge is represented and stored in databases, web-

pages and other types of computer files [Dingséyr & Conradi, 2002].

2.6.1 The two principle uses of a KMS

Two different uses of a KMS can be identified [Dingsayr & Conradi, 2002; Hansen et.
al., 2001], namely:

1. Codification: the systematisation and storage of information that represents
knowledge use by an organisation, in order to share this knowledge more
efficiently among people in the organisation; and

2. Personalisation: supporting the flow of information in a company by storing

information about knowledge sources in a company.

The codification strategy does not fit all types of knowledge [Dingsgyr & Conradi,
2002]. In situations where knowledge is extremely context-dependent, and where the
context is difficult to transfer, it can be dangerous to reuse knowledge without
analysing it critically first [Jérgensen & Sjgberg, 2000]. An additional strategy (apart
from the two mentioned previously) is to support the growth of knowledge and the
creation of new knowledge by arranging for innovation through special learning

environments [Kessels, 2001] or expert networks [Davenport et al., 1998].

2.6.2 Growth of a KMS

Knowledge is context dependent, which leads to KM being dependent on the ways in
which specific knowledge workers in an organisation perform knowledge work.
Different organisations have different types of knowledge workers who have
dissimilar KM needs that change over time [Dignum, 2006]. For this reason, a KMS
usually needs to be custom designed for the specific organisation concerned, with
the design being sufficiently flexible to respond to changes in the organisation.
Consequently, a KMS should not be considered as a once-off development project,
but rather as a continuous development effort that grows an organisation’s KMS, as

the organisation evolves [Groff & Jones, 2003].

2-22

It is difficult to ascertain the KM needs of an organisation and then to integrate a new
KMS into the organisation in a short time period. Typically, an organisation’s KMS is
incrementally modified, gradually moving the organisation away from the use of ad
hoc KM methods towards more formalised strategies that are consistent between
knowledge workers (as is described by Easterby-Smith & Lyles [2005] in terms of the

implementation and refinement of KM practices).

The development of a formalised (or visible) KMS can be seen as paralleling the
customary seven phases of development [Schach, 2005]. However, take note that a
KMS is not a software tool, but rather an interconnection of people, organisation
practices, artefacts and other aspects that may be supported by various software
tools [Davies, 1998].

2.6.3 Establishment and evolution of a KMS

The establishment and maintenance of a KMS generally involves a sequence of
phases, which may have to be repeated; as mentioned earlier (at the start of Section
2.6), there are usually three phases: 1) developing the strategy; 2) deciding on and
implementing the KM processes; and 3) enhancing the KMS through refinement and
development of specialised artefacts and tools (i.e., establishing a supporting
framework) [Groff & Jones, 2003].

In this thesis, Groff and Jones’ [2003] three phases for implementing a KMS are
expanded into a seven-phase model describing a general approach to initial
development and then incremental, long-term refinement of the KMS. This
incremental, long-term refinement is referred as KMS evolution in this thesis (see
Section 3.1.2). This generalised model is based on an integration of several

[-

published methodologies, including Nonaka’s “Knowledge Spiral” [Nonaka et al.,
2000, pg. 9], Allee’s “Organisational Knowledge Management Model” [Allee, 1997,
pg. 48] and Milton’s “Knoco Ltd 12-component framework” [Milton, 2005, pg. 10].

This generalised model of KMS evolution is outlined below:

1. Phase 1: Assessment of readiness: The organisation makes an initial
assessment of its readiness regarding cultural issues, processes and
technology. The purpose of this phase is to identify which perspectives on KM

are critical for the particular business concerned and its context.

2-23

2. Phase 2: Knowledge audit: A KM initiative should have defined boundaries.
The single most common reason for problems in the KM field is the failure to
focus on a manageable problem. The organisation should identify which
organisational, personal and technical knowledge is most important. Potential
benefits should also be identified at this stage, because these will provide

measures of success.

3. Phase 3: Current initiatives: The purpose of this phase is to map initiatives
that are already underway or planned, which have a bearing on the KM
initiative as defined in Phase 2. This will enable the various initiatives to be
harmonised and will assist the process of gaining support from the

appropriate stakeholders.

4. Phase 4: People and guidelines: At this stage, it is necessary to ensure that
all the basics of good information management are in place before trying to
construct a KM system. Incorporating the principles of good information
management is fundamental to the development of a KMS. It is important to
take a process perspective that crosses internal boundaries within the
organisation. A plan to deal with the cultural and human change issues
should be created at this stage. This phase includes identifying which
knowledge workers are in the greatest need for more formalised KM methods.
It is also essential for the chosen KMS to be compatible with the

organisation's practices and culture.

5. Phase 5: Design/mapping: The purpose of this phase is to maintain the
momentum of the project by mapping the knowledge requirements and
building a model of the KM design. This phase also involves deciding on
which knowledge workers are going to be users of the KMS, and deciding
which types of knowledge work have the greatest need for a formalised KMS.
The KM needs for knowledge workers involved in this work should be
identified and the ways in which these individuals currently perform KM (even
ad hoc KM) should be investigated. This involves identifying people involved
in the KMS, processes by which these people manage knowledge, and the
artefacts (such as software tools, files or equipment) which are used in the
processes. Coordinated KM strategies would then be designed and gradually
introduced into the organisation, leading to the organisation using an

increasingly more formalised and visible KMS.

2-24

6. Phase 6: Technology: At this stage, the requirements for the KMS are clear.
The organisation now needs to think about the right platforms, technologies
and communications infrastructure (collectively referred to as the KMS

framework in this thesis — see Section 2.6.6) to deliver the solution.

7. Phase 7: Review of benefits: The purpose of this phase is to review progress
in order to ensure that the business benefits identified have been delivered

and to identify actions for further improvement of the system.

An additional advantage to a KMS initiative is that the individuals involved often
obtain a detailed understanding of the underlying KM strategies and fundamental
techniques related to the knowledge work concerned, which may be of value even if
the resultant KMS is short-lived [Dingséyr, & Conradi, 2002]. There are a variety of
disadvantages associated with a KMS initiative, of which the major drawbacks
include the amount of time required to study knowledge work [Jérgensen & Sjéberg,
2000] and the cost of purchasing or implementing customised tools for the KMS
[Herrmann et al., 2004].

2.6.4 Structure of a generic KMS

This section briefly outlines the structure of a generic KMS. As was the case for KMS
evolution in the previous section, the generic structure of a KMS described below is
an integrated view of strategies described by influential theorists, specifically Nonaka
et al. [2001b], Allee [1997], Van der Spek & Spijkervet [1997] and Milton [2005].

The structure of a KMS can be divided into six interrelated aspects, namely: roles,
groups, desires, work, workflows and artefacts [Van der Spek & Spijkervet, 1997].

Each aspect, which provides a different view of the KMS, is outlined below:

1. Role: describes the behaviour, responsibilities, and needs of a certain type of

person involved with the system. Each role desires a certain objective.

2. Group: a collection of people, which can be a combination of the same or

different roles.

3. Desire: a body of knowledge that a role wants to learn and/or to share; for
example, a knowledge worker may desire to learn how to use a certain piece

of equipment.

2-25

4. Work: a type of work performed by a certain role to achieve a desire (such as

dialogue, web searches, writing, etc.).

5. Workflow: describes when and in what sequence activities are performed to

achieve a certain objective.

6. Artefact: physical resource (e.g., books and equipment) or digital resource

(e.g., software tools, documents and other files) used in activities.

The KMS aspects described above are highly interrelated; these aspects are used to
describe the design of the KMS by describing slices of the system that abstract the
details of the other aspects. When defining a new KMS, an aspect to start with is that
of the roles, because desires, activities and the other aspects follow naturally from
the act of describing a role. This sequence thus provides only a rough guideline to
the way in which a KMS can be expressed and then progressively refined to describe

its structure and operation in more detail [Van Zolingen et al., 2001].

2.6.5 Visibility of a KMS

The terms ‘hidden KMS’ and ‘visible KMS’ are used in this thesis to distinguish
between, respectively, the initial KMS and the resulting KMS of a KM initiative (as
would result from performing the phases discussed in Section 2.6.3, for instance).

These terms are further elaborated upon below.

Prior to the establishment of a KMS, as might be the case before the first phase of
establishing a KMS [Groff & Jones, 2003], knowledge workers within the organisation
may be using a variety of inconsistent and poorly defined ad hoc KM methods (such
as described by Alavi and Leidner [1999]). The term ‘hidden KMS’ or ‘invisible KMS’
is used in this thesis to refer to this type of situation, where the KM methods of an

organisation are not purposely studied and refined’.

In the course of developing an explicit KMS, as per following the phases discussed in
Section 2.6.3, the organisation generally moves from the hidden KMS that uses ad
hoc KM methods, towards a more ‘visible KMS’ where the KM methods are more
explicit, and thus more visible, and the methods used consistently among the

knowledge workers.

! Considering the generally loose definition of KMS given in Section 2.6, it may be that any
organisation that performed KM also has some form of KMS, even though this KMS may not

be documented or somehow articulated by the individuals within the organisation.

2-26

2.6.6 Framework of a KMS

The term KMS framework is used in relation to a visible KMS (i.e., a KMS that has
reached the sixth ‘technology’ phase of evolution described in Section 2.6.3). The
framework of a KMS refers to the supporting elements (e.g., software tools and other
support technologies) of the KMS and the documentation (e.g., role and process

descriptions) that makes it visible.

2.7 Roles of people involved with KM

The main ingredients of successful KM in an organisation is the willingness of people
to share knowledge [Snowden, 1998] and effective leadership to establish and direct
the KM practices [Pan & Scarbrough, 1999].

Common roles that exist in a KMS include the chief knowledge officer (CKO), KMS
user, change agent, knowledge engineer, knowledge steward, knowledge analyst,
knowledge worker, and knowledge broker. This section overviews these, and other,
commonly occurring KM roles used by organisations involved with technical product
development. These roles are described according to their use by prominent
authorities in the field, including Davenport and Prusak [1998], Drucker et al. [1998],
Groff and Jones [2003], Holsapple [2003], McDermott [1999a], Milton [2005], Nonaka
& Takeeuchi [1995], and Sveiby [2001].

As noted before, a KMS is needs to be adapted for the specific type of knowledge

work and organisation concerned; consequential, a particular KMS may include only
a selection of the roles described here, or it may include a variety of additional roles.
However, the roles of CKO, knowledge worker, and knowledge engineer are likely to

exist in virtually any KMS, given the definition of these roles (see Section 2.7).

2.7.1 Knowledge suppliers and knowledge consumers

Milton provides an abstracted view of a KMS by viewing an organisation as
consisting of two types of people: knowledge suppliers and knowledge consumers?
[Milton, 2005]. Many of the roles described later can be viewed from the perspective

of either supplying or consuming knowledge.

2 Milton [2005] uses the term “knowledge user” instead of “knowledge consumer”; but the term

“knowledge consumer” is used here to avoid confusion with the term “KMS user”.

2-27

Milton’s [2005] concept is principally based on knowledge consumers drawing
expertise from knowledge suppliers. From this perspective, knowledge suppliers
create knowledge through experience (performing actions and interpreting the
results) and from reflecting on prior experiences to derive guidelines, theories, rules
and heuristics. Knowledge consumers, in contrast, consult knowledge suppliers to
assist in creating new knowledge, or to leverage other people’s knowledge in order to
accomplish tasks more quickly and with fewer mistakes. An individual switches from
the role of knowledge consumer to that of knowledge supplier, as he or she changes
from personally performing knowledge work to assisting others in accomplishing such
work [Milton, 2005].

2.7.2 Chief Knowledge Officer (CKO)

The CKO is in charge of the KMS, and is therefore responsible for the establishment
and continued operation of the KMS [Bonner, 2000]. The main tasks of the CKO are
to coordinate users of the KMS and to ensure that each aspect of the KMS is
functioning smoothly. The responsibilities of the CKO include finding executives to
join the steering committee, overseeing the acquisition of knowledge engineers to
build the KMS, and ensuring that the various roles of the KMS are allocated
[Holsapple, 2003].

Before an organisation delves into the time-consuming task of determining detailed
requirements for a new KMS, the organisation first needs to decide whom to
designate as the CKO, viz. the person that will lead the KM initiative. The CKO is
usually a senior corporate executive who has detailed experience in many of the
tasks performed by the users of the planned KMS [Rumizen, 2002]. The CKO needs
to be available to spend large amounts of time on KM tasks and on administering the
KMS; he or she should also have up-to-date personal experience of tasks performed
by users of the KMS [Davenport et al., 1998].

2.7.3 KMS user

A KMS user either draws knowledge from an organisation using the KMS (i.e., acting
as a knowledge consumer), or is actively involved in adding to that organisation’s
knowledge through participation in the KMS (i.e, acting as a knowledge producer)
[Milton, 2005]. Developers of the KMS (i.e., the knowledge engineers) are also
considered as users of a KMS because, by building the system itself, they are

contributing to the knowledge of the organisation.

2-28

The most common user of a KMS should be the knowledge worker (Section 2.7.4). If
the knowledge worker is not the most frequent user of the KMS, then the cost of
maintaining the KMS is unlikely to be recovered from its use [Simard et al., 2007]. A
simple statistic that a knowledge analyst can use to determine the feasibility of a
KMS is to compare how often knowledge workers use the system with how often
knowledge engineers add to the system [O’Brien, 2006]. If knowledge engineers add
to the system more than knowledge workers use the system, then there is clearly a
fault in the workings of the KMS [O’Brien, 2006].

2.7.4 Knowledge worker

Knowledge workers are educated persons who use their education and experience to
achieve their objectives [Drucker, 2000; Groff & Jones, 2003]. Knowledge workers
predominately use their minds more than their hands to accomplish work [Drucker et
al., 1998]. The term ‘knowledge work’ is used to generalise the type of work done by
a knowledge worker. ES engineers can be considered a type of knowledge worker,
considering the complicated products they work on, the range of concurrent and
interrelated technical activities typically performed in these projects [Kettunen, 2003],
and their general dependence on education, experience, and mental problem-solving
and innovation abilities. Concrete examples of KM activities performed by ES
engineers include researching operations of microprocessors and peripherals to write
device drivers, and studying based software (produced by a prior in-house project or

externally) for reuse in a new project [Kettunen, 2003].

2.7.5 Change agent

A change agent is a person or a team (e.g., a consultancy firm) that is responsible for
planning and implementing changes in an organisation [Vinter, 2005]. The CKO is
often the principal change agent in a KMS, being responsible for planning how the
organisation needs to change to adopt the KMS [Abell & Oxbrow, 1999]. But this
undertaking can be difficult, time-consuming, and fraught with political and cultural
problems. For this reason, the responsibility of changing the organisation’s culture to

accept a new KMS is sometimes delegated to a change agent [Groff & Jones, 2003].

2.7.6 Knowledge engineer

The main task of the knowledge engineer is to make explicit knowledge usable
[Borghoff & Pareschi, 1998]. Knowledge engineers essentially design and implement

the support infrastructure for a KMS, updating or pruning the system while it is in use.

2-29

They also add resources and documentation to the knowledge base. Important
characteristics of a knowledge engineer are to maintain consistency in the resources

developed, and to ensure that these resources are easy to use [Grant, 1996].

Activities performed by a knowledge engineer (adapted from Grant [1996] and
Cortada & Woods [1999]) include:

1. Documentation, such as writing down procedures explaining how to use
features of the KMS.
Classifying and associating documents, programs and other resources.
Programming, such as developing executable macros and programs to
automate routine tasks performed by knowledge workers. This approach can
be used to capture elaborate and frequently performed procedures in a highly
repeatable manner, without the user of these programs having to read
through detailed information and perform manual operations.

4. Transcribing rough notes and recordings of procedures carried out by

knowledge workers for inclusion into the knowledge base.

The types of resources developed by a knowledge engineer depend both on his or
her capabilities, and on the needs of the knowledge users addressed. The
knowledge engineer may also work with information technologists who maintain file
servers, databases and other IT systems. A knowledge engineer thus generally
benefits from an understanding of the computer systems and IT resources available
to the organisation [Cortada & Woods, 1999].

The knowledge engineer may have a second role as a knowledge worker within the
organisation. Depending on the complexity and scale of the KMS concerned,

individuals may be responsible for several roles [Maier, 2004].

2.7.7 Knowledge steward

The knowledge steward has two chief responsibilities: capturing and codifying tacit
knowledge, and facilitating the use of the KMS [Holsapple, 2003]. Knowledge
stewards make tacit knowledge explicit by conducting interviews with knowledge
workers, or observing (and recording) knowledge workers in action [Tsui, 2002].
Knowledge stewards may transform their recordings into more meaningful

documents before handing them over to the knowledge engineer for adoption into the

2-30

KMS; or the knowledge steward may work closely with the knowledge engineer

towards this purpose [Holsapple, 2003].

Knowledge stewards are not always themselves knowledge engineers because each
role requires different skills; for example, a knowledge steward needs expertise in
conducting interviews and unobtrusively observing knowledge workers in action,
whereas a knowledge engineer requires skills for developing resources for the KMS.
The knowledge steward could also be seen as an assistant to the knowledge
engineer, assisting the knowledge engineer in time-consuming activities, such as
conducting interviews, observing knowledge workers, and helping users on a one-on-

one basis [Bergeron, 2003].

2.7.8 Knowledge analyst

The role of the knowledge analyst is similar to that of a system analyst, in that the
knowledge analyst chiefly studies the KMS, looking at its broader effects, such as
correlating changes in the KMS to changes in the company’s profits [Capshaw,
1999]. The knowledge analyst generally uses statistics to discover means of making
the KMS more efficient, often disseminating findings in person to relevant parties
[Bergeron, 2003].

