

An Embedded System Artefact Organisation and

Adaptation Knowledge Management System for

Embedded System Product Prototyping

A thesis submitted to the Department of Electrical Engineering,

 University of Cape Town, in fulfilment of the requirements

for the degree of

Doctor of Philosophy

at the

UNIVERSITY OF CAPE TOWN

by

Simon L Winberg
BSc (CS), BSc (Hons) (CS) (University of Cape Town), MSc (CS) (University of Tennessee)

Supervisors:

Professor S. Schach (Vanderbilt University)

Professor M. Inggs (University of Cape Town)

Doctor M. Linck (University of Cape Town)

University of Cape Town

December 2010

 iiii

Declaration

I, Simon L. Winberg, declare that the contents of this thesis represent my own

unaided work, and that this thesis has not previously been submitted for academic

examination towards any degree in any other university.

Signature of Author

Department of Electrical Engineering

Cape Town, December 2010.

 i

To my parents

Thanks for your patience, motivation and generous support

 ii

Acknowledgements

I would like most sincerely to thank Professor Stephen Schach for his continued

support, excellent feedback, guidance, and constructive approach to research

supervision. Many thanks to Professor Michael Inggs for his constant support, many

considered opinions, and assistance in acquiring resources, organising project teams

and connecting me with collaborators in the field. Thanks to Dr Michael Linck,

particularly during the early parts of this project while the thesis was planned,

research strategies considered and project teams structured, as well as for his part in

evaluating project teams.

Thanks to Professor Martin Braae, Head of the Department of Electrical Engineering

in 2005, and Professor Trevor Gaunt, Head of Department in 2006, for the provision

of equipment, laboratory space, and funding for additional hardware. I am grateful to

the UCT and the UCT Postgraduate Funding Office for university research

scholarships.

My thanks to Dr Alan Langman (of the KAT / SKA Project) for his collaboration in

organising and evaluating the project teams. Thanks to Peter Golda and Allen Wallis

(both of the KAT / SKA Project) for their input and willingness to listen to my ideas.

Thanks to David George, Nico Gevers, Thomas Davies, Kalen Watermeyer and

Richard Lord for their feedback and testing of some of my tools and ideas. Thanks to

Regine Lord for her assistance in administrative issues. I also express gratitude to

the many members of the Radar and Remote Sensing Research Group for

discussions about my thesis, for providing an enjoyable and collegial environment,

and their general involvement and interest in my work.

 iii

Abstract
This thesis presents an innovative approach to knowledge management (KM) from

the perspective of embedded system (ES) development, a form of development that

is highly knowledge intensive and depends on specialised forms of knowledge

obtained from a variety of complex knowledge artefacts. This study follows an

experimental methodology that involves integrating a knowledge management

system (KMS) into ES product prototyping projects, in order to facilitate KM of a

specific form of knowledge, namely embedded system artefact organisation and

adaptation (ESAOA) knowledge. ESAOA knowledge is produced during ESAOA

activities, which concern organising artefacts that are used to construct an ES and

techniques by which engineers adapt and learn from these artefacts. The focus of

this thesis is narrowed to determining an effective structure for the ESAOA KMS that

facilitates successful completion of ES implementation tasks. This thesis

consequently contributes to KM research at a meso level of operations.

The research methodology involved constructing an experimental KMS, named the

ESAOA KMS, which comprises a structured collection of knowledge worker roles,

processes, and artefacts together with a collection of support tools. A pilot study was

first performed to gain insights into research methods and the KM needs of the users.

These research methods were published in order to improve them further and to

confirm their validity. Next, an initial version of the ESAOA KMS was built. This KMS

was applied by development teams in the context of ES prototyping projects. The

data obtained from this experiment were evaluated to develop a refined version of

the ESAOA KMS, and to draw conclusions for this research.

Findings from this research included the following: defining different forms of ESAOA

knowledge; establishing evaluation methods for KM of ESAOA activities; identifying

conditions that enable a KMS to facilitate ESAOA activities; assessing the factors

that affect ESAOA KM activities; determining different types of KM needs that

occurred in projects, and showing that the ESAOA workspace approach was an

effective means to integrate the knowledge worker roles, processes, artefacts and

support tools of the ESAOA KMS.

 iv

The conclusion of this thesis identifies situations in which the ESAOA KMS was

found to be beneficial, as well as conditions where the KMS was of little use or

possibly added to the difficulty of completing ESAOA activities. Generally, for the

projects investigated in this study, the ESAOA KMS was of the least benefit to users

during simple activities (a term defined in the thesis, which essentially relates to tasks

where the needed knowledge was obtained in a trivial manner or produced by

following easily remembered or routine procedures). However, users working on

complex activities (which are activities that draw on knowledge obtained previously in

the project through prior non-trivial procedures) made extensive use of the ESAOA

KMS. In such situations, the ESAOA KMS was shown to provide benefit to these

complex activities. In particular, the ESAOA workspaces improved conformity of

artefact classification and location, and assignment of the KMS roles made it easier

for team members to assign responsibilities, to divide knowledge work among each

other, and to guide knowledge production.

Further research plans that follow on from this thesis include broadening the scope of

the ESAOA KMS to support additional phases of the development lifecycle (e.g., the

requirements phase), conducting a study focused on KM for ES innovation, and

establishing a method for incrementally phasing the ESAOA KMS into longer-term

on-going projects.

 v

List of Acronyms

ADC Analogue to digital converter

ANTCON Antenna controller

AO Artefact organisation

AOA Artefact organisation and adaptation

AOD Artefact organisation drawing

API Application Programming Interface

ARM Advanced RISC Machine

CASE Computer-aided software engineering

CKO Chief knowledge officer

CKS Communal knowledge steward

CR Component researcher

DK Data knowledge

DS Data steward

ES Embedded system

ESAOA Embedded system artefact organisation and adaptation

FA Framework analysis

FC Framework construction

GCC GNU computer collection

GPRS General packet radio service

GPS Global positioning system

GUI Graphic user interface

HDL High-level description language

HTML Hypertext mark-up language

IC Integrated circuit

 vi

 vii

IDE Integrated development environment

IE Innovation engineer

IK Innovation knowledge

IPC Inter-process communication

KB Knowledge base

KET Knowledge event type

KIT Kit for Information Technology

KM Knowledge management

KMS Knowledge management system

NPK Non-productive knowledge

PC Personal computer

PE Process engineer

PK Productive knowledge

PK Process knowledge

PTHC Partitioned Time History Calculator

SoSiG Software Signal Generator

TL Team leader

TM Team member

UDP User datagram protocol

UML Unified modelling language

URL Uniform Resource Locator

VAS Voice Activation System

VoIP Voice of Internet Protocol

VUT Vehicle Usage Tracker

WA Workspace administrator

 viii

Contents

Declaration .. i
Acknowledgements ... iii
Abstract ... iv
List of Acronyms .. vi
Contents ... viii
List of Figures .. xvii
List of Tables .. xx
Chapter 1: Introduction ... 1-1

1.1 Terminology and definitions ... 1-1

1.1.1 Embedded systems and embedded software development 1-2

1.1.2 ES products and prototypes .. 1-2

1.1.3 Computer engineering and embedded engineers 1-2

1.1.4 Tasks and activities ... 1-3

1.1.5 Implementation tasks .. 1-4

1.1.6 Implementation artefacts and soft/hard artefact classification 1-5

1.1.7 ESAOA activities ... 1-6

1.1.8 Data, Information and Knowledge ... 1-7

1.1.9 Knowledge management .. 1-8

1.1.10 Knowledge management systems ... 1-9

1.2 Rationale: a KMS for ESAOA activities .. 1-9

1.2.1 The growing demand for embedded software 1-10

1.2.2 The rapid expansion of knowledge .. 1-10

1.2.3 Knowledge management as a potential means to facilitate embedded
software development ... 1-11

1.2.4 The need for an ESAOA KMS ... 1-12

1.3 Thesis Objective .. 1-13

1.4 Problem Statement .. 1-14

1.5 Focus ... 1-15

1.5.1 Focusing on new product development ... 1-15

1.5.2 Focusing on product prototyping during a proof-of-concept 1-16

1.5.3 Focusing on ESAOA activities related to component integration 1-16

1.6 Delimitations .. 1-17

1.6.1 Task-oriented ESAOA activities .. 1-18

1.6.2 Level of developers ... 1-19

1.6.3 Team size and composition ... 1-19

1.6.4 Number of experiments and case studies 1-19

1.6.5 Time-frame for case studies .. 1-20

1.6.6 Products developed .. 1-20

1.7 Thesis Structure ... 1-20

1.8 Summary ... 1-21
Chapter 2: Literature review: Knowledge management and embedded system
engineering ... 2-1

2.1 Methodology of the literature review ... 2-1

2.2 The ES development process .. 2-4

2.3 Inefficiencies of ES development ... 2-7

2.3.1 General software engineering difficulties ... 2-7

2.3.2 Complex and lengthy learning processes .. 2-7

2.3.3 The value and temporality of intellectual capital 2-8

2.3.4 Decentralised development, speed of obsolescence and availability of
new technology ... 2-8

2.3.5 Embedded software maintenance issues .. 2-8

 ix

2.4 Knowledge Management Terminology ... 2-9

2.4.1 The Data, Information and Knowledge (D-I-K) Hierarchy 2-9

2.4.1.1 Data, information and knowledge scenario 2-10

2.4.1.2 Knowledge acquisition and limitations of the D-I-K hierarchy 2-11

2.4.1.3 Tacit and explicit knowledge ... 2-12

2.4.1.4 A definition of knowledge and where knowledge resides 2-12

2.4.2 Knowledge management (KM) .. 2-13

2.4.2.1 Knowledge-focused vs. information-focused streams of KM 2-13

2.4.2.2 The overall goal of KM .. 2-14

2.4.3 Knowledge Processes ... 2-14

2.4.4 Knowledge Flows .. 2-15

2.4.5 Knowledge Forms ... 2-16

2.5 A typology of KM .. 2-16

2.5.1 Transactional KM .. 2-19

2.5.2 Analytical KM .. 2-19

2.5.3 Management of knowledge assets .. 2-19

2.5.4 Process-based KM .. 2-20

2.5.5 Developmental KM .. 2-20

2.5.6 Innovation management .. 2-20

2.6 Knowledge management systems (KMSs) ... 2-21

2.6.1 The two principle uses of a KMS ... 2-22

2.6.2 Growth of a KMS ... 2-22

2.6.3 Establishment and evolution of a KMS .. 2-23

2.6.4 Structure of a generic KMS ... 2-25

2.6.5 Visibility of a KMS ... 2-26

2.6.6 Framework of a KMS .. 2-27

2.7 Roles of people involved with KM ... 2-27

2.7.1 Knowledge suppliers and knowledge consumers 2-27

2.7.2 Chief Knowledge Officer (CKO) .. 2-28

2.7.3 KMS user .. 2-28

2.7.4 Knowledge worker .. 2-29

2.7.5 Change agent ... 2-29

2.7.6 Knowledge engineer ... 2-29

2.7.7 Knowledge steward ... 2-30

2.7.8 Knowledge analyst .. 2-31

2.7.9 Knowledge broker ... 2-31

2.8 KM in technical product development ... 2-32

2.8.1 Managing development teams and their knowledge 2-33

2.8.1.1 KM steering committee ... 2-33

2.8.1.2 Communities of practice .. 2-33

2.8.1.3 Team learning ... 2-34

2.8.1.4 Team knowledge sharing .. 2-34

2.8.1.5 Distributed teams .. 2-35

2.8.1.6 Sub-contracting ... 2-35

2.8.2 KM tools for managing individual and team knowledge 2-35

2.8.2.1 Training workshops ... 2-35

2.8.2.2 Yellow Pages .. 2-35

2.8.2.3 Performance analysis .. 2-36

2.8.2.4 Responsibility charts ... 2-36

2.8.2.5 Status tracking .. 2-37

2.8.2.6 AI tools .. 2-37

2.8.2.7 Shared buffers .. 2-37

2.8.3 Managing information in technical development projects 2-38

2.8.3.1 Issues in information management.. 2-38

2.8.3.2 Tools for information management .. 2-39

 x

2.8.4 Managing knowledge of technical development processes 2-42

2.8.4.1 Development process knowledge: the input, in-situ and output
knowledge types ... 2-42

2.8.4.2 Input, in-situ and output knowledge in embedded software
development projects .. 2-43

2.8.4.3 Approaches to software engineering processes
improvement ... 2-44

2.8.4.4 Issues in software processes KM .. 2-44

2.8.4.5 Tools for managing knowledge of software development
processes ... 2-49

2.8.5 Managing innovation in technical product development 2-51

2.8.5.1 Management of innovation issues in product development 2-53

2.8.5.2 Tools for managing innovation in product development 2-54

2.8.6 Dealing with information overload ... 2-56

2.8.6.1 Dimensions of information overload .. 2-57

2.8.6.2 Addressing information overloading with infomediary tools 2-57

2.9 Conceptual framework for researching a KMS 2-58

2.10 Summary and conclusion ... 2-60
Chapter 3: Researching embedded system artefact organisation and adaptation
(ESAOA) knowledge .. 3-1