2.7.9 Knowledge broker

The duty of a knowledge broker is to help knowledge workers connect to knowledge
that is not their own [Piaseki, 2005]. This generally means helping knowledge
workers to find other people from whom they can learn. Knowledge brokers usually
have large and diverse social networks, and know the strengths of the specific

individuals in their social networks [Maier & Remus, 2003].

Knowledge brokers are sometimes involved in the act of communication between the
knowledge workers they connect. For instance, the knowledge broker may be called
on to act as a translator or mediator to facilitate communication between people who
speak different languages. This can include situations in which the communicating
parties are using languages foreign to one another, or where they have different

dialects and forms of jargon in the same tongue [Cortada & Woods, 1999].

2-31

2.8 KM in technical product development

The research literature related to the use of KM in the technical and software product
development context is drawn on in this section of the literature review. The findings

discussed in this section have been separated into three parts:
1. Managing development teams;
2. KM tools for managing individual and team knowledge;

3. Dealing with information overload.

The literature on KM in contexts of technical product development and innovation
includes several studies concerning the factors that affect product development team
performance, as presented by authors such as Aurum et al. [2003], Dingséyr &
Conradi [2002], Kettunen [2001; 2003], Lynn et al. [2000], Lindvall et al. [2001],
Lindvall & Rus [2002], Rus et al. [2002], Térngren et al. [2007] and Ulrich & Eppinger
[1995].

Literature focused specifically on the implementation phase of embedded software
development projects was limited. Although there is potentially significant value that
can come from applying KM techniques in embedded software development,
literature searches on this issue show a general lack of consistent investigations and
results in this field, a result that also seen by Rus et al. [2001]. The most relevant and
constant publications found on this topic include Aurum et al. [2003], Dingsgyr and
Conradi [2002], Lindvall and Rus [2002], and Kettunen [2001; 2003].

The research-based KM literature within technical product development contexts
mostly addresses the issues of theoretical foundations, practical techniques, software
tools, and applications and practical experiences of engineers in technical contexts
such as software engineering. The application of KM in technical contexts has tended
to focus on the management of systems, such as transport systems [e.g., Herrmann
et al., 2004], ICT systems [e.g., Carlsen et al., 1999; Fischer & Schneider, 1984],
requirements engineering [e.g., Kirikova & Grundspenkis, 2000; Sommerville, 2005],
and the development of KM software for various ‘soft skills’ applications (e.g., user-
feedback on technical products [Hoffmann et al, 1999]). Much of the literature is also
more focused on issues such as management of knowledge to assist with other
forms of management [e.g., Langer et al., 2006; Gao et al., 2005; De Meyer et al.,

2002], methods of improving organisational or team communication [e.g., Counsell et

2-32

al., 2005; Dionne et al., 2004], performance analysis of engineering teams [e.g.,
Kettunen, 2003; Wandeler et al., 2006], and strategies and tools to manage technical
product development (but with less emphasis on management of the knowledge
produced by these developers) [e.g., Cordeiro et al., 2007; Gopalswamy et al., 2004;
Jepsen et al., 2007; Kommeren & Parvianien, 2007; Eppinger et al., 1997].

2.8.1 Managing development teams and their knowledge

A product development team is often forced to manage with incomplete information
and lacking technical knowledge during parts of a project. Additionally, frequent
changes to a product and its related information are more inherent in the nature of
development, rather than an exception [De Meyer et al, 2002]. Project teams do not
work in isolation; and studies of KM in larger organisational contexts emphasise the
need to understand the interactions between individual, team, project, company and
commercial environment. This necessitates considerations, not only with regard to
individual product development projects, but also in relation to multiple projects
performed in an organisation and their interplay over time. A complex interaction
exists between project teams, the company that performs them, the market at which
resultant products are aimed, and other macro environment issues [Ulrich &
Eppinger, 1995]. Multi-site considerations are likely to cause additional complexities

in large and globally dispersed organisations [Desouza & Evaristo, 2003].

A number of common solutions are applied to the management of knowledge-based
teams. Based on a broad view of the literature, these strategies have been grouped
into six main categories, namely: 1) steering committees [Holsapple, 2003], 2)
communities of practice [Wenger, 1998], 3) team learning [Blichel & Raub, 2002], 4)
team knowledge sharing [Kettunen, 2003; Louridas, 2006], 5) distributed teams
[Langer et al., 2006], and 6) sub-contracting [Kommeren & Parviainen, 2007]. A

summary of each category follows.

2.8.1.1 KM steering committee

A governing body is generally required to establish and direct a KMS in a large
organisation. This governing body is commonly referred to as the KM steering

committee and is chaired by the CKO [Holsapple, 2003].

2.8.1.2 Communities of practice

A Community of Practice (COP) is often a component of a KMS [Wenger et al.,

2002]. A COP can essentially be viewed as a voluntary group of people who interact

2-33

regularly to learn from one another. Members of a COP benefit from gaining deeper
insights and understanding of problems by being able to exchange ideas and help
one another, which can lead to valuable benefits and new innovations [Brown &
Duguid, 1991]. The COP coordinator facilitates the operation of a COP, such as
scheduling times and venues for meetings, and informing people in the organisation

of the existence of the COP and of when and where the meetings are held.

The COP coordinator or ‘champion’ is typically a knowledge worker and a member of
the COP [Smith & McKeen, 2003]. The role of COP coordinator can be a rotating one
where the member acting as COP coordinator hands over coordination tasks to
another member after some time. The COP coordinator does more than scheduling
meetings and encouraging attendance, however; the most important skills of the
COP coordinator are to assist the COP to develop as a community (rather than as a
regulated work group), and to chair meetings so that all members can participate
fairly [McDermott, 1999a].

2.8.1.3 Team learning

Team learning has been recognised as an important success factor for product
development and innovation [Lynn et al., 2000]. The project team should negotiate a
shared vision and common objectives to improve success of this strategy [Lynn et al,
2000]. Various forms of knowledge networks usually occur in team learning within a

context of R&D or innovative product development [Bilchel & Raub, 2002].

2.8.1.4 Team knowledge sharing

A product development team needs to master many forms of technical knowledge to
be able to develop a product successfully; but not every member of the team has to
know everything [Kettunen, 2003]. Inter-team knowledge transfer is an important
enabler of accelerated product development. Inter-project learning also facilitates
larger-scale productivity improvements within technical development contexts
[Kettunen, 2003].

Tacit knowledge sharing takes place in interactions between people, but enabling
conditions must be satisfied in order for such knowledge-sharing interactions to take
place [Nonaka & Takeuchi, 1995]. For example, the emerging Agile software
development methods encourage intensive communication with less formal
documentation [Abrahamson et al., 2003; Lindvall et al., 2004]. Some types of

knowledge are not easy to disseminate on paper alone and need additional face-to-

2-34

face communication. When product and process knowledge is to be shared, team

proximity is often an issue [Kettunen, 2003].

2.8.1.5 Distributed teams

Distributed product development projects are becoming an increasingly common
phenomenon, which is showing potential benefits such as improvements in time-to-
market efficiency and access to greater and less costly human resources [Langer et
al, 2006]. In a paper describing the experience of over 10 years of distributed
development at Philips, derived from about 200 projects, Kommeren and Parviainen
[2007] identify a number of lessons learned from multi-site development. In particular,
they point out that explicit agreements and ways of working should be defined — with
the following areas needing the most attention: 1) team coordination and
communication, 2) requirements capture and architecture design, 3) integration, and

4) configuration management.

2.8.1.6 Sub-contracting

The main lesson learned from subcontracting technical product development is the
need for explicit attention and ways of working with respect to selection of suppliers,
specification of the work to be subcontracted, and establishment and content of the

contract [Kommeren & Parviainen, 2007].

2.8.2 KM tools for managing individual and team knowledge

The research literature evaluates several strategies, applications and tools for

managing individual and team knowledge. These are summarised below.

2.8.2.1 Training workshops

The CKO is responsible for arranging training workshops to bring people into the
KMS and to train these new users of the system. In the case of a large KMS,
separate training workshops may be arranged for each user group (usually a
department), and these may be presented by the knowledge engineer allocated to
that user group [Lynn et al., 2000]. The CKO may delegate training workshops to
experienced knowledge stewards, but usually knowledge stewards are involved with
training on a one-on-one basis, which is often combined with observing knowledge
work [Blchel & Raub, 2002].

2.8.2.2 Yellow Pages

An organisation may produce a ‘yellow pages’ catalogue [Dingsér, 2003] which lists

people in the organisation and their areas of expertise. This catalogue contains email

2-35

addresses, wikis, blogs, homepages and the like. A ‘yellow pages’ is used by
knowledge workers as a means to find colleagues who can provide the expertise

needed to accomplish certain forms of knowledge work [Cortada & Woods, 1999].

2.8.2.3 Performance analysis

Performance analysis is usually used as a project management tool, and involves
measuring the performance of a team’s work [e.g., Kettinger et al., 1997], rather than
the team’s knowledge. However, several simulation-based tools have been
developed for the analysis of knowledge production and transfer, such as the one

used in the development of embedded real-time systems [Wandeler et al., 2006].

Simulation-based KM tools are able to analyse knowledge-based performance early
in the life cycle of product development. Wandeler et al. [2006] developed a
simulation approach based on real-time calculus. They believe this approach to be
an efficient way of evaluating knowledge performance due to its high level of

abstraction, which also makes the technique suitable for early design exploration.

2.8.2.4 Responsibility charts

Responsibility charts are popular tools for project planning in general [Turner, 2009].
For example, Andersen [1996] has proposed project responsibility charts for the
systematic identification of project milestone responsibilities. Anderson’s ideas can
be adapted for KM in ES product development by defining the producers and

consumers of the key information and mapping them together as a chart.

Figure 2.6 illustrates a project knowledge sharing chart. This tabular method makes
the knowledge artefact dependencies of each team member clear (in a large project,
there would be many connections linking to individuals outside the project team)
[Kettunen, 2003]. Both tangible and intangible knowledge items are included,
because not all useful information is in a tangible form. For example, previous project

experiences may be useful but largely intangible knowledge.

2-36

Roles

Software project internal Software project external
Knowledge Project Designer | System Hardware Quality
artefacts manager specifier manager manager
Previous User n/a n/a n/a Provider
projects
history
Software Author Reader n/a n/a n/a
specification
A
System Reader n/a Responsible | Contributor | n/a
specification
B
Hardware n/a Reader Reviewer Responsible | n/a
data sheet
ASIC n/a User n/a Provider n/a
hardware
behaviour
Standard Reader Reader n/a n/a Responsible
operating
procedure
User’s Guide | n/a Author n/a Reviewer Reviewer
Test process | Provider | User n/a n/a n/a
experience

Figure 2.6: ES project knowledge sharing chart (adapted from Kettunen [2003]).

2.8.2.5 Status tracking

Charts similar to responsibility charts (see Figure 2.6) for managing team knowledge
have been developed to describe when particular types of information are needed in
a project (Romano et al. [2002], for instance, discuss techniques for collaborative

project work).

2.8.2.6 Altools

Artificial intelligence approaches have proposed agent-based frameworks for
modelling organisational and personal knowledge from two conceptual models: the
first describes the intelligent enterprise memory, the second models an intelligent
organisation’s KMS [Grundspenkis, 2007; Ellis & Wainer, 2002; Knapik &
Johnson,1998].

2.8.2.7 Shared buffers

Team-based knowledge sharing can be enhanced thought the use of ‘shared buffers’
[Gao et al., 2005].

2-37

2.8.3 Managing information in technical development projects

KM strategies and technologies to assist or improve product development teams to
find appropriate data for their projects can be divided into knowledge acquisition [Birk
et al., 1999] and knowledge reuse [Tautz & Althoff, 1997] approaches, and various
combinations thereof [Birk & Tautz, 1998]. Communication gaps and missing
information have been recognised as typical causes of project failure in large-scale
project work [Kettunen, 2001]. What is needed then is a KM tool to ensure that critical
information is both produced by the right persons at the right time, and utilised by all
the relevant parties. Broad issues that need to be addressed in the design and
implementation of these tools relate to the management of information and strategies
for finding information during product development. The next two subsections

(2.8.3.1 and 2.8.3.2) explore these issues more closely.

2.8.3.1 Issues in information management

Based on the literature, there are three broad categories of information management

related to technical product development, namely:
1. Managing product requirements and specifications;
2. Management of documentation; and

3. Improving information storage and search techniques.

Each category above will be explored further.

Requirements and specifications

A seminal investigation was conducted by Curtis et al. [1988]; it showed that a lack
and insufficient spread of domain knowledge and requirements-related gaps are
major difficulties in the development of technical products. Kettunen [2001] similarly
found that problems relating to requirements and specifications were among the main
causes of trouble for telecommunications equipment development. Incomplete
software requirements and specifications of the system are generally troublesome for
embedded software projects [Kettunen, 2003]. In the case of ES development, it is
important that the software developers have sufficient knowledge of the ES to be
produced and its hardware behaviour in order to work efficiently on the software part

of product design [Kettunen, 2003].

2-38

Documentation

In technical product development environments, there is often a trade-off between
the completeness of documentation and the effort required to develop and maintain
these documents [Schach, 2005]. The key is to find a practical balance so that the
risk caused by partial or incomplete information is justified by the resource
expenditure; earlier literature on risk-driven specification acknowledges this strategy
[e.g., Boehm, 1988]. The more recent Agile software development approach favours
methods that avoid producing possibly intermediate or valueless documentation that

is likely to be made obsolete or redundant [Kettunen, 2003].

Improving data storage and search techniques

Being familiar with search engines and search functions is clearly important when
working in knowledge-rich contexts [Kitamura et al., 2006]. Osiov et al. [2006] state
that ‘linguistic knowledge’ is required for search relevance improvement. A good
understanding of these issues and of the effective use of keywords and directory
structure layouts improves both search strategies and organisation of data [Capra et
al., 2007].

2.8.3.2 Tools for information management

Development projects need methods by which team members can find relevant and
usable data efficiently, as well as strategies to capture valuable data without
excessive manual intervention [Kettunen, 2003]. Common methods to achieve these
objectives include: ontologies for creating and maintaining data records [e.qg.,
Kitamura et al., 2005], planning templates [e.g., Kettunen & Laanti, 2005], computer-
aided software engineering [e.g., Wood & Agogino, 1996], web-based Al tools [e.qg.,
Grundspenkis & Kirikova, 2005], and product data management tools [e.g., Eppinger

et al., 1994]. These approaches are discussed below.

Ontologies for the creation and maintenance of data records

Engineers often have difficulty in reusing technical documents because these
documents tend to be written in an ad hoc manner, often using a technical and
possibly non-standard vocabulary developed through the course of various projects
performed by the engineers concerned; these documents may also be context- or
project-specific [Kitamura et al., 2005]. Important aspects to consider in improving the
usability of technical documents include consistency in terms, names and acronyms
used in the documents and a consistent strategy for locating and identifying files and

directories that contain documentation [Patil et al., 2005]. In the information sciences

2-39

and computer science fields, the term ontology refers to ‘a specification of a
representational vocabulary for a shared domain of discourse’ [Gruber, 1993]; such
an ‘ontology’ can assist developers in the reuse of and sharing of technical
knowledge [Stojanovic et al., 2002]. In an investigation of ways to resolve these
difficulties, Kitamura et al. [2005] developed an ontological framework for exchanging
product development knowledge, for which the ontology can be used to systemise

information records to improve their reuse.

Computer-aided software engineering (CASE)

In embedded software development projects, the software developers must
understand not only the general operation of the target hardware but also the overall
functionality of the combined hardware/software system [Ball, 2002].
Hardware/software co-development (including co-specification and co-design)
attempts to build this kind of shared system-level knowledge [Chiodo et al., 1994].
There have been various approaches to create CASE tool environments for such
developments, where these tools can be used to offload some of the technical know-
how and manual tasks, for which the software engineer would otherwise be

responsible [Heikkinen, 1997].

Web-based Al tools

Rodgers et al. [1999] describe a design support system known as WebCADET that
uses distributed Web-based Al tools. The system can provide support for designers
when searching for design knowledge. WebCADET uses the ‘Al as text’ approach,
where a knowledge base system can be seen as a medium to facilitate the

communication of design knowledge between designers.

Planning templates
Kettunen [2003] describes a planning template that assists in the identification and
provision of the necessary knowledge for the product development team (Figure 2.7

shows an example of this).

2-40

Planning template

Customer—supplier process cat (CUS):
Acquisition
Supply

Who are our customers (external and internal)?
Requirements elicitation

What do the customers really want from us?

Who is responsible for the elicitation of the customer
requirements?
Operation
Engineering process cat (ENG):
System requirements analysis and design

Where do | get my system requirements?

How do | know the software architecture (and system
design)?
Software requirements analysis

Which items (documents) comprise my software
requirements package?

How are the requirements managed (changes)?
Software design

What design methods and tools do | use?

How do | change the component/subsystem external
interfaces?

Where can | find the hardware data sheets (if any)?
Software construction

What compilers etc. tools do | use?

What implementation rules do | have to obey (e.g.
coding standards)?
Software integration

What kind of integration and testing should | do?
Software testina

Figure 2.7: Embedded software project KM planning template (adapted from Kettunen
[2003)).

The planning template shown in Figure 2.7 lists software product development
process areas based on the ISO/IEC 15504 Reference Model. The accompanying
questions (in italics) are intended to help managers and designers identify the
practical information needs in particular areas of development. Each member of the
project team would be required to fill in the template from his or her point of view.
Each response helps the manager to consider the actual needs of that person.