3.1 Key concepts ... 3-2

3.1.1 ESAOA knowledge ... 3-2

3.1.2 Towards a study of directed KMS evolution 3-3

3.1.3 Directed KMS evolution ... 3-3

3.2 Research objective: A KMS for ESAOA activities 3-4

3.2.1 Specific objective: Moving from an ad hoc to a formalised KMS 3-5

3.2.2 Scope and delimitation: ESAOA during component integration 3-6

3.3 Research problems .. 3-9

3.3.1 Associative memory, time-limited knowledge, and repeated learning 3-9

3.3.2 Information overload ... 3-10

3.3.3 Research challenges: Confidence, confusion, and lost property 3-11

3.4 Problem statement ... 3-11

3.4.1 Research question .. 3-11

3.4.2 Sub-problems.. 3-12

3.4.3 Research assumption ... 3-13

3.5 Research design .. 3-14

3.5.1 Research design for evolving the ESAOA KMS 3-14

3.5.2 Overview of Experiment 1 ... 3-16

3.5.3 Construction of the initial ESAOA KMS ... 3-17

3.5.4 Overview of Experiment 2 ... 3-17

3.5.5 Construction of the refined ESAOA KMS .. 3-17

3.6 Selection criteria: ESAOA activities .. 3-17

3.6.1 ESAOA project selection and project briefs 3-18

3.6.2 Site selection... 3-21

3.6.3 Selection of embedded platform, cross-compilers, and IDE 3-22

3.6.4 Participant selection .. 3-24

3.6.5 Reviewer selection .. 3-25

3.7 Ethical considerations in the ESAOA activities 3-26

3.8 Data collection ... 3-26

3.8.1 Code and design reviews .. 3-27

3.8.2 Email archive .. 3-29

3.8.3 Group forums .. 3-29

3.8.4 Project meetings ... 3-30

3.8.5 Developer logs .. 3-31

3.8.6 Product demonstrations and project evaluations 3-32

 xi

3.8.7 End-of-project survey .. 3-38

3.8.8 Limitations of the data capture methods .. 3-41

3.9 Data analysis ... 3-41

3.9.1 Overview of data analysis ... 3-42

3.9.2 Systematising the data (step 1) ... 3-43

3.9.3 Categorising knowledge events by knowledge type (step 2) 3-45

3.9.4 Mapping problems and solutions (step 3) .. 3-46

3.9.5 Categorising productive vs. non-productive knowledge (step 4) 3-46

3.9.6 Finalizing the knowledge register (step 5) 3-48

3.9.7 Analysing trends ... 3-50

3.9.8 Analysing other forms of data .. 3-55

3.10 Data synthesis ... 3-56

3.11 The ESAOA Conceptual Modelling Language .. 3-58

3.11.1 ESAOA modelling atoms ... 3-59

3.11.2 Connectors ... 3-63

3.11.3 Spaces .. 3-66

3.11.4 Comments and constrains... 3-66

3.11.5 External processes and artefacts .. 3-67

3.12 Comparing artefact and prototype quality with KMS analysis results 3-68

3.13 Conclusion ... 3-69
Chapter 4: First experiment findings and ESAOA KMS version 1 4-1

4.1 The First Experiment .. 4-2

4.2 Preliminary study to establish the data analysis method 4-3

4.2.1 Denoting artefacts and ESAOA activities in the data 4-3

4.2.2 Verification of KM models ... 4-3

4.2.3 Problem-solution cycles .. 4-5

4.2.4 Trivial and non-trivial solution cycles ... 4-8

4.2.5 Knowledge events ... 4-11

4.2.6 Knowledge event types (KETs) ... 4-11

4.2.7 Data, process and innovation knowledge categories 4-12

4.2.8 Productive and non-productive knowledge categories 4-14

4.2.8.1 Definition of non-productive and productive knowledge 4-15

4.2.8.2 Using dead-ends to determine non-productive knowledge 4-16

4.2.8.3 Backwards tracing to classify knowledge events as productive or
non-productive ... 4-16

4.2.9 Productive time and non-productive time .. 4-18

4.2.10 Knowledge event chains ... 4-18

4.2.11 Visualizing event chains using event chain graphs 4-19

4.2.12 Development of the KMS analysis strategy 4-21

4.3 Results ... 4-21

4.3.1 Results of data synthesis (step 1): Initial knowledge registers 4-21

4.3.2 Results of categorising knowledge events (step 2) 4-22

4.3.3 Results of problem/solution mapping (step 3): Event chains and event
chain tables ... 4-22

4.3.4 Categorising knowledge events according to productive and non-
productive knowledge (step 4) ... 4-25

4.3.4.1 Classifying knowledge events as productive or non-productive 4-25

4.3.4.2 Calculation of non-productive and productive time 4-26

4.3.5 Finalizing the knowledge registers (step 5) 4-27

4.4 Trend analysis and graphing .. 4-28

4.4.1 Results of P1-1 (SoSiG) .. 4-30

4.4.1.1 Productivity graphs .. 4-30

4.4.1.2 Productive and non-productive time summary tables 4-33

4.4.2 Results of P1-2 (ANTCON) ... 4-34

4.4.2.1 Productivity graphs .. 4-34

 xii

4.4.2.2 Productive and non-productive time summary tables 4-36

4.4.3 Synopsis of Experiment 1 results .. 4-37

4.5 Design of the second iteration of framework analysis 4-38

4.5.1 Refinements to data capture methods for Experiment 2 4-39

4.5.1.1 Focusing on the knowledge-rich data sources 4-39

4.5.1.2 Changing the unit of analysis to event chains 4-40

4.5.1.3 Data capture supporting event chains 4-41

4.5.2 Changes to the analysis methods ... 4-41

4.5.2.1 Refinements of data synthesis methods 4-41

4.5.2.2 Refinements to graphing methods.. 4-43

4.5.3 Establishing a basis for comparison between experiments using
knowledge occurrences ... 4-43

4.5.3.1 Knowledge occurrence tables and graphs for P1-1 (SoSiG)..... 4-43

4.5.3.2 Knowledge occurrence tables and graphs for P1-2 (ANTCON) 4-48

4.5.4 Overall results of Experiment 1 in knowledge occurrences.............. 4-51

4.6 First application of framework construction: ESAOA KMS version 1 4-51

4.6.1 Overview of ESAOA KMS version 1 .. 4-52

4.6.2 ESAOA workspaces and workstations .. 4-55

4.6.2.1 ESAOA workspaces ... 4-55

4.6.2.2 ESAOA workstations .. 4-56

4.6.3 The ESAOA knowledge ontology .. 4-59

4.6.3.1 Levels of the ESAOA knowledge ontology 4-60

4.6.3.2 Top-level terms of the ESAOA knowledge ontology 4-60

4.6.3.3 Knowledge artefacts and boundary artefacts 4-62

4.6.3.4 Evolving the ESAOA knowledge ontology 4-62

4.6.4 Roles .. 4-63

4.6.4.1 Representation of roles in the ESAOA modelling language 4-64

4.6.4.2 General relations between the roles ... 4-64

4.6.4.3 Maximising support for the IE using a feed-forward approach .. 4-65

4.6.5 ESAOA artefacts for knowledge representation and transfer 4-67

4.6.5.1 Artefact form classifications: hard and soft artefacts 4-68

4.6.5.2 Artefact functionality classifications and functionality hierarchy 4-69

4.6.5.3 Artefact role and workspace classifications 4-72

4.6.5.4 Artefact organisation .. 4-74

4.6.5.5 Specialised KM artefacts .. 4-76

4.6.6 ESAOA KM workflows and processes ... 4-79

4.6.6.1 Processes of the chief knowledge officer (CKO) 4-79

4.6.6.2 Processes of the communal knowledge steward (CKS) 4-81

4.6.6.3 Processes of the team leader (TL) ... 4-81

4.6.6.4 Processes of the data steward (DS) ... 4-82

4.6.6.5 Processes of the process engineer (PE) 4-83

4.6.6.6 Processes of the innovation engineer (IE) 4-84

4.6.7 Software design of ESAOA workspaces .. 4-86

4.6.7.1 ESAOA scripts and tools .. 4-87

4.6.7.2 The Kit for Information Technology (KIT) 4-89

4.6.7.3 The central server and the networking infrastructure 4-89

4.6.8 Implementation and distribution of ESAOA workspaces 4-90

4.6.8.1 Implementation of the ESAOA communal workspace 4-91

4.6.8.2 ESAOA team and personal workspace 4-96

4.6.8.3 ESAOA workstation distribution ... 4-97

4.6.8.4 Sample installation of ESAOA workspaces 4-98

4.7 Towards Experiment 2 ... 4-99
Chapter 5: The Second Experiment .. 5-1

5.1 Overview of the second experiment ... 5-1

5.2 Results of the second experiment .. 5-3

 xiii

5.2.1 P2-1 Location-aware Tourist Information System (TIS) 5-5

5.2.2 P2-2 GPS Bus Tracker (GBT) ... 5-10

5.2.3 P2-3 Vibynet ... 5-15

5.2.4 P2-4 MyIP Phone Station (MPS) ... 5-19

5.2.5 P2-5 Home Automation System (HAS).. 5-23

5.2.6 P2-6 Automation Headlights Dimmer (AHD) 5-27

5.2.7 P2-7 Field Sensor for Maglev Trains (FSMT) 5-31

5.2.8 P2-8 Cordless Stereo (CST) ... 5-35

5.2.9 P2-9 Central Alarm Clock (CAC) ... 5-39

5.2.10 P2-10 Voice Activation System (VAS) ... 5-43

5.2.11 P2-11 Supermarket Query Device (SQD) .. 5-48

5.2.12 P2-12 Personal Protection Device (PPD) .. 5-53

5.2.13 P2-13 Vehicle Usage Tracker (VUT) ... 5-56

5.3 Summary of knowledge occurrences.. 5-60

5.4 Evaluations of artefacts, prototypes and demonstrations 5-61

5.4.1 Evaluations of code and design reviews .. 5-62

5.4.1.1 Results from evaluation forms ... 5-62

5.4.1.2 Comments from knowledge production questions 5-65

5.4.1.3 Notes from design review 3 ... 5-67

5.4.2 Review panel’s evaluations ... 5-67

5.4.2.1 Demonstration check sheet results ... 5-68

5.4.2.2 Requirements check sheet results .. 5-69

5.5 Comparisons .. 5-70

5.5.1 Comparing requirements and demonstration check sheets scores .. 5-70

5.5.2 Comparing design reviews ratings to check sheet scores 5-71

5.5.3 Comparing design reviews to knowledge production statistics 5-72

5.5.3.1 Comparing code and design reviews to productive knowledge
occurrences .. 5-72

5.5.3.2 Comparing code design reviews to knowledge occurrences 5-74

5.5.4 Comparisons with productive innovation knowledge 5-75

5.5.4.1 Comparing productive innovation knowledge and averaged scores
for check sheets ... 5-75

5.5.4.2 Comparing productive innovation knowledge to demonstration
check sheet scores ... 5-76

5.5.4.3 Comparing productive innovation knowledge to requirements check
sheet scores ... 5-76

5.5.5 Comparing check sheet scores and knowledge occurrences 5-77

5.5.6 Comparing check sheet scores and proportions of knowledge 5-78

5.6 Team members’ evaluation of ESAOA KMS .. 5-79

5.6.1 Quantitative data: 5-point scale rankings ... 5-79

5.6.2 Qualitative data: comments from participants 5-82

5.6.2.1 Difficulties ... 5-82

5.6.2.2 Benefits ... 5-82

5.7 General conclusions for ESAOA KMS version 1 5-83

5.7.1 Summary of knowledge occurrences .. 5-84

5.7.2 Process knowledge components: role, logistics and innovation
knowledge ... 5-86

5.7.3 Comparison of Experiments 1 and 2 ... 5-88