Overall, this KM method based on planning templates was found to be useful mainly

2-41

in the early phases of a project [Kettunen, 2003], in which it may also be used for

identifying staffing and training needs.

Product data management tools

Product data management tools offer an integrated approach to combine all the
information of complex products consisting of various subsystems and components
into a consistently managed and accessible system [Zha & Du, 2006; Zha & Du,
2005; Feldmann, 1999; Lindeman & Moore, 1994].

Luqi et al. [2004] developed a documentation-driven development (DDD) approach
for the management of data in complex real-time systems. This approach can
enhance the integration of computer aided software development activities, which
encompass the entire life cycle of a project. DDD provides a mechanism to monitor
and quickly respond to changes in requirements, and it provides a friendly
communication and collaboration environment to enable different stakeholders to be
easily involved in development processes, thereby significantly improving the agility
of software development for complex real-time systems. DDD is planned to support
automated software generation based on a computational model and some relevant
techniques. DDD includes two main parts: a documentation management system and

a process measurement system.

2.8.4 Managing knowledge of technical development processes

This subsection begins by reviewing three general types of development process
knowledge described in the research literature. Issues related to process
management are then discussed, which leads into a review of tools for managing this
knowledge in the context of technical development projects (issues or examples

concerning ES development are included where applicable).

2.8.4.1 Development process knowledge: the input, in-situ and output
knowledge types

The literature identifies three main types of engineering design process knowledge

that need to be managed in technical product development contexts (based on

findings from Pena-Mora et al. [1993; 1995], Zha et al. [2002] and Zha and Du

[2006]). These types of knowledge are outlined below:

1. Input knowledge: the knowledge that developers bring with them, which

relates to the specific engineering or design processes to be performed;

2-42

2. In-situ knowledge: the knowledge related to engineering processes that

developers acquire during the development project; and

3. Output knowledge: the knowledge that results from a project.

2.8.4.2 Input, in-situ and output knowledge in embedded software

development projects

Input knowledge relates to existing knowledge and its representation, including
design knowledge in handbooks, datasheets and other (often downloadable)
documentation, together with the design ‘know-how’ (see Section 2.4.1.3) that is
likely to exists in a ES development organisation. Output knowledge comprises not
only concepts and expertise related to the product being developed, but also
competencies in project-related and process-related issues, including specialised

knowledge about the organisation [Zha et al., 2002].

The importance of input knowledge has been recognised [Pena-Mora et al., 1993;
1995] but there have been fewer research endeavours focused on in-situ or post-
project output knowledge in development contexts [Zha et al., 2002; Zha & Du,
2006]. Zha et al. [2002] suggest that in-situ or ‘on-the-job’ product design knowledge
can also be categorised according to off-line and on-line knowledge, where the
former refers to knowledge acquired in mid-stream (and usually involves leaving the
job at hand), and the latter refers to new design knowledge created while working on

a design task.

The production of output knowledge involves complex sets of information, as is the
case for input knowledge [Zha et al., 2002]. In practice, a portion of design
knowledge remains outside the formal project documentation (e.g., product manuals
and reference texts), and this would include informal documentation (e.g., private
notes in a logbook) as well as that which is ‘undocumented’ [White, 2005]. In ES
development this loss of knowledge tends to happen, for example, when an ES
engineer’s understanding of a specific hardware platform has been learned during
the development process and later forgotten, needing to be relearned, during

maintenance [Molnar & Nandhakumar, 2007].
During a project, new processes and tools may be developed, from which the project

team can gain new personal experiences and skills [Simard et al., 2007]. In the case

of ES projects, developers typically formulate a particular set of techniques (e.g.,

2-43

implementation methods) to develop systems using a specific selection of hardware
and tools [Graaf et al., 2003]. These implementation methods involve sequences of
actions or patterns that relate to the way in which development tools are used to

create and modify specific parts of a product [Gamma et al., 1997]. This knowledge
of development techniques is valuable to the organisation, especially when it comes

to using or adjusting processes and tools during operations [Simard et al., 2007].

2.8.4.3 Approaches to software engineering processes improvement

Many strategies for improving software engineering processes have been developed,
and these can aid in the retention and representation of software engineering
knowledge. Examples of these methodologies include (based on Fuggetta [2000],
Schach [2005] and Sommerville [20086]):

1. Structured techniques, including using structured analyses of past
experiences to make informed design decisions;
Fourth generation programming languages (4GL) [Martland et al., 1986];
Computer-aided software engineering tools [e.g., IBM, 2009];

4. Formal methods, including formal specification and verification of software
[e.g., Edwards et al., 1997];

5. Cleanroom methodologies, particularly methods to reduce software defects
[e.g., Prowell et al., 1999];

6. Process models that provide descriptions of software engineering techniques
and problem-solving strategies [e.g., Brinkkemper, 1996]; and

7. Object-oriented technology to identify objects in the problem to be solved, and

to use those in generating software solutions [Jacobson et al., 1999].

The methodologies listed above are closely related to processes of creating software.
The next section focuses on techniques for managing knowledge related to software

development, or using a formal KMS for managing software-related knowledge.

2.8.4.4 Issues in software processes KM

In a meta-analysis of the KM research literature in software engineering, Dingséyr &
Conradi [2002] found several descriptions of a KMS; however, most studies did not
deal with how KMS worked in the process of implementation in the organisations
where they are deployed. Based on Dingséyr and Conradi [2002] results, KM

technologies show potentially beneficial results. However, there are relatively few

2-44

scientific articles that evaluate how these different methods actually work [Glass,

1999]; thus further research is needed.

Based on findings from the current literature [e.g., Rus & Lindvall, 2002;
Balasubramanian et al., 2005; Zhou et al., 2007], the management of ES

development processes tends to involve one or more of the following issues:

Managing complexity;

Selecting effective process models;

Using platform-based approaches;

Selecting an appropriate interfacing strategy;
Evolving the product;

Maintaining the product;

Planning for uncertainty or risk;

Concurrently developing and co-designing the product; and

© © N o g bk oebd =

Identifying approaches for achieving product variety.

The issues listed above are elaborated upon in the sections that follow, in which

references are made to relevant research and other publications.

Management of complexity

The recent literature on KM in technical product development, including ES
development, has focussed on approaches of dealing with the complexity in these
contexts [e.g., Zhou et al., 2007]. In a software engineering context, KM tends to
focus on learning, such as capturing and reusing experience [Rus & Lindvall, 2002].
Common KM problems in software development are misunderstandings and
imperfect communication caused by out-of-date documents, incomplete terminology

definitions, undocumented information and unclear instructions [Skuce, 1995].

Reducing the complexity of ES product development through improved engineering
methods (such as techniques mentioned in Section 2.8.4.3) is a recurring theme in
the recent literature. Complexity reduction usually involves standardisation [Object
Management Group, 2002], modelling [Karsai et al., 2003], scenarios and process

reference models [Larsson et al., 2007]

Balasubramanian et al. [2005] find that the problem of learning overload commonly

occurs in ES development teams, which is often caused by using many different

2-45

platforms and architecture-dependent tools. Baksi et al. [2001], working on
embedded software for the MILAN project, discuss model-based integration of
reusable components as a potential means to avoid similar types of learning
overload. Likewise, Greenfield et al. [2007] recommend a methodology based on
patterns, models, frameworks, and tools to reduce learning times. Gopalswamy et al.
[2004] emphasise the need for work product variation management tools to handle

the increasingly enlarging scope and use of model-based control systems.

Selection of a process model

An important KM decision has to do with the selection of a software process model
[Kettunen & Laanti, 2005]. An appropriate process model can help developers to
cope with challenges and complexity of a project; whereas an unsuitable choice of
process model can add to the difficulties of development. A process model used for
one project is not necessarily appropriate for another project [Kroll & Kruchten, 2003].
Some project-related problems can be traced to the process models used [Kettunen
& Laati, 2005]. Kettunen & Laati [2005], for instance, recommend that a development
organisation does a comparison of known software process models, including Agile
methods, to build a process model selection frame that can be used as a systematic

guide for choosing the process model for a project.

Platform-based approaches

A platform-based approach for technical product development allows companies to
eliminate redundancies, efficiently utilise its resources and provide products for a
wider market [Seth, 2007]. This approach centres on developing and sharing key
components and technologies among products. By creating a common software
platform, this concept can be applied to ES software development in which software
modules and applications can be shared across products within a product family
[Seth, 2007]. Existing products could be made into platforms to serve as a foundation
on which new products are developed — but there are limitations to this approach,

such as microcontroller architecture incompatibilities [Makarainen, 2000].

Interfacing strategy

Embedded systems concern a variety of interfaces: hardware/hardware interfaces (or
physical connections), hardware/software interfaces (such as device drivers), and
software/software interfaces (such as the methods with which an application program
communicates with the operating system) [Berger, 2002]. Software developers are,

to some extent, limited to hardware interfacing choices made in the product design

2-46

phase [Kettunen, 2003]. Hardware/software partitioning and platform-based design
issues could be incorporated into a KMS following an incremental approach, as
researched by Makarainen [2000] in the case of incorporating embedded software

change management support into development practices.

Product evolution

A technical product is seldom created entirely from scratch; it usually reuses a variety
of artefacts and components — some of which may have been developed in-house,
while others have been sourced externally. In such a situation, the software team is
likely to have access to an initial (possibly disorganised) base software version at the
start of a new project [Kettunen, 2003]. In such a situation, the software team may
still need to learn how to incorporate or modify the existing artefacts for use in a new
project. In so doing, the team needs to obtain enough detail about the artefacts and
existing design decisions before they can start modifying and extending them.
Forsberg et al. [2000] describe techniques to facilitate such tasks, for example, by

building a terminology base.

Product maintenance

Process knowledge includes an understanding of software ‘fragility’, which relates to
the tendency of a particular piece of software to be unstable, unreliable or entirely
non-functional at some required level of operation. Fragility is manifested in various
ways, such as unreliability during times of high demand, lack of security,
performance lapses, computation failures and upgrading difficulties [Joy & Kennedy,
1999]. Embedded software is often developed from, or dependent on, legacy code,
sometimes with minimal or no modifications being allowed to parts of the code due to
compatibility requirements, short development lead-time, and budget constraints
among other factors [Ko et al., 2007b]. If legacy code is repeatedly revised without
considering issues of maintenance, the code gradually becomes harder to maintain,
eventually needing to be entirely reengineered to make it maintainable [Ko et al.,
2007b]. Existing reengineering research on ES tends to focus more on hardware
issues than embedded software issues [Ko et al., 2007b]. Improvement to the
maintainability of embedded software for ‘corrective maintenance’ includes other
reengineering approaches, such as: process reengineering, reengineering views, and
reengineering infrastructure [Aman et al., 2006]. Freeman and Schach [2004] point
out that the maintainability of object-oriented software products is partly dependent

on the maintainability of the inheritance hierarchy concerned.

2-47

Planning for uncertainty

Technical product development is characterised by uncertainty and frequent
changes, which often occurs in complex ES development projects [Mellis, 1998]. In
turbulent environments, flexibility of the product development process (i.e., its ability
to accommodate frequent and last-minute changes) is a key factor for success
[Mellis, 1998; Mikkonen & Pruuden, 2001]. Cordeiro et al. [2007] describe an Agile
development methodology that combines agile principles with organisational patterns
as a potentially efficient means to build embedded real-time systems that have

stringent constraints.

Concurrent development

Speed is an important success factor for software product development [Smith &
Reinertsen, 1998]. But this can be difficult to achieve; for instance, even a small bug
can take a long time to correct. This is one of many reasons that make it difficult to
determine accurately how long it will take to complete a piece of software [Dingséyr
and Conradi, 2002].

One way to accelerate product development is to compress development workflows
by performing normally sequential work to some extent in a parallel (overlapping)
manner, or even to skip some intermediate steps [Heikkinen,1997]. A difficulty with
such concurrent development, however, is that some work is dependent on the
completion of previous work, or cannot be accomplished with incomplete information
that would otherwise be provided from a previous, dependant work. In other words,
managing concurrent ES engineering tasks, and these kinds of interdependencies,

can be difficult to perceive and achieve [Heikkinen, 1997].

Achieving product variety

Manufacturers of technical products are under pressure to produce a number of
product series with an increasing number of variants, while simultaneously
decreasing development costs low and time-to-market [Graaf et al., 2003]. Jepsen et
al. [2007] investigated minimally invasive methods for migrating products developed
by a company to a software product lines approach, as a means to overcome these
types of challenges. Larsson et al. [2007] describe a KMS that helps to reduce risks

and that works in similar situations.

2-48

2.8.4.5 Tools for managing knowledge of software development processes

Generally speaking, an engineer does not have immediate access to (or know)
implementation methods at the start of a project, except possibly in trivial cases
where the engineer has experience with the specific platform and tools chosen for
use in a project [Kitchenham et al., 1995; Ganssle, 1999]. Implementation methods
develop as the engineer’s knowledge of implementation techniques, target hardware,
development tools and other development artefacts grows. The development of
implementation methods in ES involves a significant amount of knowledge work,
which often involves time-consuming activities, such as reading datasheets, finding
example code, discussing solutions with colleagues, and experimenting with code
[Ganssle, 1999; Labrosse et al., 2008].

A review of tools commonly used for managing knowledge of software development
processes is provided below, including: 1) matrices for capturing and storing data, 2)
representational models for modelling knowledge flows, 3) the concept of experience

factories, and 4) case-based reasoning.

Matrices for capturing and storing data

A variety of matrices have been used to capture and store data related to knowledge
about engineering processes. For example, a variety of ‘Design Structure Matrices’
(DSM) were developed for managing team-based knowledge, component-based
knowledge, activity-based knowledge, and parameter-based knowledge [Zha & Du,
2006]. A DSM is a compact matrix representation of knowledge related to a
development project. The matrix contains a list of all constituent subsystems and
activities and the corresponding information exchange and dependency patterns. A
DSM can be used by knowledge workers to find information pieces (or parameters)
that assist at the start of a certain design activity, and show what information
generated by the activity is likely to feed into it (i.e. which tasks within the matrix use
the output information). The DSM can prove useful in managing complex projects,
highlighting issues such as information needs, requirements and task sequencing
[Eppinger et al., 1997]. A web-based prototype system for modelling development

process using a multi-tiered DSM was developed at MIT [Browning, 1999].
Representational models

Many representation approaches exist for modelling knowledge flows in engineering

processes. These methods often use a high level of abstraction to categorise existing

2-49

knowledge and related experiences into a series of design principles and constraints.
TRIZ is an example of this approach [Altshuller, 2004]. An alternate method is to
partition design knowledge according to certain case descriptions; some case-based

design tools use this approach [Wood & Agogino, 1996].

Researchers at the Engineering Design Centre at Lancaster University established a
knowledge representation methodology and knowledge base vocabulary for
mechatronic systems (used in their Schemebuilder tool) based on the theory of
domains, design principles and computer modelling [Counsell et al., 1999]. Blessing
[1993] proposes the process-based support system (PROSUS) based on a model of
the design process rather than the product. Another focal research area is using

ontologies for product representation (e.g. Patil et al., 2005).

The experience factory

Reusing experiences in the life cycle experience of processes and products for
technical product development is often referred to as having an ‘Experience Factory’
[Houdek et al., 1998; Basili et al., 1994]. Using this approach, experience can be
collected from different development projects and ‘packaged’ in an experience base
(this ‘packaging’ process entails generalising, tailoring and formalising experience
around reuse). A similar system, the CODE prototype, is a KM system that serves as
a medium for knowledge capture and transfer, in which ‘packaging’ is also used to
make knowledge from prior experiences more easily available [Skuce, 1995].
Examples of experience packages (based on Skuce [1995]) include: product
packages (information about the lifecycle of a product and lessons learned); process
packages (information on how to perform a process and reuse it); relationship
packages (for analysis); tool packages (for use of a tool and related experiences);
management packages (reference information for project managers); and data
packages (containing data relevant to a technical product or its activities, such as a

project databases [e.g., Dings@yr & Conradi, 2002]).

Case-based reasoning

Case-based reasoning (CBR) is an approach that could facilitate technical decision-
making during software development projects [Henniger, 1997a]. Many companies
have used similar systems for retaining and retrieving experiences [Aamodt & Plaza,
1994]. Althoff et al. [1999] report on the benefits of this technology for experimental
software engineering. CBR has also been used successfully in building learning

organisations [Althoff et al., 1999]. Wangenheim et al. [1998], who evaluated several

2-50

CBR approaches for experience reuse, found that CBR could be an effective means
for reusing experience from software engineering. CBR generally uses a form of
underlying experience database (or knowledge base); Broomé & Runeson [1999]
reported on the important technical requirements for such a database. Bergmann et
al. [2003] researched the feasibility of combining ideas of an experience factory with

a CBR system.

A number of companies, such as Computas [Carlsen et al., 1999], Hewlett Packard
India [Bhave & Narendra, 2000], the COIN EF system in use at the Fraunhofer IESE
[Tautz et al., 2000], and a variety of Norwegian organisations [Conradi & Dingséyr,
2000] have implemented a case-based KMS (or similar organisational learning
approaches) for experience reuse, which have shown positive results. Another
example of a CBR system, which was developed at a university, is the BORE system

for problem-solving experiences [Henninger & Schlabach, 2001].