5.7.4 Trends noted from application of ESAOA KMS (version 1).............. 5-90

5.7.4.1 Emerging relationship between innovation knowledge and
quality of prototype ... 5-90

5.7.4.2 Emerging trends across event chains 5-92

5.7.4.3 Progression towards innovation .. 5-93

5.7.5 Variables that affected the ESAOA KMS (version 1) 5-97

5.7.6 Effect of the ESAOA KMS (version 1) ... 5-99

 xiv

5.7.7 Study of knowledge forms contributed by roles 5-99

5.7.8 Tool versus component knowledge occurrences 5-103

5.7.9 Logistics and role process knowledge ... 5-105

5.8 Implications for ESAOA KMS version 2 .. 5-107

5.8.1 ESAOA distribution ... 5-107

5.8.1.1 ESAOA tools – technical installation guidelines (version 2) 5-107

5.8.1.2 Increased flexibility in ESAOA tools (version 2) 5-107

5.8.2 ESAOA roles ... 5-108

5.8.2.1 Training ... 5-108

5.8.3 ESAOA technical manual .. 5-108

5.8.4 ESAOA project management .. 5-108

5.8.5 Team workspace ... 5-109

5.8.6 Towards ESAOA version 2 .. 5-109
Chapter 6: ESAOA KMS version 2 ... 6-1

6.1 Overview of ESAOA KMS version 2 ... 6-2

6.1.1 Use of ESAOA workspaces and workstations 6-3

6.1.2 Changes to roles and role support structures 6-3

6.1.2.1 Reducing priority of innovation and flattening role hierarchy 6-4

6.1.2.2 Towards a bi-directional flow of innovation 6-4

6.1.3 Revised roles and artefact classifications .. 6-6

6.1.3.1 Component researcher (CR), workspace administrator (WA) 6-6

6.1.3.2 Revisions to the PE and IE roles .. 6-6

6.1.3.3 Revision to the TL role ... 6-8

6.1.3.4 Role extension ... 6-8

6.1.4 Upgrading of support tools .. 6-9

6.1.5 Improving ESAOA documentation ... 6-9

6.2 ESAOA knowledge ontology .. 6-9

6.2.1 Additions to the ESAOA knowledge ontology 6-10

6.2.2 Evolving the ESAOA knowledge ontology 6-11

6.2.2.1 Maintaining the lower level of the knowledge ontology 6-11

6.2.2.2 Maintaining the upper level of the knowledge ontology 6-11

6.3 ESAOA version 2 workspaces ... 6-13

6.3.1 Definition of an ESAOA workspace ... 6-13

6.3.2 Definition of an ESAOA workstation .. 6-14

6.3.3 ESAOA workspaces implementation and access levels 6-15

6.3.4 Installing workspaces using ESAOA distributions 6-17

6.3.5 GUI installation tool for ESAOA personal workspaces 6-18

6.3.6 ESAOA version 2 distribution support documentation 6-19

6.3.7 ESAOA version 2 workspace directory structures 6-20

6.3.8 The knowledge base within ESAOA workspaces 6-22

6.4 ESAOA support tools ... 6-23

6.4.1 The ESAOA file classification (fclass) tool 6-24

6.4.1.1 Review of version 1 of fclass .. 6-25

6.4.1.2 Version 2 of fclass and addition of the PEP service 6-27

6.4.1.3 Speeding-up the operation of fclass using the PEP service 6-28

6.4.1.4 Operation of the PEP service ... 6-30

6.4.1.5 Improvements to the CSV files for storing file metadata 6-30

6.4.1.6 The fclass HTML generator mode .. 6-32

6.4.2 Addition of the hotspot logging (hsl) tool .. 6-33

6.4.3 Improvement to the esaoa-project tool .. 6-36

6.4.4 Tools for synchronizing team and personal workspaces 6-36

6.4.5 Workstation-side scripts .. 6-37

6.5 ESAOA roles .. 6-38

6.5.1 The WA and CR roles ... 6-39

6.5.2 Chain of command .. 6-40

 xv

6.5.3 Role responsibilities .. 6-41

6.5.4 Division of labour in development team ... 6-45

6.5.5 Role interrelations and workspaces ... 6-47

6.6 ESAOA Processes ... 6-49

6.6.1 Processes of the chief knowledge officer (CKO) 6-49

6.6.2 Processes of the communal knowledge steward (CKS) 6-51

6.6.3 Processes of the team leader (TL) .. 6-52

6.6.4 Processes of the component researcher (CR) 6-55

6.6.5 Processes of the process engineer (PE) ... 6-56

6.6.6 Processes of the workspace administrator (WA) 6-59

6.6.7 Processes of the innovation engineer (IE) 6-60

6.7 Artefacts ... 6-62
Chapter 7: Conclusions and Future Work ... 7-1

7.1 Response to research questions and sub-problems 7-2

7.1.1 Sub-problem 1 response: Different forms of ESAOA knowledge. 7-3

7.1.2 Sub-problem 2 response: The relative complexities of ESAOA KM
 tasks were found to differ ... 7-4

7.1.3 Sub-problem 3 response: Difficulty of producing different forms
 of ESAOA knowledge varied .. 7-4

7.1.4 Sub-problem 4 response: the time to complete ESAOA activities
 depends on their complexity, their dependence on other activities and the
 provision and understanding of KMS support ... 7-6

7.1.5 Sub-problem 5 response: developers encounter similar types of
 ESAOA KM problems and solutions in different projects 7-9

7.1.6 Sub-problem 6 response: although dead-ends did occur in
 ESAOA knowledge production, their number was reduced 7-10

7.1.7 Sub-problem 7 response: the degree to which the ESAOA KMS is
 used depends on the complexity of ESAOA activities concerned 7-10

7.1.8 Sub-problem 8 response: benefit of the ESAOA KMS depends on
 the complexity, difficulty and duration of the activities performed 7-11