2.8.5 Managing innovation in technical product development

Innovation shifts the KM paradigm to one of ‘new knowledge production’, in other
words, knowledge of a new way of doing something [McKeown, 2008]. Knowledge of
an innovation or new technique for accomplishing something may involve
collaboration and sharing of knowledge [Fischer, 2001], but the emphasis is on
developing something new — possibly a new method to solve an existing problem, or

a new technique to address a new issue [Fischer, 2001].

A principal question regarding the effective production of innovative knowledge is
how this knowledge, and its associated innovation processes, is managed. Some
authors suggest that innovation cannot be effectively managed [e.g., Kitchenham,
1998].

As mentioned in Section 2.4.2, KM involves the way in which knowledge is created,
captured, stored, and shared, with the intention of leveraging this knowledge within
an organisation [Rus et al., 2001; Wiig, 1997]. Specific issues related to KM of

innovation are discussed below:

1. Technology: Companies determine how to develop their information and
communication technology (ICT) to facilitate innovation, and how their ICT
can be customised for this kind of knowledge. Dhont [2003] uses the term

‘playful technology’ to describe technologies that enable innovation.

2-51

2. People: Companies need suitable training, recruiting and selection
procedures to suit and encourage innovation; Nonaka & Takeeuchi [1995]
highlight further issues of combination, socialisation, internalisation and

externalisation of knowledge.

3. Intra-organisation: Supporting the innovative capacity of a company, with
processes designed to foster ‘creative competence development’ is a core

aspect of work performed [Miesing et al., 2007].

4. Inter-organisation: Contacts are managed with customers and suppliers.
Companies need to have an open mind with regard to the problems and

needs of their customers and suppliers [Harvey & Speier, 2000].

The speed, competitiveness and overall success of companies are beginning to rely
increasingly on the innovation and creativity of the company [Carneiro, 2000;
Malhotra, 2007]. However, approaches to KM can confound innovation with an
excessive amount of information and procedures [Dhont, 2003]. In such situations,
KM may be seen as a centralised ‘database’ with a goal of collecting information
about innovation. Majchrzak et al. [2003] point out that information dates quickly and
that the emphasis should rather be on building and managing innovative capacity,
which is likely to have greater value to a corporation. KM for innovation should focus
on helping innovators to generate new ideas, to transform such ideas into working
products, and to ensure that these capabilities are shared and strengthened among

the creative teams of the organisation [Majchrzak et al., 2000].

Gibbons et al. [1994] maintain that a new mode of knowledge production is
emerging, which has profound implications for both the competitiveness and
sustainability of product development. Gibbons et al. [1994] draw a distinction
between two modes of knowledge production referred to as Mode 1 and Mode 2.
Mode 1 knowledge relates to problems set and solved in a largely academic context
(e.g., universities), whereas Mode 2 knowledge is carried out in a ‘context of
application’ (e.g., in an industry context, such as a factory) [Gibbons et al., 1994]. In
the context of new product development, an innovative organisation is likely to use
more Mode 2-type development and problem solving processes [Gibbons et al.,

1994]. Such an approach is likely to 1) constantly generate new ideas, 2) provide the

2-52

capacity to change new ideas into products, and 3) ensure that knowledge is

disseminated to all the knowledge workers concerned [French & Bell, 1990].

2.8.5.1 Management of innovation issues in product development

Broadly speaking, forms of innovation in the context of technical product
development can be divided into three main types: 1) process improvement models,

2) implementation of new technologies, and 3) process re-engineering [Vinter, 2005].

Techniques related to KM for innovation that have been identified as areas to
develop further, and that currently show a significant level of interest (in terms of
recent publications) include the following: 1) balancing creativity against systems
[Counsell et al., 2005], 2) methods for efficient technology transfer [Wandeler et al.,
2006], and 3) creative problem solving [Van Zolingen et al., 2001]. These research

areas, and the seminal work related to them, are described below.

Creativity vs. ‘systems’

In their study of prototyping in five companies, Counsell et al. [2005] reported on the
following main issues: 1) non-adherence to standard prototyping guidelines was
common; 2) developers often engaged in 'sketchy’ change request procedures; 3)
there was frequent concern about time and cost deadlines not being met; and 4)
developer experience was found to be an essential requirement for innovation.
Clearly, a balance is required: an extremely formal KMS puts too much stress on
knowledge workers who will then not be committed to the goals of KM, whereas an
overly relaxed and informal approach may deny individuals the support they should

get from the system.

In a paper reporting on the findings of a case study that explored micro level factors
surrounding the processes of creativity and process management in a creative ISO
certified organisation, Molnar and Nandhakumar [2007] argue that structured KM
provides a framework for organisations. However, they also observed diverse
opinions and attitudes towards KM inside organisations. Additionally, this framework
results not only in positive effects but also in certain constraints for organisations.
These constraints in turn influence the processes and innovations of organisations.
The creative potential helps to overcome the given constraints of a structured
process. Consequently, the paper claims that within a creative business environment

it is essential to maintain these creative potentials [Molnar & Nandhakumar, 2007].

2-53

Technology transfer

The accelerating development of technology transfer and knowledge diffusion
activities can have a profound impact on technology oriented companies and their
potential for innovation, also supporting their need for this work to be carried out
more rapidly to meet market demands [Zander & Kogut, 1995; Ernst & Kim, 2002;
Pérez & Sanchez, 2003].

Creative problem solving

Innovation is strongly linked to problem solving [Van Zolingen et al., 2001] and this is
particularly evident in ES product development, for example, developing fast and
reliable digital signal processing code that runs on resource-limited hardware [White,
2005].

2.8.5.2 Tools for managing innovation in product development

A number of tools have been developed to assist the process of innovation. These
tools include methods to overcome mental inertia [Souchkov et al., 2005], strategies
to improve personal creative skills [Tierney & Farmer, 2002], heuristics that avoid
psychological inertia during problem solving [Nakagawa et al., 2002], reengineering
techniques, and guidelines for novel product conceptualisation and development
[e.g., Blosiu, 1999; Altshuller, 1998]. A selection of tools that appear in the literature

and that relate to the management of innovation knowledge is reported on below.

TRIZ
Perhaps the most widely used tool in the context of technology mapping for the
transfer of technology is TRIZ (an abbreviation from the Russian for ‘theory of

inventive problem solving’) [Altshuller, 2004]. TRIZ includes the following parts:

1. Laws and trends of the technology evolution. This part of TRIZ studies and
formulates general trends of engineering system evolution.

2. Problem solving techniques. The techniques aim at building a problem model
and producing recommendations on how to solve the problem.

3. Principles for the elimination of technical contradictions.
Inventive standards, which solve inventive problems by representing them in
terms of substance-field interactions and applying generic patterns for

interaction transformations.

2-54

5. Pointers to effects. This part of TRIZ focuses on studying how to use the
knowledge of natural sciences (physics, chemistry, geometry) in the inventive
process.

6. Algorithm of inventive problem solving. An integrated technique aimed at
solving the most difficult inventive problems that contain physical
contradictions.

7. Collections of selected patents. This part contains patent descriptions drawn
from diverse engineering domains. The patents are structured according to

inventive principles used to eliminate one or other types of contradiction.

Reverse engineering

Reverse engineering (RE) is the process of discovering the technological principles
of a device, object or system through analysis of its structure, function and operation
[Muller et al., 2000]. RE often involves taking apart a product, such as an electronic
product or software program?, and then performing a detailed analysis on its
operation. Usually this strategy involves making a new product that provides many (if
not all) of the same features as the original product, but without performing a
verbatim copy of the original product [Chikofsky & Cross, 1990]. The key to
innovation in RE is to recombine the knowledge and routines in efficient ways

according to the current situation [Stahle & Gronroos, 2000].

A number of different RE approaches are used, including Function Analysis (a
modified version of traditional Value Engineering Analysis with the focus on
functional decomposition and analysis of design products and technologies) and
Ideal Modelling (of function-based redesign, also known as 'trimming’), which aims to
perfect the product design and to formulate new problems (i.e., ones for which

innovative new solutions are needed) [Warden, 1992].

Technology mapping

Technology mapping is a high-level planning tool for supporting the planning and
control of technology management, and for supporting national and sector ‘foresight’
initiatives [Coombs & Hull, 1998]. However, existing models of technology transfer

have been investigated separately with regard to the methods, stakeholders, and the

* In terms of a software program, this may be working with the original source code (which

may lack documentation) or compiled machine code.

2-55

elements of how the transferors and transferees assimilate, adopt, develop, and
transfer technology in various organisational settings [Simonin, 1999; Argote &
Ingram, 2000]. Chan and Yu [2004] investigated a structured approach, which makes
use of knowledge networks, for analysing the technological merit of innovative

products and their impact on a value chain.

Cummings and Teng [2004] claim that a company should recognise that the
development of knowledge repositories, portals connecting with external databases,
and alerts about recent developments in the field will be of limited value for
knowledge transfer. They recommend that companies should supplement these
activities with mechanisms for connecting people to people through web
conferences, communities of practice, discussion boards, chat rooms, instant
messaging, and other forms of expertise identifiers and expert collaboration, all of

which are useful for knowledge to be transferred effectively.

Tools for supporting emerging innovative processes

Business processes, especially those in knowledge intensive environments, often
emerge organically, rather than following predictable and predefined steps [Covin &
Slevin, 1989; Sabat, 2007]. Supporting emergent processes is one of the key issues
for collaborative knowledge sharing. Lugi et al. [2004] introduce WorkPath, which is a
component-based workspace meta-model used to support emergent processes. Key
elements that construct workspace and WorkPath include knowledge worker roles,

actions, artefacts, workspaces and reference relation methods [Luqi et al., 2004].

2.8.6 Dealing with information overload

The term ‘information overload’ refers to situations in which a person is oversupplied
with information, or when the amount of information exceeds the cognitive capability
of a person [Ho & Tang, 2001]. Too much collection, sharing and distribution of
information can lead to information overload and obstruction of work [Bouthillier &
Shearer, 2002].

Dealing with information as a commodity does not necessitate knowledge production
[Castells, 1996]. As the scenario in Section 2.4.1 shows, some kind of processing
and interpretation, which depends on the prior competencies and experience of the
individual concerned, are needed to make effective use of information. Information
can be comparatively easy to obtain compared to the effort involved in making use of

it [Oluic-Vukovic, 2001]. This is particularly true for information found on the internet.

2-56

However, if a resource is available on the internet, this is not necessarily any

guarantee of its importance, accuracy, utility or value [Berghel, 1997].

This section briefly outlines major issues related to information overload associated

with the application and development of technology, namely:
1. Dimensions of information overload; and

2. Reducing information using infomediary tools

2.8.6.1 Dimensions of information overload

Ho and Tang [2001] argue that there are three dimensions to information overload: 1)
information quantity, 2) information format, and 3) information quality. Information
quality relates to the amount of information for a particular activity (e.g., results
returned for a web search). Information format can relate to the way in which
information is presented to the user (e.g., the layout of a text document and the use
of tables and images in the document), and to the way in which the information is
stored (e.g., the document in the form of a Microsoft Word document or a Latex file;
the type of executable file format of a program; and the image file format used to
store an image). Information quality is a more subjective measure of these three
dimensions, concerning issues such as the usefulness of the information provided
and the difficulty involved in interpreting the document that contains the needed

information.

2.8.6.2 Addressing information overloading with infomediary tools

An infomediary tool is designed to cut down on the problem of information overload
by acting in a similar way to that of an ‘intermediary’ or a filter’ by attempting to
reduce the amount of information presented to a user, and to impart the information
in @ manner that is more usable (for a particular purpose) than the original
information sources in their ‘raw’ states (e.g., web pages or online articles) [Ordanini
& Pol, 2001]. For example, a comparison infomediary tool analyses a set of
documents and presents a summary of the differences found between them [Ho &
Tang, 2001].

Ho and Tang [2001] investigated a variety of commonly used infomediary tools and

identified the information overloading dimensions each approach seemed to address

to reduce the problems of such information overload. Table 2.1 is an adaptation of

2-57

the results produced by Ho and Tang [2001, pg. 94]; each row corresponds to an

informediary model and the information overload dimensions it addresses.

Table 2.1: Commonly used infomediary tools and dimensions of information overload
they address [Ho & Tang, 2001; Berghel, 1997].

Infomediary Description Dimensions of information
tool overload addressed
Portal Typically a web service providing Assists in reducing information
searching and yellow pages guantity.
facilities, often classifying web-
based information according to
predefined subjects.
Virtual A community of people that share Assists in resolving information
community common interests and techniques guantity by focusing on one
through e-mail, chatting, specific topics of interest. Voting
newsgroups, or discussion boards. | and ranking features helps with
information quality.
Transaction Electronic marketplaces that enable | These services (e.g.,
aggregator customers to connect with each Amazon.com) help to reduce time
other and purchase products in the | in finding information about
same place (or on the same products and buying the product,
website). addressing information quantity
and quality.
Syndication Collects and packages digital Addresses issues of information

information from many sources that
use potentially dissimilar
information formats or
representation standards.

quantity and information format.

Personalisation

Helps in making (from a potentially
large set of options) a selection of
information that is of most value to
an individual.

Mainly addresses information
guantity, e.g. automatically
navigating multiple web sites to
manage a person’s information.

Comparison

Searches in real time across many
websites (e.g. retailer sites) giving
comparative information. For
example, showing different prices
and features for a certain make of
car sold by online retailers.

Assists in reducing information
quantity and information quality.

2.9 Conceptual framework for researching a KMS

The most important part of implementing a KMS is the strategising and establishment

of effective guidelines and infrastructure that knowledge workers will use to carry out

KM activities in the organisation (this was elaborated in Sections 2.4 and 2.6). The

overarching purpose for the KMS is typically to make the organisation concerned

operate more intelligently in order to secure its continual viability and success. These

guiding principals are emphasised by Edvinsson & Malone [1997] (see Section 2.6)

and is corroborated by many other researchers, such as work by Karadsheh et al.

[2009] in which they formulated a generalised theoretical framework for KM of

organisational processes. Karadsheh et al. [2009] showed that the overall objective

2-58

of a KMS is also commonly viewed as an approach to implementing KM strategies
that somehow lead to knowledge workers saving time, effort or costs, and preferably

a combination of all three.

The objective of the ESAOA KMS is guided by the KM literature guidelines as
discussed above, which are predominately related to KM at the organisational level,
or macro level as defined by [House et al., 1995] (see Section 1.2.4). However, the
ESAOA KMS focuses on meso level processes. For this reason, the above-
mentioned broad objective of a KMS needs to be narrowed down to the appropriate
level of KM work that the ESAOA KMS will be used with. In the case of the ESAOA
KMS, the KM work of focus is ESAOA activities that are performed by novice
engineers to produce knowledge needed to complete implementation tasks during
ES prototyping projects. Thus, the objective of the ESAOA KMS is to facilitate
knowledge production during ESAOA activities, to promote successful completion of

ES implementation tasks.

Since ESAOA activities focus on changing and classifying artefacts that may be
further adapted by the same or different individuals at a later stage, the ESAOA KMS
design has been chosen to follow the personalisation trait of KM [Hansen, 1999]
rather than the codification trait (i.e., having a focus on facilitating the flow of
information about knowledge sources, as apposed to how knowledge is captured —
see definitions in Section 2.6.1). Furthermore, the ESAOA KMS will follow the
information-focused stream of KM, comprising KM methods that focus on the way
knowledge workers treat information and the interaction between people interested in

sharing information [McDermott, 1999a] (see Section 2.4.2).

Researchers, such Wiig [1997], Davenport [2002] and others, caution that the
establishment of a KMS is not straightforward; it could take months or years to
complete (as discussed in Section 2.6). Consequently, these researchers commonly
recommend an incremental and iterative approach to the KMS development. In
addition, as discussed by Alavi & Leidner [1999], an understanding of the knowledge
work that the KMS will be used for, is needed prior to imposing the new KM
strategies into an organisation. Methods to measure the effectiveness of the KM
techniques implemented and their influence on the organisation is also required (see
Section 2.6.3). These measurements could be done independently, such as in the
form of a ‘knowledge audit’ [Groff & Jones, 2003] applied to knowledge artefacts that

are produced, or by using other techniques; depending on the organisation and

2-59

knowledge work involved, these techniques could include surveys [Gold et al., 2001],
employee performance evaluations and product quality inspections [Alavi & Leidner,

2001] among other methods.

Following the above recommendation of expert researchers, the ESAOA KMS will be
developed incrementally. Accordingly, a study will first be performed to gain a clear
understanding of the specific knowledge work involved, together with establishing
techniques to measure KM for the context involved. Next, appropriate KM methods
will be planned and the ESAOA KMS constructed. This will be followed by putting the
new KMS into operation, and gathering data to determine in which ways, and to what
extent, the KMS benefits knowledge workers. Further revisions to the KMS can then

be performed to incrementally develop increasingly improved versions of the KMS.

The strategy described above was used in planning the research design for this
thesis (presented in Chapter 3). The research design has been implemented in the
form of an experimental methodology involving two experiments. The first experiment
corresponds to the study of knowledge work, whereby data will be obtained from
developers using their own ad hoc KM methods (i.e., they will not using a KMS). KM
measurement techniques will then be developed based on findings from the
experiment and through the use of relevant works from the KM literature. Next, the
first version of the ESAOA KMS will be developed, and then tested during the second

experiment. Future refinements to the KMS will then be formed.

The next chapter takes the fundamental framework described in this section and

refines it into the comprehensive research methodology used for this thesis.