7.2 Reflection of research findings and resolution of research question 7-12

7.3 Summary of contributions... 7-14

7.4 Future work .. 7-14

7.4.1 Testing ESAOA KMS version 2 ... 7-14

7.4.2 Testing ESAOS KMS on different type of ES engineering 7-14

7.4.3 Phasing in a KMS within existing/ongoing projects 7-15

7.4.4 Broadening the context for the ESAOA KMS 7-15

7.4.5 A KMS that allows for future software and hardware developments 7-15

7.4.6 Need for further research into KM in ES development 7-15

7.4.7 Focus on ES innovation knowledge .. 7-15
References .. R-1
Appendix A: Experiment 1 appendices .. A-1

A.1 Knowledge register for first case study (P1-1) .. A-1

A.2 Knowledge register for the second case study (P1-2) A-8
Appendix B: Experiment 2 appendices .. B-1

B.1 Knowledge register for Project P2-1 ... B-1

B.2 Requirements check sheets for Experiment 2 .. B-5

B.3 Comments from requirements check sheets for Experiment 2 B-6

B.4 Evaluation forms used to rate code and design reviews B-9

B.4.1 Evaluation of concept creativity ... B-9

B.4.2 Evaluation of design quality ... B-10

B.4.3 Evaluation of artefact quality ... B-11

B.5 Design review 2 questions regarding knowledge production B-12

Appendix C: ESAOA KMS version 2 appendices .. C-1

C.1 Knowledge ontology for ESAOA KMS version 2 C-1

 xvi

C.2 Details concerning the ESAOA modelling language C-3

C.2.1 Further detail on connectors .. C-3

C.3 Design details related to ESAOA support tools .. C-5

C.3.1 Design issues of the Personal Expert Program (PEP) C-5

C.3.2 Detailed design issues related to fclass and related CSV files C-6

C.3.3 Hotspot logging (hsl) tool .. C-7

C.3.4 List of ESAOA support tools .. C-7

C.4 Kit for Information Technology (KIT) ... C-13

C.4.1 KIT modules and UML class model ... C-13

C.4.2 KIT sample application: esaoa-apps ... C-16
Appendix D: Case study participants ... D-1

D.1 Experiment 1 participants ... D-1

D.2 Experiment 2 participants ... D-1
Appendix E: Supplementary documentation .. E-1

E.1 A comparison of search results .. E-1
Glossary G: Glossary .. G-1

 xvii

List of Figures

Figure 1.1: The association between projects, tasks and activities. 1-4

Figure 1.2: Examples of implementation artefacts. ... 1-6

Figure 1.3: Thesis objective – evolving a KMS for ESAOA activities. 1-14

Figure 1.4: Visualization of the thesis focus and delimitations. 1-17
Figure 2.1: Embedded system lifecycle model.. 2-5

Figure 2.2: The data, information, and knowledge hierarchy, with scenario. 2-11

Figure 2.3: The knowledge process adapted from Radding [1998]. 2-15

Figure 2.4: Flow of knowledge from supplier to consumer. 2-16

Figure 2.5: The KM spectrum (adapted from Binney [2001]). 2-18

Figure 2.6: ES project knowledge sharing chart. .. 2-37

Figure 2.7: Embedded software project KM planning template. 2-41
Figure 3.1: Directed KMS evolution. ... 3-4

Figure 3.2: Research design for studying evolution of the ESAOA KMS............... 3-15

Figure 3.3: The CSB337 evaluation board produced by Cogent Computers. 3-23

Figure 3.4: Consent letter emailed to participants in Experiments 1 and 2. 3-26

Figure 3.5: Example of activities log. .. 3-27

Figure 3.6: Example of email message (email #283) stored in the email archive. . 3-29

Figure 3.7: Example of a posting from the ‘Project Discussion Forum’. 3-30

Figure 3.8: Example of developer log. .. 3-32

Figure 3.9: Example of ES prototype set up for a demonstration. 3-34

Figure 3.10: Demonstration check sheet for project P2-6. 3-36

Figure 3.11: First page of the requirements check sheet. 3-37

Figure 3.12: Second page of the requirements check sheet. 3-38

Figure 3.13: First page of questionnaire completed by a team member. 3-39

Figure 3.14: Second page of questionnaire completed by a team member. 3-40

Figure 3.15: The data analysis process. ... 3-42

Figure 3.16: Sample annotated forum posting taken from Experiment 2. 3-48

Figure 3.17: How knowledge occurrence graphs relate to event chains. 3-53

Figure 3.18: Data synthesis process, in which ecology maps were produced. 3-57

Figure 3.19: The principal shapes of ESAOA modelling atoms. 3-59

Figure 3.20: Role modelling atoms of ESAOA KMS version 2. 3-60

Figure 3.21: Artefacts atoms showing general artefact, hard artefact, soft
artefact, and more specialised artefact atoms. .. 3-61

Figure 3.22: A team boundary data artefact. .. 3-61

Figure 3.23: A group-work process that involves application of knowledge. 3-62

Figure 3.24: Knowledge atom classified as process knowledge. 3-62

Figure 3.25: List of ESAOA modelling language connector types. 3-64

Figure 3.26: Examples of (a) explicit junction, and (b) tacit junction. 3-65

Figure 3.27: Model demonstrating connector labels and multiplicity. 3-66

Figure 3.28: Model showing space modeling elements. 3-67

Figure 3.29: Model showing an external process and external artefact. 3-67
Figure 4.1: An initial version of the ESAOA modelling language used to describe

relations between ESAOA artefacts and activities in Project P1-1 4-4

Figure 4.2: The 'trivial solution cycle' .. 4-9

Figure 4.3: Illustration of the ‘non-trivial solution’ cycle ... 4-10

Figure 4.4: Relationship between ESAOA activities and knowledge events 4-11

Figure 4.5: Determining non-productive and productive knowledge acquisition. ... 4-17

Figure 4.6: Event chains graph. .. 4-20

Figure 4.7: ESAOA workspace and ESAOA workstation. 4-54

 xviii

Figure 4.8: Screenshot of the Bash shell environment of an ESAOA workspace. . 4-56

Figure 4.9: Annotated screenshot of an ESAOA workstation. 4-57

Figure 4.10: Photograph illustrating the broader concept of an ESAOA
workstation. ... 4-59

Figure 4.11: UML diagram visualizing part of higher-level ESAOA knowledge
ontology. ... 4-61

Figure 4.12: Roles of ESAOA KMS version 1. .. 4-65

Figure 4.13: Role support structure for ESAOA version 1. 4-66

Figure 4.14: The feed-forward flow from the DS, to the PE, ending at the IE. 4-66

Figure 4.15: Screenshot showing use of the fclass program. 4-72

Figure 4.16: Model describing the classification of ESAOA artefacts. 4-74

Figure 4.17: ESAOA version 1 communal distribution directory structure. 4-75

Figure 4.18: ESAOA version 1 team distribution directory structure. 4-76

Figure 4.19: Concept sketch created in a project P1-2 meeting (event chain 44). 4-77

Figure 4.20: Concept drawing produced in project P1-2 (part of event chain 44). . 4-78

Figure 4.21: AOD for project P1-2 (see Section 3.11 for modelling language). 4-79

Figure 4.22: Processes performed by the CKO. ... 4-80

Figure 4.23: Major processes performed and maintained by the CKS. 4-81

Figure 4.24: Major role interrelations and processes performed by the TL. 4-82

Figure 4.25: (a) DS training process; (b) DS search process. 4-83

Figure 4.26: (a) Interaction between PE, CKO and CKS; (b) Processes performed
by the PE that involve development process knowledge. 4-84

Figure 4.27: (a) Collaboration between CKO, CKS and IE; (b) Processes and
artefacts used and managed by the IE. ... 4-86

Figure 4.28: Implementation of the esaoa-snap script. ... 4-88

Figure 4.29: Implementation of the esaoa-fm program. .. 4-88

Figure 4.30: Consecutive loads of Bash environments for ESAOA workspaces. .. 4-90

Figure 4.31: Top-level directory structure of ESAOA communal workspace. 4-91

Figure 4.32: Using Cygwin to access a team workspace on the central server. 4-97

Figure 4.33: Using Cygwin to access a project in an ESAOA team workspace. 4-97

Figure 4.34: Directory structure of ESAOA workstation distribution. 4-98

Figure 4.35: Sample ESAOA workspace installation. ... 4-99
Figure 5.2.1 (a): Component interconnection diagram; (b): Enclosure drawing. 5-6

Graph 5.2.1 (a): Data knowledge in P2-1. .. 5-8

Graph 5.2.1 (b): Process knowledge in P2-1. ... 5-8

Graph 5.2.1 (c): Innovation knowledge in P2-1. .. 5-9

Graph 5.2.1 (d): Productive and non-productive knowledge in P2-1. 5-9

Figure 5.2.2: Concept scenario for the GPS Bus Tracker (Project P2-2). 5-12

Graph 5.2.2 (a): Data knowledge in P2-2. .. 5-13

Graph 5.2.2 (b): Process knowledge in P2-2. ... 5-13

Graph 5.2.2 (c): Innovation knowledge in P2-2. .. 5-14

Graph 5.2.2 (d): Productive and non-productive knowledge in P2-2. 5-14

Figure 5.2.3: Concept drawing for Vibynet (Project P2-3). 5-16

Graph 5.2.3 (a): Data knowledge in P2-3. .. 5-17

Graph 5.2.3 (b): Process knowledge in P2-3. ... 5-17

Graph 5.2.3 (c): Innovation knowledge in P2-3. .. 5-18

Graph 5.2.3 (d): Productive and non-productive knowledge in P2-2. 5-18

Figure 5.2.4: Topology of myIP Phone Station (Project P2-4). 5-20

Graph 5.2.4 (a): Data knowledge in P2-4. .. 5-21

Graph 5.2.4 (b): Process knowledge in P2-4. ... 5-21

Graph 5.2.4 (c): Innovation knowledge in P2-4. .. 5-22

Graph 5.2.4 (d): Productive and non-productive knowledge in P2-4. 5-22

Figure 5.2.5: Installation diagram of Home Automation System (Project P2-5). 5-24

Graph 5.2.5 (a): Data knowledge in P2-5. .. 5-25

Graph 5.2.5 (b): Process knowledge in P2-5. ... 5-25

 xix

Graph 5.2.5 (c): Innovation knowledge in P2-5. .. 5-26

Graph 5.2.5 (d): Productive and non-productive knowledge in P2-5. 5-26

Figure 5.3.6: Installation of the Automation Headlight Dimmer (Project P2-6). 5-28

Graph 5.2.6 (a): Data knowledge in P2-6. .. 5-29

Graph 5.2.6 (b): Process knowledge in P2-6. ... 5-29

Graph 5.2.6 (c): Innovation knowledge in P2-6. .. 5-30

Graph 5.2.6 (d): Productive and non-productive knowledge in P2-6. 5-30

Figure 5.2.7: Component interconnection diagram (Project P2-7). 5-32

Graph 5.2.7 (a): Data knowledge in P2-7. .. 5-33

Graph 5.2.7 (b): Process knowledge in P2-7. ... 5-33

Graph 5.2.7 (c): Innovation knowledge in P2-7. .. 5-34

Graph 5.2.7 (d): Productive and non-productive knowledge in P2-7. 5-34

Figure 5.2.8: Concept drawing for the Cordless Stereo (Project P2-8). 5-36

Graph 5.2.8 (a): Data knowledge in P2-8. .. 5-37

Graph 5.2.8 (b): Process knowledge in P2-8. ... 5-37

Graph 5.2.8 (c): Innovation knowledge in P2-8. .. 5-38

Graph 5.2.8 (d): Productive and non-productive knowledge in P2-8. 5-38

Figure 5.2.9: Installation diagram for Central Alarm Clock (Project P2-9). 5-40

Graph 5.2.9 (a): Data knowledge in P2-9. .. 5-41

Graph 5.2.9 (b): Process knowledge in P2-9. ... 5-41

Graph 5.2.9 (c): Innovation knowledge in P2-9. .. 5-42

Graph 5.2.9 (d): Productive and non-productive knowledge in P2-9. 5-42

Figure 5.2.10 (a): First scene in the concept cartoon (Project P2-10). 5-44

Figure 5.2.10 (b): Second scene of concept cartoon for operation of VAPs. 5-45

Graph 5.2.10 (a): Data knowledge in P2-10. .. 5-46

Graph 5.2.10 (b): Process knowledge in P2-10. ... 5-47

Graph 5.2.10 (c): Innovation knowledge in P2-10. .. 5-47

Graph 5.2.10 (d): Productive and non-productive knowledge in P2-10. 5-48

Figure 5.2.11: Concept diagram of Supermarket Query Device (Project P2-11). .. 5-49