2.10Summary and conclusion

This chapter outlined KM needs, strategies and tools that are of relevance to ES
projects in product development environments, if not directly in the field of ES
product development (for which this specific form of literature is limited [Rus et al.,
2001]). The literature indicates that managing knowledge in technical product
development is dependent on the related systems, infrastructures, and other context-
specific sources and sites where knowledge is developed and where learning takes
place (see Section 2.8). The literature suggests that there are four main

considerations when developing a KMS, in particular:

2-60

Knowledge workers and knowledge-based teams;
Data and information finding tools and systems;

Knowledge-based engineering processes; and

>N =

Innovation, knowledge production and creative problem solving.

Each of these knowledge-based aspects concerning product development requires
different forms of KM and KM tools (discussed in Section 2.8.2). Within each of these
areas, there is likely to be explicit as well as tacit knowledge, and tangible as well as

intangible knowledge assets — all of which require appropriate forms of KM.

The literature review has demonstrated that there are many gaps in the research
literature on the implementation of KM systems and tools in ES engineering (as
elaborated upon in Section 2.1) and particularly in terms of KM for technical
development (as seen in Section 2.8). This gap in the literature confirms the need for

more studies focused on KM for ES product development.

This chapter has shown that managing intellectual capital (IC), intellectual property
(IP) and innovation is becoming increasingly important in the ES field (see Section
2.3), not least because of the knowledge-intensive nature of this work. In short, and
as can be generally seen in this literature review, KM for ES product development
should be an integral part of the activities for efficient ES product development

organisations working in today’s turbulent business environments.

2-61

2-62

Chapter 3:
Researching embedded system artefact organisation
and adaptation (ESAOA) knowledge

This chapter explains the research design and methods for evolving a knowledge
management system (KMS) for embedded system artefact organisation and
adaptation (ESAOA) knowledge.

Section 3.1 describes the key concepts and specialised terms used in this chapter.
Thereafter, the research objective, which was outlined in Section 1.3, is recapped
and elaborated on in Section 3.2. The main research problems associated with
studies concerning the research objective, and the ways in which these problems are
addressed in this thesis, are discussed in Section 3.3. The problem statement,
together with its associated sub-problems is then described in more detail in Section
3.4. The experimental research design for the ESAOA KMS is presented in Section
3.5. The selection criteria for the experiments, such as the development projects,
sites and participants, are outlined in Section 3.6, whereas ethical concerns are
addressed in Section 3.7. Data collection methods are described in Sections 3.8, and
figures are provided to show samples of collected data. The data analysis strategy is
given in Section 3.9. The data synthesis procedures are explained in Section 3.10,
which involved merging and generalising the detailed results from the data analysis
process to obtain a more abstract view of the KM processes. Section 3.11 presents
the ESAOA conceptual modelling language that is used in the data synthesis phase.
Section 3.12 concerns the artefact and prototype assessment that was performed at
the end of the experiment and provided a means to compare the KM results to the
product prototype and artefacts produced by the teams. The final section, Section

3.13, explains how the research findings are arranged in the subsequent chapters.

3-1

3.1 Key concepts

A KMS is the way in which people, processes and artefacts work together for the
creation, capture, storage and sharing of knowledge [Drucker, 1998]. The actual
design of such a KMS depends on the type of knowledge work being done, and the
context within which it is performed (see Section 2.6). The study of a KMS typically
focuses on the way in which the ‘know-how’ and ‘know-who’ of knowledge workers is
managed in an organisation to solve problems, make decisions, learn facts, and find
the most knowledgeable people in certain specialised areas within the organisation.
Chapter 2, for instance, has already elaborated on KM and the contexts of ES

product development.

3.1.1 ESAOA knowledge

The term ESAOA knowledge is defined as knowledge that is needed to carry out
ESAOA activities (see also Section 4.2.5). ESAOA knowledge is a form of
implementation knowledge produced and used during the implementation phase
[Schach, 2005] of ES development projects. It is technical knowledge that is related
to the specific types of implementation activities, which are the concern of this thesis
(see Section 2.2 for details concerning the implementation phase of ES
development). As was described earlier, implementation is the process by which a
developer transforms a product design into a physical product [Schach, 2005].
Implementation knowledge is defined in this study as knowledge that developers use
during the implementation phase of a project in which they are actively involved in

building a product.

Generally, implementation knowledge encompasses the extremely wide range of
competencies that a developer uses to perform implementation tasks. For example,
in the case of ES development, implementation knowledge includes the engineer’s
knowledge of back-end tools used in developing software (e.g., the ability to use text
editors and web browsers), and techniques for programming-in-the-many (i.e.,
strategies for working in a team of developers) [Bendix, 1993; Medvidovic & Mikic-
Rakic, 2003; Schach, 2005]. This thesis concerns implementation knowledge that
relates specifically to the engineer’s understanding of, and his/her ability to select
and use, development tools and components to perform implementation activities.
Development tools include the compilers, linkers, oscilloscopes, multimeters, and
other software programs and equipment that ES engineers use to develop ES. The

components used to construct an ES comprise both electronic components (e.g.,

3-2

microchips, switches and displays) and software components (e.g., embedded

operating systems and code modules).

Although implementation knowledge is generally associated with the implementation
phase of a development project, such knowledge can be produced and applied at
any point in a project. It therefore encompasses a broad expanse of knowledge.
ESAOA knowledge, which is the focus of this thesis, consequently refers to a smaller
subset of implementation knowledge, specifically implementation knowledge that is
used to carry out ESAOA activities (i.e., knowing how to organise and adapt ES

artefacts).

3.1.2 Towards a study of directed KMS evolution

Developing a KMS for a certain context of knowledge work is not a simple
undertaking that can be accomplished in a few hours (as can be seen in initiatives
studied by researchers such as Wiig [1997], Alavi & Leidner [1999] and Davenport
[2002], and further discussed in Section 2.6). Rather, a KMS tends to be developed
over time for the specific context in which it is to be used [Hu & Chen, 2002]. Such a
context often has an elaborate arrangement of dependent factors, involving the
actual knowledge work, the specific organisation involved, and its working
environment. Furthermore, knowledge work also changes over time in response to a
variety of influences, which results in the KMS used by knowledge workers being in

constant flux [Carneiro, 2000; Bergeron, 2003].

The term KMS evolution is used in this thesis to encapsulate the process by which a
team of developers moves from initially using an ad hoc KMS towards using a newer
and more evolved KMS. As explained in Section 2.6.2, the process of evolving a
KMS involves gradually changing an existing KMS towards an increasingly more
evolved system, in which the system becomes more visible, more consistently
applied across different projects and individuals, and generally better understood by
the people who use it. KMS evolution can be considered as an ongoing process that
starts when a certain group of knowledge workers begins to collaborate, and that
ends when the group stops work and separates.

3.1.3 Directed KMS evolution

For the sake of clarity, the concept of directed KMS evolution refers to KMS evolution
that is consciously studied and controlled, in contrast to a KMS that evolves naturally

as an unobserved phenomenon. Customised KM tools and personnel assigned to

3-3

specialised KM roles are considered to be part of a more refined, or more highly
evolved, KMS (as per the sixth phase of evolving a KMS defined in Section 2.6.3).
Figure 3.1 illustrates directed KMS evolution, showing that an ad hoc KMS is
purposefully monitored and changed to produce a refined KMS. The term ‘directed
KMS evolution’ thus concisely describes the focus of this chapter, which is to
describe a methodology for directed evaluation of an ESAOA KMS.

Ad hoc

KMS Directed KMS
KMS Evolution
o Enhanced
Initial Context Context
Knowledge Knowledge

Figure 3.1: Directed KMS evolution.

3.2 Research objective: A KMS for ESAOA activities

In this thesis, knowledge is defined to reside exclusively within a person’s mind (see
Section 2.4.1) [Groff & Jones, 2003], which makes it difficult to measure. For this
reason, the emphasis of the research objective is not on knowledge itself, but rather
on the KM methods and ESAOA activities (defined in Section 1.1.7) that relate to a

KMS. The research objective of this thesis can thus be expressed as follows:

Research Objective
The objective of this thesis is the construction, evaluation and evolution of an
experimental KMS, which is referred to as the ESAOA KMS.

The ESAOA KMS is intended for use in ESAOA activities within the context of new
projects that involve prototyping novel ES products (see Section 1.5 for details). The
aim of the ESAOA KMS is to facilitate the progress from the use of an ad hoc KMS
towards a more highly evolved KMS in which KM strategies are made visible and

applied systematically (see thesis objective introduced in Section 1.3).

The subsections below further motivate and refine the specific objective of this thesis

together with the scope and delimitations imposed on this work.

3-4

3.2.1 Specific objective: Moving from an ad hoc to a formalised KMS

Experts on software methodology, such as Brinkkemper et al. [1996], Kroll &
Kruchten [2003] and Jacobson et al. [1999], indicate that processes need a suitable
level of ‘ceremony’ for the work and working environment involved. A high level of
ceremony implies processes have “comprehensive supporting documentation and
traceability maintenance among artefacts” [Kroll & Kruchten, 2003, pg. 50]. In
contrast, a low level of ceremony implies less supporting documentation and little
formalism in the working procedure. A formal KMS involves certain costs and manual
overheads to carry out KM methods while knowledge work is performed [O'Dell et al.,
2003].

As is the case with the representation of software methodologies, a KMS also needs
a suitable level of ceremony in order to make it expressive and usable. Likewise, the
methodology for evolving a KMS for ESAOA knowledge needs to be expressed and
evaluated at an appropriate level of detail, while imposing a minimal amount of
additional manual overheads for the knowledge workers concerned: in other words,
representing the KMS with either too much, or too little detail can result in the system
being ineffective and not applied consistently amongst knowledge workers [Kettunen
& Laanti, 2005].

An additional challenge, in terms of instituting a formal KMS, is that the KM
overheads of an ad hoc KMS may appear to be less than those of a more formalised
KMS; such an opinion may be due to the perception that the KM methods of an ad
hoc KMS are invisible, while those of a formalised KMS are more visible and
therefore appear to impose more overheads [Lynn, Reilly & Akgiin, 2000]. As a
result, engineers may feel their own ad hoc methods are better than the formalised
methods imposed on them. However, KMS can provide longer term benefits that

benefit the project later, or during product maintenance [Alavi & Leidner, 2001].

In consideration of the above issues, the construction, evaluation and evolution of the
experimental ESAOA KMS to be constructed needs to involve suitable levels of
ceremony and process descriptions, while simultaneously avoiding excessive

overheads, to ensure its usability for consistent application among developers.

3.2.2 Scope and delimitation: ESAOA during component integration

The boundaries of a KM initiative need to be established so that the effort expended
in studying, formalising, and adjusting the system is restricted; this can be
accomplished by defining the scope of the initiative [Groff & Jones, 2003]. Such a
definition of scope includes, among others, describing the objectives of the KM
initiatives (or work related to those initiatives), the timeframes, and the number of

people studied.

Specific delimitations identified for this study are outlined in the subsections that
follow. The broad areas of delimitation were guided by Groff & Jones [2003].

3.2.2.1 Delimitation of tasks

An important delimitation chosen in this study is the restriction on the types of
knowledge work to be studied. For example, when studying the KMS used by
software engineers, a scope limitation may be to focus on a specific type of
engineering task, and to exclude administrative, marketing, and more basic project-
related tasks, which together may accumulate a volume of data that cannot be

handled within the limited time of such a study.

Due to the broad extent of implementation knowledge that is produced in a project,
this thesis is restricted to a subset of implementation knowledge that is generated
during the development of ES products: in particular, it focuses on implementation
tasks in which engineers learn how to use development tools and components. The
emphasis is on managing ESAOA knowledge, which is closely associated with an
engineer’s knowledge of the development tools and product components used to
construct an ES. More specifically, the research design focuses on how developers
organise and adapt implementation artefacts to create, capture, store and share
knowledge of product components, as well as on the use of development tools to

implement a product.

In order to focus on ESAOA knowledge, a research strategy is needed to isolate this
knowledge and its related activities from other forms of knowledge and development
work that occurs during projects. Such a separation is an analytical tool because
knowledge itself is an abstract phenomenon that can be viewed as the complex
interaction of an individual’s history of experiences [German & Hindle, 2006].
Experience can be obtained in many contexts, such as reading, talking, and

performing experiments in a laboratory; for many forms of knowledge work, the

experiences that give rise to knowledge are not limited to the context in which

knowledge work is performed. Based on these insights, it is important to recognise

that the separation of knowledge into knowledge categories is an analytical strategy

(other analytical strategies include methods such as performance analysis [Kettinger

et al., 1997] and examination of knowledge objects [Knorr-Cetina, 1997]).

ESAOA knowledge is isolated from other forms of implementation knowledge using

the definitions below. The first definition delineates the concept of routine

development tasks. The second definition describes implementation knowledge in
relation to these routine development tasks. The third definition explains artefact
organisation and adaptation (AOA) knowledge based on the first two definitions.

Thereafter, a concise definition for ESAOA knowledge, a specialised form of AOA

knowledge, is given.

Definition 3.1: Routine development tasks are low-level practices
common to projects in a certain field of development. An example of a
routine development task in the field of software development, for

instance, is writing code for a program procedure using a text editor.

Definition 3.2: Implementation knowledge is used by a developer to
incorporate a component into an incomplete product using development
tools, or to use development tools to adjust the ways in which a
component is built into a product (or part of a product). An example of
implementation knowledge would involve knowing the sequence of
operating system services to call in a function to configure an interrupt
service routine for a particular microcontroller. Implementation knowledge
builds on the broader and more fundamental knowledge used in routine

development tasks.

Definition 3.3: Artefact organisation and adaptation (AOA) knowledge
concerns an engineer’s understanding and ability to organise (i.e.,
classify and structure) implementation artefacts, as well as the engineer’s
understanding of and capability to adapt these artefacts during the
implementation of a product. Examples of AOA knowledge include
understanding the logic behind the structure of a project directory, and
knowing how a particular artefact was adapted to incorporate it into the

product being built.

From the definition of AOA knowledge above, a more refined version of AOA
knowledge restricted specifically to the implementation phase of an ES can be

created. This knowledge form is the primary area of interest of this study.

Definition 3.4: Embedded system artefact organisation and adaptation
knowledge (or ESAOA knowledge) is a specialised form of AOA
knowledge that concerns an ES engineer’s understanding and ability to
organise and adapt implementation artefacts during the implementation
phase of embedded system projects. ESAOA knowledge essentially

focuses on knowing how ESAOA activities are performed.

Examples of ESAOA activities were given in Section 1.1.7, which mentioned

activities of “creating a new C file to hold the start-up code”, “making a directory

called ‘Code’ to hold code files” and “saving the new file as ‘start.c’. Examples
of ESAOA knowledge, based on the aforementioned activities, would include
comprehending the logic behind naming the file ‘start.c’, reasons for placing the
file in the subdirectory named ‘Code’, and understanding of how code in the

‘start.c’ was implemented or adapted for the particular ES platform used.

3.2.2.2 Delimitation of time

An optimal timeframe for the study had to be developed. The first experiment
delimited the time to approximately three months. This was found to be an insufficient
time for complex ES product development. The timeframe for the second experiment
was thus extended to eight months. This was found to be sufficient for the first

iteration, or prototype building (see Chapter 5).

3.2.2.3 Delimitation of team size

An engineer’s knowledge of implementation tasks results from his/her underlying
skills that are essential to the field of development concerned [Caspi et al., 2005;
Grimheden & Torngren, 2005]. For example, in ES development, fundamental
software development skills include the engineer’s ability to write source code in a
particular programming language, as well as his understanding of how the source
code is turned into an executable object. The size of the ES development teams was
restricted as a means to simplify the study and possibly to reduce the number of
development techniques used in the project. Consequently, Experiment 1 comprised

teams of two member each (in order reduce issues of complexity related to team

3-8

dynamics, since the experiment was also a form of pilot study to establish the initial
KMS), whereas Experiment 2 comprised teams of three members each (in order to

investigate projects involving more complex team dynamics).

3.3 Research problems

A KMS exists for any form of knowledge work. A KMS ranges from being entirely
informal, invisible, and poorly understood, to being formalised, visible, and well
understood. A KMS also varies from being useful to the knowledge workers who use
it, to being an impractical system that is more of a hindrance than an aid to
knowledge work. The nature of a KMS raises a number of issues that need to be
addressed in developing appropriate research methods for studying KM. These
issues are elaborated on in the sub-sections that follow, highlighting significant

challenges that are likely to occur while researching KMS evolution.

3.3.1 Associative memory, time-limited knowledge, and repeated

learning

Product development projects, and in particular complex projects such as ES
development projects, draw on a significant amount of knowledge, a large portion of
which is produced while working on the project [Cross, 1994]. The research design
and data capturing methods need to consider this. Knowledge is produced through a
process of interpreting information, which occurs in a variety of learning activities,
such as reading, discussing, writing, and listening. However, the various ways in

which knowledge is produced poses challenges for the data capturing methods.

Once an individual has acquired knowledge, that knowledge will not necessarily be
retained by that individual for a long period of time. This is due to human memory
being associative, meaning that memories are recalled in response to stimuli
[Anderson & Bower, 1980]. A research method that was developed to address the
difficulty of tacit knowledge, or knowledge-locked-in-memory, is that of the
‘discourse-based interview’ [Odell et al., 1983], which uses stimuli to trigger
memories, such as using objects or documents to elicit memories of experiences that

involved that object.

Product development typically involves the use of many different types of information
sources from which knowledge is produced [Kettunen, 2003]. These information

sources include people (e.qg., colleagues or trainers), documentation (e.g., journals,

3-9

datasheets, manuals), and Internet resources (e.g., forums and blogs). Due to the
associative, and time-limited, nature of knowledge, knowledge workers need to use
such information sources so that they can reproduce knowledge used previously in
order to solve an immediate problem. This process of relearning knowledge may
involve reviewing the same information sources as used for the original instances of
learning, or studying alternative information sources (e.g., notes in a logbook, or
comments in source code) that contain sufficient information to trigger the memory
(or “to stimulate the mind to ... derive that knowledge” [Anderson & Bower, 1980, pg.
4]) and thus to reconstruct the original knowledge. Information sources, such as
paper or digital documents, emails, and talking to people, are not the only means, or
necessarily the only sufficient means, of reconstructing learning. Performing actions
and observing results, such as changing the configuration of a tool and seeing what
happens, are also means by which knowledge can be gained, or previously learned
knowledge relearned. For these reasons, the different phases and versions of

product development are useful data sources for KMS research.

Developers are generally aware of the time-limited nature of knowledge,
understanding, for instance, that a complicated task that took many hours to
complete, may have initially involved a significant amount of reading and
experimentation, and that this may need to be repeated due to the knowledge from
the original learning efforts being forgotten. For this reason, developers typically keep
copies of the information sources that they used, and often keep logs of procedures
that they used to solve problems. This recorded information not only saves time in
locating original information sources, but it may be essential in reconstructing
knowledge. For research purposes, the developers’ logs form an important data

source.

3.3.2 Information overload

The need to reproduce knowledge leads to developers justifiably retaining
documentation, saving web pages, making logs, archiving software tools, and
collecting email, amongst other tasks that involve retaining information. Although the
retention of information is highly desirable from a research point of view, it can have
some detrimental consequences for product development. For example, a developer
may become overwhelmed by the sheer amount of information retained for a project,
making the task of reproducing knowledge extremely time-consuming. This situation
is obviously worse for a developer maintaining a project developed by someone else
[Aman et al., 2006].

3-10

3.3.3 Research challenges: Confidence, confusion, and lost property

ES engineers involved in the complex process of developing embedded products do
not always have time to take perform tasks to facilitate research processes applied to
their work. This problem is particularly apparent when the design process is rushed,
as often happens close to a milestone delivery date. During the design process, there
are inevitably lost documents, unlogged changes, unrecorded trials, and other
activities that the researcher may not be made aware of. There are further
complications, in terms of the people studied, which can influence the research
process, such as the extent to which an engineer has read about the application
domain for the product (e.qg., for the development of medical systems, a developer
that has studied medical systems may be at an advantage over those who have not).
The researcher may also be unaware of the degree to which the engineers
understand, or are confused by, their own processes. Kamsties & Rombach [1997]
discuss these problems in depth in relation to researching requirements
specifications for ES; their recommendations have influenced the research design

described below (see Section 3.5 below).

This section has highlighted the research challenges, as well as ways in which these
were addressed. The next section explains in greater depth the research focus and

its associated sub-problems, research questions, and assumptions made.

3.4 Problem statement

This thesis argues that new projects that involve the development of novel ES
products can be facilitated by the application of a specialised KMS, namely the
ESAOA KMS, applied within the context of ESAOA activities. As specified in Section
3.2.2, this study focuses on the management of ESAOA knowledge performed during
ESAOA activities.

3.4.1 Research question

As described in Section 3.2, the research objective focuses on the construction,
evaluation and evolution of an experimental ESAOA KMS. Following the information-
focused stream of KM (defined in Section 2.4.2), the ESAOA KMS needs to be
structured appropriately for the effective capture, organisation, classification, and
dissemination of ESAOA knowledge. Based on the generic design of a KMS given in
Section 2.6.4, this means refining the various aspects of the KMS, such as the

3-11

people (or roles), activities and artefacts, so that the KMS as a whole can operate

effectively. The following question was accordingly composed to guide this research:

Research question:
What is an effective structure for the ESAOA KMS (i.e., the roles, activities,
artefacts, etc.) that will contribute to the successful completion of ES

implementation tasks?

3.4.2 Sub-problems

In order to gain further insight into answering the above research question, the
general problem statement, described at the start of Section 3.4, has been divided
into a set of related sub-problems, which will be used to investigate the research
question from different perspectives. Each sub-problem is described in the form of a
sub-problem statement, and is accompanied by a short explanation for its inclusion.
Each sub-problem was chosen to gain insights into directing the design of the
ESAOA KMS, such as contrasting the effectiveness of different KM approaches,
which in turn also help in gaining insights into how the research question can be

addressed.

1. lIdentify different forms of ESAOA knowledge: The information stream of
knowledge followed in this thesis (see Section 2.4.2) necessitates identifying
which forms of knowledge occur in projects and how different methods are
used to facilitate use of these dissimilar types of knowledge [Sveiby, 2000;
Nonaka, 1994]. Consequently, this thesis will investigate the various forms of
ESAOA knowledge that occur in ESAOA activities. Some ESAOA activities
may make heavier use of a certain type of ESAOA knowledge, which will
provide insights into specialised KM approaches for particular kinds of
ESAOA activities.

2. Determine the relative complexity of different ESAOA KM tasks: KM tasks
performed during some ESAOA activities may be more time consuming or
complicated than those executed in other activities. ldentifying the relative
difficulty of these KM tasks will highlight areas of the KMS that can be
optimised.

3. Establish the relative difficulty of ESAOA knowledge production associated
with different ESAOA knowledge forms (based on knowledge forms identified

in sub-problem 1): Some forms of ESAOA knowledge may be easier to

3-12

produce than others; knowing what forms of knowledge are more difficult to
produce will make it possible to optimise the KMS design.

4. Investigate how the time taken to complete different ESAOA activities may
vary, and what factors may contribute to these variations: A particular type of
ESAOA activity may take on average a much longer time to complete
successfully than other activities; identifying such activities will help to
optimise scheduling of tasks in designing the KMS.

5. Evaluate the relative frequency of different types of problem/solution
occurrences in which ESAOA knowledge is used: Some types of
problem/solution occurrences, or sequences of problem-solving tasks, may
tend to be more common than others. Insight into these will help in structuring
KM tasks.

6. Determine the portion of ESAOA activities that are incomplete or that have
been abandoned: Insights into these problems may indicate a lack of
knowledge producers or poor knowledge producer/consumer relations in the
KMS (as per the KM perspective presented by Milton [2005] and discussed in
Section 2.7.1). These findings can provide indications where the KMS needs
to be optimised, for example by providing team members additional training to
help with communication tasks.

7. Establish how the structure of a general KMS (see Section 2.6.4) is refined to
become an ESAOA KMS: This aspect focuses on refining the roles, groups,
activities and other aspects as laid out in Section 2.6.4. A means of modelling
the structure will be needed to aid explanations.

8. Determine implementation tasks that benefit the most from an ESAOA KMS:
When implementation tasks involve a variety of ESAOA activities, they can be
considered to be at a higher level. Identifying these general types of
implementation tasks makes it possible to produce higher-level guides to be
used in building a KMS.

3.4.3 Research assumption

It is assumed that the embedded software engineers will be able to use the ESAOA
KMS to learn, recall, and express ESAOA knowledge that occurs during the
implementation phase of embedded software development projects. This assumption
is based on the general case of ‘knowledge workers’ [Drucker, 1998] being able to
use a formalised KMS to learn, recall and express effectively the form of specialised
knowledge for which the formalised KMS has been designed. Embedded software

engineers are an example of such ‘knowledge workers’ [Conradi & Fuggetta, 2002].

3-13

3.5 Research design

The research design is intended to enable the study of the KM methods used by ES
engineers to manage ESAOA knowledge in the process of developing a product. The
scope of KMS evolution for the purposes of this thesis is limited to a single type of

knowledge worker, namely, ES engineers.

Empirical research methods were applied in two experiments, which are respectively
referred to as Experiment 1 and Experiment 2. The research methods are described
in detail in this section. The research methods were developed following an
experimental approach, which started by collecting data concerning KM methods
from case studies based on data collection techniques used by Cross [2000; 2004]
and Cross et al. [1996]. These techniques involved collecting data from a variety of
sources in order to represent a broad spectrum of observations of designers at work.
The data sources included minutes of meetings and records (e.g., reports) written by
the designers themselves, among other sources. This strategy was used to enable
observations to range “from the most direct contact with working designers to the
most abstract and theoretical, such studies include the following types: interviews
with designers, case studies of particular design projects, observations of designers
at work, and protocol studies of design activity, laboratory experiments based on

selected features...” [Cross 1990, pg. 130].

After data were collected from the first experiment, a preliminary study of the data
was performed. The preliminary study involved observation of the data, with support
from the literature, and influenced by approaches used by Cross [1994; 2004] and
Cross et al. [1996]. The objective of the preliminary study was the development of
data analysis methods for evaluating the KM techniques in the experiments (see

Section 4.2). Section 3.9 describes the data analysis method.

3.5.1 Research design for evolving the ESAOA KMS

The research process followed the progression of capturing data, analysing it, and
creating or refining the ESAOA KMS. The research design thus comprised a cycle of

the following three parts:

1. Data are obtained from an experiment;

2. Data are analysed in order to gain insights into the ESAOA KMS;

3-14

3. The KMS is refined based on the results of the analysis. The cycle then

repeats.

This cycle has been represented as the two separate but interacting phases of KMS
Framework Construction (referred to as the ‘C phase’) and KMS Analysis (referred to
as the ‘A phase’). Data obtained from experiments were fed into the A phase of the
cycle. As mentioned in Section 2.6.4, the framework of a KMS refers to the visible
aspects of a KMS, such as supporting artefacts, tools, and role descriptions. Thus
the C phase concerns obtaining and developing artefacts and documents that can be
used to establish a KMS within a project team, whereas the A phase involves

studying the resultant KMS in use by the team.

Two iterations of the A and C phases were performed for this thesis. Accordingly, two
experiments, referred to as Experiment 1 and Experiment 2, were carried out to
obtain data for the A phases. The preliminary study preceded the first A phase, and
was used to develop the data analysis and KM measurement procedures that were
later used in the A phases. Figure 3.2 illustrates the research design. As indicated in
the figure, the same data from Experiment 1 was used in both the preliminary study

and in the first A phase.

Ad hoc ESAQA data Ex 1 Preliminary study: Analysis of ad Design of initial ESACA
Activities = pture| Data Development of hoc ESADA KIS and canstruction of
Ad hoc KMS records Zﬁ;i:';;e:;:tlhﬁfg: | activities || its supporting KMS
(KMS version 0) ’ (1% A phase) framework
@ (1= C phase)
Experiment 1 /
3 __:': Directed ESAQA data Ex. 2 Analysis of Refinement to design
2 N Activities s Data directed of initial ESAQA KIMS
@: gapture records ESAQA and its supporting
g Activities KMS framework -
et @ y (20 4 phase) (24 C phase) Refined

ESAOA KMS
/ \ (KMS version 2)
Compare ratings of project
Experiment 2 Product Prototypes Artefact and Prototype L, artefgcts . ;:?rotot\?p ejs
podiatieracts assessment with KM results for éach

project

Figure 3.2: Research design for studying evolution of the ESAOA KMS.

The research began with Experiment 1 (see top left of Figure 3.2), which involved
capturing data related to ad hoc KM strategies used by ES engineers during ESAOA
activities. These ad hoc KMS strategies are represented in Figure 3.2 as the ad hoc
KMS (or KMS version 0), which had no predefined design or framework. The ESAOA

3-15

activities are represented in Figure 3.2 as a block containing circular arrows
(representing activities that the developers performed in the). Experiment 1 continued

for three months.

Experiment 1 was followed by the preliminary study (see Section 4.2) in order to
develop the analysis techniques applied in the first A phase. The first A phase was
carried out using the same data as that used in the preliminary study. After this, the
first C phase was carried out (the block on the top right of Figure 3.2), which involved
designing the initial ESAOA KMS (or KMS version 1, shown as the gears on the
bottom left of Figure 3.2), together with developing the tools and artefacts of its
supporting KMS framework. This initial KMS framework comprised the artefacts and
support structures that were part of the more coherent and visible ESAOA KMS,

based on the ad hoc KM practices observed in Experiment 1.

After the initial ESAOA KMS had been constructed, Experiment 2 began, with 13
separate ES development teams using the KMS. This experiment continued for a
period of eight months, in which the ESAOA activities were directed by means of the
initial ESAOA KMS. At the end of the experiment, each team perform a product
demonstration (see Section 3.8.6) and project artefacts of each team were assessed
(see Section 3.12) — these assessments were later used to compare the quality of
project artefacts, the product prototypes and the results obtained from the analysis
phase. After this, the second iteration of the A phase was done, during which the
data from Experiment 2 were analysed. The second C phase was subsequently
carried out to develop a refined version of the initial ESAOA KMS, which was referred
to as the refined ESAOA KMS (or ESAOA KMS version 2, illustrated by the gears on
the bottom right of Figure 3.2). This refined ESAOA KMS provides a starting point

that can be used in future projects.

The subsections that follow elaborate on the description of the experiments and the

design of the various versions of the ESAOA KMS.

3.5.2 Overview of Experiment 1

As illustrated in Figure 3.2, Experiment 1 consisted of first capturing the data from ad
hoc ESAOA activities, then analysing these activities, and lastly constructing the
tools and other structural aspects (see Section 2.6.4) of the initial ESAOA KMS
based on the results of the analysis. In this experiment, two ES product development

projects were carried out by two separate teams of ES engineers, each of which

3-16

used their own ad hoc KM methods. The selection criteria for the ESAOA activities,
sites, and participants used in the experiments are described in Section 3.6. Ethical
considerations related to the experiments are description in Section 3.7. The data
collection, data analysis, and data synthesis methods are respectively elaborated in
Sections 3.8, 3.9, and 3.10.

3.5.3 Construction of the initial ESAOA KMS

The initial ESAOA KMS was developed in two steps. The first step involved exploring
design strategies, modelling methods, and listing resource needs (i.e., identifying the
parts needed for the KMS framework). This step also involved a requirements
analysis [Kirikova & Grundspenkis, 2000; Broomé & Runeson, 1999] of the KM
needs in projects, in addition to formulating the ESAOA modelling language (see
Section 3.11) that would be used to describe the design of the initial ESAOA KMS.

The second step involved designing and implementing the structural aspects (i.e. the
KMS framework) of the initial ESAOA KMS; this included selecting appropriate
resources and software tools, as well as writing executable scripts and software
programs to facilitate use of the ESAOA KMS.

3.5.4 Overview of Experiment 2

The initial ESAOA KMS was set up in each of the 13 ES teams who participated in
Experiment 2, and the data were captured from this experiment over a period of eight
months. The data were then studied in order to improve upon the initial ESAOA KMS,

thus generating the refined ESAOA KMS and its accompanying framework.

3.5.5 Construction of the refined ESAOA KMS

Through a synthesis of the Experiment 2 data (detailed in Section 3.10), the effects
of using the ESAOA KMS became clearer. KM methods that were either effective or
ineffective were identified, and these findings were used to change the design of the
initial ESAOA KMS in order to create a more refined ESAOA KMS, while also making

corresponding changes to the underlying KMS framework.

3.6 Selection criteria: ESAOA activities

This section presents the selection criteria for the experiments (i.e., the ESAOA
activities as shown in Figure 3.2 above), together with the summarised design briefs,

the research sites, the choice of research participants, and the choice of reviews for

3-17

artefacts and prototype demonstrations. The section begins with a detailed overview
of the ESAOA activities as research experiments, and motivates for the value of
experimentation in obtaining sound empirical evidence related to ES KM methods
[Kamsties & Rombach, 1997].

3.6.1 ESAOA project selection and project briefs

The development projects in Experiments 1 and 2 involved teams of novice
engineers developing novel ES products. According to Cross [2004], novice
designers typically follow more ‘depth-first’ practices than the ‘breadth-first’
approaches used by experienced individuals; accordingly, this research looks only at

novice engineers (as emphasised in Section 1.6).

The selection criteria for ESAOA activities in both experiments were largely the
same. For example, in both experiments the ES products had to be non-trivial, being
of a type that might in fact be developed commercially. The conditions of
development were thus made similar to those of commercial projects; however, due
to the delimitations of this study, together with the time and budgetary constraints, a
highly accurate simulation of a typical commercial context could not be attained. In
both experiments, the engineers were required to install an embedded operating
system, to program device drivers, and to write ES application code that used the
device drivers and operating system services, which are commonly undertaken in
commercial projects (see Section 2.2). These tasks are complex and encompass
many activities generally found in knowledge work (see Section 2.7.4), including
activities such as researching components (e.g., reading datasheets), looking for and
understanding examples (e.g., finding and reading sample code), and testing

development solutions (e.g., integrating and running sample code).

The projects followed similar stages in both Experiment 1 and Experiment 2, which
are listed below. The first five stages occurred before the experiment proper was
started. Data concerning ESAOA activities began to be captured at stages seven,
and continue until stage twelve. The entire sequence took three months in the first

experiment and eight months in the second. The stages are as follows:

1. Teams were organised.
2. The products were conceptualised through participant brainstorming and
emailing of ideas.

3. Contracts were developed and specific projects assigned to teams.

3-18

4. Requirements were specified — teams worked on their specifications and met
with the researcher to refine the requirements (all teams made a start at this
stage to obtain reference documentation, such as looking up information
related to the specific application domain for their proposed product).

5. Review 1: the first code and design review was conducted a two to three
weeks after the teams had decided on a prototype to construct (this review
focused on checking that the developers had a clear idea of what they
planned to do, and to what extent they had creative ideas of how to do it).
Teams received feedback from the researcher during and after this review.

6. The high-level design process was applied.

7. Implementation commenced, and the experiment proper was started (i.e. data
were captured from ESAOA activities).

8. Review 2: the second code and design review of each team occurred shortly
after the team had made the transition from working on the high-level design
(such as block diagrams and UML class diagrams) toward working mainly on
the implementation (e.g., building circuits and writing embedded software).
Teams also received feedback during and after this review.

9. Product parts were integrated,;

10. Review 3: the third review only occurred in Experiment 2 (as a refinement to
the analysis process). The third review did not involve any face-to-face
meetings; instead the researcher closely scrutinised project artefacts.
Feedback of this review was not given to the teams.

11. Product demonstration took place, comprising a simulated acceptance test.

12. A review of the subsystems, components, and tools used was conducted

(using a requirements check sheet). The experiment ended at this point.

Table 3.1 provides a list of the ESAOA activities studied, together with a brief
description of each project and a motivation that explains why and how it
approximates an actual commercial project. The numbering of the projects reflects
whether they were done as part of the first or second experiment. Projects related to
Experiment 1 (from which ESAOA KMS version 1 was constructed) were given
project numbers P1-1 and P1-2. Projects related to Experiment 2 were numbered P2-
1 to P2-13.

3-19

Table 3.1: Overview of the projects studied in Experiment 1 and 2.

Project | Project Title Project Description Motivation

No.

P1-1 Software Signal Programmable signal generator, able to Similar to products used

Generator (SoSiG) communicate and to be programmed using a | by commercial
standard ASCII terminal over a serial developers.
interface.
P1-2 Antenna Controller Control system to control and monitor the Based on an existing
(ANTCON) azimuth and elevation of an antenna RADAR control system
pedestal. Connects to parent radar control used in military
computer over TCP/IP using Ethernet. applications.
pP2-1 Location-aware Tourist | The Tourist Information System is a global Similar to the idea of
Information System positioning system (GPS) device that allows | GPS-type navigation
(TIS) a tourist to determine his/her current position | systems in wide use.
and provides relevant information about the
current area.
p2-2 GPS Bus Stop A GPS-based device that gives the closest Idea to extend GPS
Navigator (GBT) bus station to the current position and the navigation system for
time of the next bus to a given destination. use with public
Provides a function to show the optimal path | transportation.
to the final destination.

P2-3 Vibynet A ‘Vibynet piece’ is a compact electronic Product to be used by a
device carried or worn by people. It has an wide range of private
identity code and allows storage of other individuals, similar to a
identity codes used to recognise other ‘beeper’ product.
Vibynets pieces in the vicinity. Features:
shows recognised identity codes, direction,
distance, call.

P2-4 MyIP Phone Station The voice over internet protocol (VolP) Product similar to a

(MPS) answering machine with video is a stand- commercial telephone
alone (non-PC) system that connects answering machine.
directly to your Ethernet. Answers any VolP
calls not answered manually within a certain
time limit.

P2-5 Home Automation Consists of a central unit that connects to Builds on the idea of

System (HAS) other systems/household products around ‘intelligent home’
the house, such as input devices (keypads products and service
and sensors, etc.), and output devices (LCD | (see http://www.
screens, linear actuator, etc.). intelligenthome.com.au/)

P2-6 Automation System will sense a bright on-coming light Similar to DIY Kits

Headlights Dimmer source and dim headlights until the light advertised in Popular

(AHD) source has passed. Mechanics magazines.

P2-7 Field Sensor for Based on the idea of using electromagnetic | A type of off-the-shelf

Maglev Trains (FSMT) | fields to levitate and drive high speed trains. | component that a
Focused on a system for sensing development company
electromagnetic fields and telling other may buy.
systems.

P2-8 Cordless Stereo (CST) | A stereo that has no speakers but outputs Similar to commercially
digital audio for connection to Blue Tooth available Blue Tooth
headphones. products.

P2-9 Central Alarm Clock Main controller based in a common room in | Similar in concept to

(CAC) the home. Has buttons that correspond to burglar alarm systems,
rooms in the house. Remote control to help | which are commonplace
parents wake kids up without moving an products.
inch. Communicates over AC power lines.

P2-10 Voice Activation Voice recognition system to Similar to automatic

System (VAS)

activate/deactivate/control electrical
appliances (e.g. TV's, lights).

dimmer switches that
are readily available.

3-20

http://www.%20intelligenthome.com.au/
http://www.%20intelligenthome.com.au/

P2-11 Supermarket Query Device communicates with supermarket Comparable to
Device (SQD) server, which holds database of items on electronic information
special. Lets user browse through current directory found in
specials, locate items of interest. shopping centres.
p2-12 Personal Protection Has one button that can be used to set off A product that could
Device (PPD) an alarm to notify campus/site security replace a standard panic
people that a certain individual, at a certain alarm system.
location, is in danger so that the closest
security officers can be sent to the rescue.
Device is small enough to attach to ID swipe
card or to wear around neck.
P2-13 Vehicle Usage Tracker | Affordable vehicle usage monitoring kit (for Could be sold as a DIY

(VUT)

DIY installation). Displays real-time car
statistics, such as average speed and fuel
consumption. Colour display and audio
warning system.

kit, like others currently
advertised in Popular
Mechanics magazines.

3.6.2 Site selection

An ES laboratory, rather than a workplace, was chosen as the main site for the

experiments. Conditions were created (including project meetings, deadlines, code

and design review meetings and demonstrations [Jurison, 1999; Schach, 2005]) that

would closely simulate conditions likely to be encountered in a commercial

development context.

Laboratory conditions make it possible to ensure consistency and conformity across

the experimental projects in terms of team size, role allocation, task difficulty, access

to resources — and other factors that would impact on the reliability and validity of the

research findings and the robustness of the knowledge produced by the research

process [Brennan & Gupta, 1993; Torngren et al., 2007]. The logistics of managing

the activities of 15 different teams are clearly facilitated by the laboratory conditions.

The choice of the laboratory as a site was also made for ethical reasons, namely to

ensure the confidentiality of individuals and organisations, and to protect their

intellectual property rights (see Section 3.7). For the same reason, simulations done

in the laboratory were studied, rather than actual work done in private organisations.

Although all the developers worked mainly in the laboratory, they also had the option

to take work home with them (however, they were not permitted to take any of the

laboratory equipment or embedded platforms out of the lab). Work outside the lab

was thus limited to activities such as coding and web searches (in Experiment 2,

those developers who had chosen to do some project work outside the lab installed

the necessary tools for the ESAOA KMS on their own computers).

3-21

3.6.3 Selection of embedded platform, cross-compilers, and IDE

The ES development process (elaborated in Section 2.2) involves using one or more
microprocessor or microcontroller architectures, together with a collection of software

development tools, which are used in conjunction with these processors.

In order to improve consistency in the results of this study, the same processor
architecture was used in all projects in both experiments. In Experiment 1, the
developers could choose their own cross-compiler tool chain (provided it was based
on the open-source GNU Compiler Collection [GCC, 2008a]), embedded operating
system and integrated development environment (IDE). However, in Experiment 2 all
teams started with the same cross-compiler tool-chain, embedded operating system
and IDE, as these aspects had been fixed by the initial ESAOA KMS. In both
experiments, the developers were permitted to add other types of development tools
to supplement the prescribed tools, such as computer-aided software engineering
(CASE) tools to assist software development, and computer-aided design (CAD)
programs for drawing schematics. Experiment 2 developers could furthermore modify
or upgrade the development tools that were provided with the initial ESAOA KMS
framework. This was permitted, as it was expected that the use of certain peripherals
by a team might necessitate adapting the tools as well as making changes to other
artefacts provided with the initial ESAOA KMS.

The cross-compilers and IDEs were required to be free or open-source programs that
had versions available for Linux. All the embedded software was consequently built
using cross-compilers that executed under the Linux operating system. Linux-based
tools were chosen so that they could be installed on a centralised server and
accessed remotely by the developers. This strategy was followed to facilitate remote
access as well as to ensure that the project repositories and development tools were
all kept in a centralised store (and so that it would thus be easy for the researcher to
obtain a copy). In Experiment 2, an added advantage of this strategy was that it
helped to reduce the lengthy process of installing and configuring the initial ESAOA

KMS framework on each developer’'s computer workstation®.

' In Experiment 2, developers were permitted to spend extra time configuring their own
personal desktop or laptop computer with Linux and the same set of tools for the ESAOA
KMS. These team members were responsible for ensuring that additional tools and resources
they used on their own computers were not lost once the experiment ended.

3-22

3.6.3.1 The CSB337 embedded platform

The CSB337 evaluation board from Cogent Computers [2005] was used as the
embedded platform in all projects. The CSB337 contained an ARM9-based
microcontroller, specifically the AT91RM9200 manufactured by ATMEL [ATMEL,
2005]. The Advanced Risk Machine (ARM) architecture was chosen because none of
the participants in the experiments had prior experience with this architecture. The
CSB337 is illustrated in Figure 3.3.

Different application-specific hardware devices were used in the projects studied.
This hardware was connected to the CSB337 board via standard hardware
interfaces, such as SPI [Davis, 2008] and RS232 [Catsoulis, 2002], which were

provided on the evaluation board.

Figure 3.3: The CSB337 evaluation board produced by Cogent Computers.

3.6.3.2 GCC cross-compiler tool-chains

The GNU Compiler Collection (GCC) cross-compiler tool chain was used as the
primary software development tool for all the projects. Two specialised versions of
the GCC were prepared for use in Experiment 2; both versions were tailored for

3-23

compatibility with the AT91RM9200 microcontroller and the CSB337 evaluation
board. The first version of the GCC (namely ‘gcc-arm9tdmi’) was prepared for
compiling code that could run without an underlying embedded operating system, i.e.
it was loaded and executed directly from the MicroMonitor boot monitor [Sutter,
2002]. The second version of the GCC (called ‘arm-linux-gcc’) was prepared for
compiling code that executed on an embedded Linux operating system, namely
uCLinux produced by SnapGear [SnapGear, 2007]. Both versions of GCC were
initially prepared by developers in Experiment 1 as part of their projects; both teams
independently chose the ‘GCC crosstool’, a framework developed by Kegel [2007]

that assists in customising and building GCC tools for a wide range of processors.

Both versions of the GCC were rebuilt by the researcher and incorporated into the
initial ESAOA KMS; they were integrated in a way that allowed them both to be used

in a similar manner (from the command line).

In the laboratory, for both experiments, the central server ran Knoppix [Knoppix,
2009] (version 3.4 was used for Experiment 1 and version 3.6 for Experiment 2).
Each computer workstation in the lab could dual-boot either Linux? or Microsoft
Windows XP. The developers could access the central server and run X-windows

tools [Scheifler & Gettys, 1986] from either operating system?®.

3.6.3.3 Integrated development environment

The ‘KDevelop’ integrated development environment (IDE) [Gehrmann et al., 2004]
was used by all projects (in Experiment 1 both teams had independently chosen this
IDE, and it was consequently integrated into the initial ESAOA KMS). In Experiment
2, the developers had the choice of using either KDevelop or using the compiler tools
directly from the command line (i.e., running make and text editors from the

command line in a Linux terminal).

3.6.4 Participant selection

The participants are referred to as novice engineers in this thesis. The participants
were all registered students in the electrical and computer engineering (ECE)
programme at the University of Cape Town (UCT). Experiment 1 teams comprised

undergraduate university students in their fourth year, each working on an embedded

? Debian 3.0 ‘woody’ was used for Experiment 1 and Ubuntu 4.10 for Experiment 2.
8 Regardless of which operating system the developers booted, they used their lab
workstation as a front-end to the same Linux-based tools running on the central server.

3-24

system as part of their final year project (Appendix D.1 further details these teams).
Experiment 1 comprised two teams of two members each. Experiment 2 teams
comprised undergraduate university students in the third year, all enrolled in the
embedded systems (EEE3074W) third year course at UCT (Appendix D.2 gives
further details of the participants). Experiment 2 involved 39 students, divided into
thirteen teams of three members each.

Experiment 1 used fourth year students because the third year embedded systems
course had not yet been created at the time of the first experiment. Participants in
both experiments were enrolled in the ECE programme. All participants completed
the same set of first and second year core courses, including the prerequisites
courses specified for EEE3074W, which ensured that all the participants had the

necessary competencies to work on the embedded systems projects.

The fourth year students of Experiment 1 had an advantage that they had already
completed the third year courses, with the exception of the embedded systems
course (EEE3074W) that did not exist at the time (they took an alternative elective
course in its place). This plan was intentional for two main reasons. Firstly, this study
focuses on management of ESAOA knowledge — a skill that none of the participants
in either experiment received formal training in. Secondly, the results of the ESAOA
KMS would be strengthened (rather than diminished) if it is found that Experiment 2
participants, who had generally received one year less university education than the
other participants, were found to achieve better results (i.e., if third years did better at
managing knowledge with the KMS, despite the fourth years’ additional year of
education, it would then be clear that the KMS had beneficial influences).

3.6.5 Reviewer selection

The prototype and artefacts produced by each team were assessed. This provided a
means to compare the overall quality of artefacts and prototypes produced by each
team to the KM results of the team. This review process was divided into two parts:
1) assessment of requirements and artefacts using the requirements check sheet
(e.g., rating the final version of code modules and design documents); and 2)
evaluation of the final prototypes using a demonstration check sheet. The
assessment criteria were based on the literature; see Section 3.8.6 for details. The
review panel performed both assessments; this panel comprised of two individuals:
the research and an electrical engineering Masters student with embedded systems

experience. The second reviewer was included to reduce subjectivity, and to broaden

3-25

inputs, during reviews (this process was inspired by Briggs [1992] and Zingheim &
Schuster [1995]).

3.7 Ethical considerations in the ESAOA activities

All the developers involved in the study were emailed a letter (see Figure 3.4),
requesting that they agree to be part of the research project, and informing them that
their anonymity would be maintained. The participants were assured that
confidentiality will be maintained, and that their contact details would not be made
public, and that any institutional or organisational affiliation they might have (besides

an affiliation to the University of Cape Town) would not be specified.

The projects were structured as simulations, performed separately from other
projects that the participants may have been involved with. In addition, the teams all
worked within time limits (not more than an average of one day per week over a
period of eight months) in order to ensure that the research activities did not interfere

overly much with their other work.

Dear Sir/Madam:

Thank you for agreeing to participate in my PhD study. | will
undertake to ensure your confidentiality by not revealing your
name, contact details, or institutional/organisation affiliation. You
are entitled to withdraw from this research project at any time.

By return of email please indicate your consent to participate in the
research. Please feel free to raise any issues or concerns with me.

With thanks

Simon L Winberg

Figure 3.4: Consent letter emailed to participants in Experiments 1 and 2.

3.8 Data collection

Similar data collection processes were used in the first and second experiments. As
mentioned in Section 3.5, this process of capturing of data from ESAOA activities
was influenced by Cross [2000] and Cross et al. [1996]; the specific methods that
were used are described in the subsections that follow. The data capture methods

have been specialised towards the ESAOA activities described in Section 1.1.7.

3-26

There were seven main sources of data, namely: 1) code and design reviews; 2)
email archives; 3) forums; 4) project meetings; 5) developer logs; 6) product
demonstrations; and 7) End-of-project surveys. These data sources are detailed in
Sections 3.8.1 to 3.8.7 respectively, and limitations of these data capture methods

are described in Section 3.8.8.

3.8.1 Code and design reviews

There were two code and design reviews per project in Experiment 1 and three in
Experiment 2 (i.e., 43 reviews all together); the reviews are referred to as Review 1
to Review 3. These took the form of both on-line collaboration and face-to-face
meetings between the researcher and the members of the project teams (many of
which correspond to meeting listed in Section 3.8.4) — except for the third review, in
which teams either emailed a selection of artefacts to the researcher, or allowed the
researcher to access their team artefacts remotely. Most of design reviews 1 and 2
were conducted in person between the researcher and team members, otherwise an
on-line collaborations tool was used, namely “Yahoo! Instant Messenger’ [Yahoo!
Messenger, 2004]. Digital design documents were accessed when needed via
network file sharing.

The data produced in these reviews included notes of researcher-team member
correspondence, documentation regarding code and design changes, activity logs,
rating forms (for Experiment 2 only) and memos recording allocation of further tasks
and responsibilities to team members. Figure 3.5 is an example of an activity log,

showing the tasks carried out by team members.

| Person |Hrs Title Description
1 |James* |1 Meeting 1 Meet to discuss project requirements and
+ Mary* how to split the workload.

2 | James 1.5 | Task breakdown | Perform task breakdown as per project
requirements

3 | Mary 0.5 | CVS repository | Set up the CVS repository for the group

*All names are pseudonyms, to preserve the anonymity of participants

Figure 3.5: Example of activities log.

3-27

In Experiment 2, the researcher performed a quantitative rating of each team’s

deliverables for each design review.

The first review involved evaluating the overall creativity of the concept prototype
proposed by the team; the proposed functionality and elegance of the planned
prototype was also judged at this review (Appendix B.4.1 shows the evaluation form
used). The criteria used for evaluating creativity were based on properties of creative
projects described by Runco & Pritzker [1999], Sefton-Green & Sinker [2000], and
Sophia [2006] — these properties were for projects in general; for the purpose of this
study they were made specific to the ES field and expressed as rating criteria.

The second review concerned evaluating the design (a sample of the evaluation form
is provided in Appendix B.4.2). The evaluation criteria were largely based on work by
Douglass [1999], Liu [2000] and Schach [2005]. During the second design review,
participants were asked to orally comment on knowledge production methods and
information sources that they used in their project. Each team was asked to respond
to the same set of three questions, which were designed to respectively gain insights
into production of data knowledge, process knowledge, and innovation knowledge. A
time limit of ten minutes was given to these questions. The researcher used
handwritten point-form notes to record responses to the questions (Appendix B.5
presents a scanned copy of the question form). After the last design review, the
researcher investigated all the notes and compiled a list of commonly occurring
responses to each question (these are reported on in Section 5.4.1.2). These
questions were handled orally to avoid team members spending valuable project time
making sense of survey questions, possibly misunderstanding the question, and

writing unclear responses (likely to necessitate follow-up meetings).

The third review involved evaluating artefacts, such as code files and prototype
enclosures (see Appendix B.4.3 for the evaluation form used). The third review
meeting was not held in person; instead the researcher was emailed artefacts or
given remote access to project artefacts. The evaluation criteria chosen for this
evaluation were based on a combination of techniques; these comprised: metrics that
could be implemented quickly to rate code [Kan, 2002]; textbook- and teaching-
based methods to rate schematics, circuits and other design artefacts (specifically,
based on guidelines explained by Nelson et al. [1995] and Mano & Ciletti [2006]);
other artefacts (e.g., reports and logs used to record procedures) were also

evaluated using more general principals (specifically, methods to assess quality of

3-28

specification documents [Davis et al., 1993], following the general guideline provided
by Schach [2005] that states the quality of software relates to the extent to which its
specifications are met). Change or additions to the default ESAOA support tools (i.e.,
ESAOA scripts and programs) provided in baseline workspaces were noted.
Determining changes to baseline scripts/programs were done using the GNU find
utility program [GNU, 2008b], and additional scripts were found by comparing file
listings in the Tools directory of the baseline team workspace and the team’s
modified team workspace. The third code and design review did not evaluate the
quality of artefacts in the final product; this was done after the demonstrations using
the requirements check sheet (see Section 3.8.6).

3.8.2 Email archive

Email correspondence between the development teams and the researcher were
archived. In Experiment 1, 42 emails were archived, and in Experiment 2 460. Figure

3.6 provides a sample.

Date: 15 Augqust 2005 20:17 PM
Subject: PCF 8591 for Project 3

Hi Simon. o
We have a few problems with using the pcf3591 as a dac. Firstly, the datasheets

specify thatto use it one has to first send an address BYTE, then a control

BYTE which is followed by a DAC outout BYTE. This is fine, and it makes sense,

butwe can'tfind which pins we would assign to send these bytes.

which pins would we send the address byte to?

We can'treally find this from the datasheets or the internet :{

Help appreaciated...

Figure 3.6: Example of email message (email #283) stored in the email archive.

3.8.3 Group forums

Three on-line forums were used in Experiment 2, namely a ‘Project Discussion
Forum’, a ‘Development Forum’, and a ‘General Forum’. These forums allowed
engineers to post questions relating to the specific project, or to issues with product
development, or to raise general concerns. These forums could be accessed by all
the participants in the study; any one of the participants could read and respond to
postings (Figure 3.7 shows a sample posting). Data obtained from these three group

forums comprised 527 postings. A forum was not used in Experiment 1.

3-29

> Forums

Reply to Thread | B4 Mark Al as Read | Lg]

Forums / Project Discussion

View | Thread

Team 3 - femail address removed] (May 20, 2005 10:14)
E4

Hi,

< Previous Thread | Next Thread >

po any of you have or know if a uCTinux driver or program exists for the

DsS1505 RTC <clock?

Thanks!

3.8.4 Project meetings

EflReply | % Other Actions

Figure 3.7: Example of a posting from the ‘Project Discussion Forum’.

Each of the project teams held meetings to clarify development tasks, to assign (or

re-assign) responsibilities, and to track progress. There was variation in the number

of project meetings held, with some teams meeting more frequently and others less

frequently. Data obtained from project meetings took the form of informal minutes,

notes, and/or memoranda. Table 3.2 lists the meetings, indicating their focus and the

date on which they were held.

Table 3.2: Project meetings.

Project | Meeting | Focus of meeting Date
No. No.
P1-1 1 Meeting to clarify project brief of the Software Signal 10-Jun-04
Generator (SoSiG) product, and to meet team members.
2 Initial planning meeting. 14-Jun-04
3 Progress meeting. 11-Aug-04
P1-2 1 Meet to clarify project brief for the Antenna Controller 7-Jun-04
(ANTCON) product, to meet team members and to
discuss their roles.
2 Planning meeting and division of development tasks. 14-Jun-04
3 Progress report meeting. Refine concept design, and 11-Aug-04
focus for development tasks. Initial code design review.
4 Meeting with researcher to discuss progress, focus. 13-Sep-04
5 Final code and design review. Focused largely on Linux | 30-Sep-04
driver for DAC device.
P2-1 1 Introduce team and assign roles. Discuss plan for the 14-Mar-05
Location-aware Tourist Information System.
2 Meeting to clarify concept of location-aware tourist 23-Mar-05
information system and division of work.
3 First progress report. Review breakdown and task 19-Jul-05
allocation. Discuss problem of GPS module interfacing.
4 Second progress report. 29-Sep-05
p2-2 1 Meet members; discuss GPS bus stop navigator idea. 17-Mar-05

3-30

2 First status review meeting, plans for prototype. 20-Jul-05
3 Second status review meeting. 27-Sep-05
pP2-3 1 Clarify project brief for VibyNet concept. 14-Mar-05
2 First review meeting. 19-Jul-05
3 Second review meeting. 30-Sep-05
P2-4 1 Assign roles to team members and introduce the VolP 15-Mar-05
answering machine concept.
2 First review meeting. 21-Jul-05
3 Second review meeting. 30-Sep-05
P2-5 1 Introduce team, assign roles discuss overview of Home 17-Mar-05
Automation System concept.
P2-6 1 Introduce members (3™ member absent), discuss plan 10-Mar-05
for prototyping the Automation Headlights Dimmer
concept. Decide on team leader and responsibilities.
2 Meet with 3 member to discuss project and his 15-Mar-05
involvement.
3 A second review meeting was not performed as a team N/A
member was ill.
pP2-7 1 Introduce team and the Magnetic Field Sensor System. 14-Mar-05
2 First review meeting, refine plan for prototype. 20-Jul-05
3 Second review meeting. 29-Sep-05
P2-8 1 Introduction of team members, allocate roles, overview 17-Mar-05
of Cordless Stereo concept.
2 First review meeting. 19-Jul-05
3 Second review meeting. 27-Sep-05
P2-9 1 Initial meeting, introduce members, assign roles, discuss | 15-Mar-05
central alarm clock concept.
2 First review meeting. 18-Jul-05
3 Second review meeting. 27-Sep-05
P2-10 1 Meet group, clarify the Voice Activation System (VAS) 17-Mar-05
concept.
2 First review meeting. 21-Jul-05
3 Second review meeting. 27-Sep-05
P2-11 1 Initial meeting. Introduce team members and discuss the | 18-Mar-05
Supermarket Query Device concept.
2 First review meeting. 18-Jul-05
3 Second review meeting. 03-Oct-05
pP2-12 1 Initial meeting to meet members and discuss brief of the | 15-Mar-05
Campus Protection Device (CPD) concept.
2 First review meeting. 22-Jul-05
3 Second review meeting. 30-Sep-05
pP2-13 1 Initial meeting to introduce members and discuss 18-Mar-05
overview of the Vehicle Usage Tracker (VUT) concept.
2 First review meeting. 21-Jul-05
3 Second review meeting. 26-Sep-05

3.8.5 Developer logs

All engineers kept logs of the major problems that they encountered, as well as trial

solutions (solutions completed but later found to be ineffective or inappropriate and

then replaced) and final solutions (solutions that were not later replaced) — or, in

some case, dead-end solutions (i.e. possible solution that were started on but not

completed and later abandoned).

3-31

There were 15 primary logs (one log per project), with some project teams keeping
multiple logs (logs kept by individual developers that were later either submitted in
addition to the primary log or added to the primary log before it was submitted).
Some developers kept digital logs in the form of spreadsheets or text documents (as
illustrated by Figure 3.8), but most teams used log books or A4 paper to record hand-

written records.

PID | Problem Solution / Comments Time
(h)
1 What components should | Searched internet, requested prices from | 2.00
be used for interface supplier
board?

2 How should the files be Keep work files on local workstation, use | 0.10

managed? samba to copy back/forth from server

3 Problem mounting samba | Recompiled kernel on developer PC 2.00

4 How to connect up Connected RS232 to port 0, needed 9 0.20

CSB3377? pin Female D connector. Eth crossover
cable.
5 How to communicate with | Need a terminal program for Linux. Had | 0.50
CSB337 over RS232? short look, but no luck. Try again later.

15 Power supply problems Power supply seems faulty. Testing it. 1.40

16 Replace power supply Replaced power supply, some time to 0.50
find replacement.

17 Compiling Snapgear Found snapgear linux. Seems better. 5.00
Decided to toss emdebian. Attempting to
compile snapgear. Gives errors.

31 Gave up on Snapgear Searched Snapgear fixes; decided to 1.00
give up on it after not finding anything
useful.

32 DC motor interface Researching DC motor drive 1.00
33 AC-DC circuit Constructed AC-DC circuit prototype on 2.10
breadboard.

34 AC-DC circuit Problem with AC-DC circuit; rebuilt it 3.00

Figure 3.8: Example of developer log.

3.8.6 Product demonstrations and project evaluations

Each team demonstrated their product on completion. Table 3.3 provides the

schedule of demonstrations for Experiment 1, and Table 3.4 below is the schedule
for Experiment 2. Each demonstration took between 30 to 60 minutes. All team
members participated in the demonstration. The demonstrations were given to the
review panel, which comprised the researcher and the second reviewer (an electrical
engineering Masters student with embedded systems experience). Teams did not

watch one another’'s demonstrations.

3-32

In addition to a basic introduction, each development team was expected to explain
their methods, tools and components that they used. For Experiment 2, each team
was permitted to use their ESAOA KMS during the demonstration and when

answering questions. Figure 3.9 is a photograph of a typical demonstration set-up.

Table 3.3: Schedule of Experiment 1 demonstrations.
12 November ‘04 | Project | 14 October ‘04 Project
15h00 P1-1 15h00 P1-2

Table 3.4: Schedule of Experiment 2 demonstrations.

13 October ‘05 | Project | 14 October ‘05 | Project
09h00 P2-4 09h00

10h00 P2-13 10h00 P2-6
11h00 P2-8 11h00 P2-5
12h00 P2-3 12h00 P2-7
14h00 P2-9 14h00 P2-10
15h00 P2-12 15h00 P2-11
16h00 16h00 P2-1

The demonstration data comprised a demonstration check sheet (Figure 3.10), a
requirements check sheet (Figures 3.11 and 3.12). Both types of check sheets
included categories that were awarded numerical ratings between zero and a
maximum value (indicated on the sheet). Space for additional comments was
provided. All criteria of the demonstration check sheet were given rating values
between 0 and 10. The ratings were chosen to develop a quantitative assessment of
the final prototype and how well the team was able to demonstrate their prototype,
and, in the case of the requirements check sheet in particular, a numerical value
indicating the quality, organisation and access of artefacts. These values were also
used as a means to compare the resultant products and artefacts between projects.

3-33

Figure 3.9: Example of ES prototype set up for a demonstration.

The demonstration check sheet was completed in rough by researcher during the
product demonstrations, and then the researcher and second reviewer discussed
and agreed upon the final ratings in private after each demonstration. The agreed
upon ratings for each team was then entered into a final digital version of the
demonstration check sheet. Figure 3.10 shows the final demonstration check sheet
for Project P2-6.

The demonstration check sheet comprised sixteen criteria, each criterion rated from
0 (for entirely lacking), 1 to 4 (to indicate a level of poor performance), 5 in indicate
mediocre performance, 6 to 9 (for good performance) and 10 (to indicate excellence).
As shown in Figure 3.10, descriptions are included or each criteria and ratings.

The requirements check sheet was completed by the review panel after the
demonstration. A similar procedure as to the one used for the demonstration check
sheet was used in deciding ratings of the requirements check sheet; to be specific,
the researcher completed a draft version of the check sheet and the ratings were
then discussed with the second reviewer, and if necessary modified, to reach agreed

upon ratings for each criterion.

3-34

The requirements check sheet provides a broader set of rating criteria. A different
rating strategy was also implemented for this check sheet; criteria that were more
important were given higher maximum rating values. The maximum rating value was
approximately based on the amount of effort involved in providing a solution for that
requirement. For example, in Figure 3.11, the schematic was given a maximum
rating of 30, whereas the responsiveness of the system was given a maximum rating
of 3. The requirements check sheet was used to rate the construction of the product,
the quality of the product, its operation (Figure 3.11), and the quality and organisation
of its design artefacts (Figure 3.12).

The structure of the requirements check sheet, and the evaluation of the
requirements, were based on theories of embedded and real-time systems by Liu
[2000] and Douglass [2000], and on evaluation methods described by Briggs [1992].
The check sheet had to maintain a level of generality, as the same criteria were to be
used with a variety of different products, not all of which had the same set of
requirements. Consequently, the specific items in the requirement check sheet
include issues that are generally considered important concerns for embedded
system products (as identified by Liu [2000] and Douglass [2000]), namely,
robustness, predictability and timeliness (which have accordingly been included in
the requirements check sheet). The weighting for each set of criteria (e.g., 44% for
functional requirements) are approximately based on the relative effort involved in
satisfying the corresponding aspects of the product (these estimations are broadly
based on work by Blackburn et al. [1996] and Ko et al. [2007a]).

3-35

Team Number: [

DEMONSTRATIONS CHECK SHEET

For each criterion below, please tick one of the boxes to the right that most closely corresponds to your impression of the team's performance. Note that boxes
to the left indicate poorer performance, boxes to the right indicate better performance.

CRITERIA POOR REASONABLE EXCELLENT
Rating value i 2 3 4 5 6| 7 & El 10
Readiness Tick o box: s

{Did you think the team was suitably prepared
for this demonstration?)

Team is poorly prepared. Had to wait for
them to configure things at the start of the
demo.

better =
< WOrse

Team very well prepared. Prototype all set-up at start.
They have to wait for them to fixing things at the
beggining.

Project Summary

Explanations were hard to follow / illogical.

Order Tick o box: | | | ‘ | | v
@ | Poorly sequenced. Difficult to follow and netter > |Well sequenced. Follows a logical sequence of steps
4 |{Did the demo follow a good sequence?) . o .
§ understand logic of the steps of the demo. <worse ({j e builds from objective towards experiment and
L |Flow Tick a box: | | | | ‘ | v |
g . Poor flow. Stops and starts. Presenters did Good flow. Presentation progressed smoothly.
£ {How was the transition between parts of the better =
demo?) not hand over well from one to the other. < worse |PrEsENteErs hand over from cne to another elegantly.
) Wasted time fixing things. Didn't have to spend time fixing things.
Time keeping Tick a box: | | | | ‘ | | v
Poor time keeping. Spent way too long on bt Good time keeping. The team balanced their time
{How good was the team at time keeping?} unimportant issues and far too little time on jm:rs'e well, focusing most of the presentaion on showing and
the main parts. explaining results.
Clarity Tick a box: | | | ‘ v | |
Incomprehensible / illogical. Speakers spoke | better > |Well delivered and understandable. Speakers spoke
(How clear were the speakers?) i
too softly, <worse |clearly.
Explanation Tick o box: | | | | ‘ v | |
{How good were explanations of the project better =

All explanations were very clear and understandable.

concepl?) < warse
Description Tick @ box: | | | ‘ | | v
. Descriptions were incomprehensible. Eg. Did o .
{How good were descriptions of what was to be better = |All descriptions and explanations were wel! delivered

tested in the demonstration?)

not describe the componets used. Did not
point things out in the setup.

< waorse

and understandable.

Setup

Explanation Tick o box:

7

{How good were explanation of how the
prototype was setup/configured in terms of
things to test)

Explanations were hard to follow / illogical.
Did not understand how things had been
configured for the experiment.

better >

< worse

All explanations were very clear and understandable.
Easy to follow how the setup has been configured for
the particular experiment to be done.

Description Tick a box:

v

(How good were descriptions of the various
components)

Descriptions were incomprehensible. Eg. Did
not describe or point out componets to be
used in the setup.

better >
< Worse

Descriptions were well delivered, items were poited
out.

Method Tick a box:

[-~ 1T]

(How well was experimental procedure . petter > |Well presented procedure. Use of diagrams (e.g. flow
= X Poorly described procedure. i ~ R
6 |described?) <worse [diagram) Lo help explanation.
32 Experiment results Tick o box: | | ‘ | | v
g {How well were experiment results shown?} Results were largely invisible or difficult to Results very clearly shown and easy to interpret.
‘T |Analysis/interpretation of results Tick a hox: | | ‘ | | v
g . . . Procedure for analysis the results clear (note: this may
% |(Additional procedures or discussion concerning |Resuits poorly analysed, or no analysis or better > L o
) } have already been given "setup explanation’). Clear
the results) conclusions given. < worse o
description of what the results mean.
o |Explaination of code Tick a box: | | | | ‘ | v |
§ {Team is asked to discuss an important signal Team doesn't seem to understand their own| better » [Team understand their own code well and can explain
processing and/or driver routine) code. Code is very untidy. <worse [what it does. Code appears tidy and commented.
Recommendations Tick o box: | | | | ‘ v | |
{Team is asked to discuss improve