Graph 5.2.11 (a): Data knowledge in P2-11. .. 5-50

Graph 5.2.11 (b): Process knowledge in P2-11. ... 5-51

Graph 5.2.11 (c): Innovation knowledge in P2-11. .. 5-51

Graph 5.2.11 (d): Productive and non-productive knowledge in P2-11. 5-52

Figure 5.2.12: Concept poster for Personal Protection Device (Project P2-12). 5-53

Graph 5.2.12 (a): Data knowledge in P2-12. .. 5-54

Graph 5.2.12 (b): Process knowledge in P2-12. ... 5-54

Graph 5.2.12 (c): Innovation knowledge in P2-12. .. 5-55

Graph 5.2.12 (d): Productive and non-productive knowledge in P2-12. 5-55

Figure 5.2.13: Component interconnection diagram (Project P2-13). 5-57

Graph 5.2.13 (a): Data knowledge in P2-13. .. 5-58

Graph 5.2.13 (b): Process knowledge in P2-13. ... 5-58

Graph 5.2.13 (c): Innovation knowledge in P2-13. .. 5-59

Graph 5.2.13 (d): Productive and non-productive knowledge in P2-13. 5-59

Figure 5.7.1: Bar chart showing percentage breakdown of productive and
 non-productive knowledge occurrences per knowledge category for projects. 5-85

Figure 5.7.4 (a): Model of a productive episode (top) and corresponding
 knowledge occurrence graphs (bottom)... 5-96

Figure 5.7.4 (b): Model of a non-productive episode (top) and corresponding
 knowledge occurrence graphs (bottom)... 5-97

Figure 5.7.7: Pie charts showing contribution of each role. 5-103
Figure 6.1: The role support structure and flow of knowledge around which

 ESAOA KMS version 2 is designed. ... 6-8

Figure 6.2: UML model for part of the high level ESAOA knowledge ontology. 6-10

Figure 6.3: Screenshots from ESAOA ontology manager. 6-12

Figure 6.4: Model showing composition of an ESAOA workspace. 6-15

 xx

Figure 6.5: The three types of ESAOA workspace. .. 6-16

Figure 6.6: Screenshot of prototype personal workstation installation program. ... 6-19

Figure 6.7: ESAOA version 2 team distribution directory structure. 6-21

Figure 6.8: Scenario showing access to integrated knowledge base using fclass. 6-23

Figure 6.9: Screenshot of fclass version 2. ... 6-24

Figure 6.10: UML model of relationships between fclass, PEP and related files. .. 6-28

Figure 6.11: UML diagram showing software design of the fclass program. 6-29

Figure 6.12: Scenario demonstrating interaction between fclass and PEP. 6-31

Figure 6.13: Screenshot showing sample HTML output of fclass. 6-33

Figure 6.14: Examples of hotspots taken from Project P2-2. 6-34

Figure 6.15: UML diagram showing overview of the HSL tool’s software design. . 6-35

Figure 6.16: Role support provided by the WA. .. 6-40

Figure 6.17: Chain of command for ESAOA KMS roles. 6-41

Figure 6.18: Team members and their knowledge specialisations. 6-43

Figure 6.19: A potential scenario providing a fair division of labour. 6-46

Figure 6.20: Role support structure for ESAOA version 2. 6-48

Figure 6.21: Processes performed and maintained by the CKS. 6-51

Figure 6.22: Processes maintained and carried out by the CKS. 6-52

Figure 6.23: Processes performed and maintained by the TL. 6-53

Figure 6.24: Decision and allocation of roles. ... 6-54

Figure 6.25: Processes of the CR... 6-55

Figure 6.26: CR training process. ... 6-56

Figure 6.27: Main processes carried out by the PE. ... 6-57

Figure 6.28: The PE training process. .. 6-58

Figure 6.29: Processes involved in the interaction between the PE and IE. 6-59

Figure 6.30: Processes and role interactions concerning the WA. 6-60

Figure 6.31: Processes and artefacts used and managed by the IE. 6-61

Figure 6.32: Training the IE. ... 6-62

List of Tables

Table 1.1: Examples of ESAOA activities for certain implementation tasks 1-7

Table 1.2: Summary of delimitations .. 1-18

Table 2.1: Commonly used infomediary tools and dimensions of information
 overload they address [Ho & Tang, 2001; Berghel, 1997]. 2-58

Table 3.1: Overview of the projects studied in Experiment 1 and 2. 3-20

Table 3.2: Project meetings. ... 3-30

Table 3.3: Schedule of Experiment 1 demonstrations. .. 3-33

Table 3.4: Schedule of Experiment 2 demonstrations. .. 3-33

Table 3.5: Except of initial knowledge register from Project P1-2. 3-45

Table 3.6: Except of the knowledge register for Project P2-1. 3-49

Table 3.7: Productive and non-productive knowledge per knowledge type. 3-54

Table 3.8: Proportions of data, process and innovation knowledge produced. 3-55

Table 3.9: Commonly used artefact classification acronyms................................. 3-61

Table 3.10: Process classifications. .. 3-62

Table 3.11: Classification acronyms for knowledge atoms. 3-63

Table 4.1: Description of projects for the first experiment. 4-2

Table 4.2: Excerpt from Project P1-1 .. 4-5

Table 4.3: Demonstration of problem-solution cycles observed in Experiment 1. ... 4-6

Table 4.4: Types of knowledge events. .. 4-12

Table 4.5: Scenario for hierarchy of data, process and innovation knowledge. 4-13

Table 4.6: Taxonomy of knowledge for embedded system KM. 4-14

 xxi

Table 4.7: Number of knowledge events in each of the data, process and
 innovation knowledge categories. ... 4-22

Table 4.8: The event chains for Project P1-1 (SoSiG). ... 4-23

Table 4.9: The event chains for Project P1-2 (ANTCON). 4-23

Table 4.10: Number of knowledge events per knowledge category for P1-1. 4-26

Table 4.11: Number of knowledge events per knowledge category for P1-2. 4-26

Table 4.12: Breakdown of knowledge acquisition times for P1-1 (SoSiG). 4-27

Table 4.13: Breakdown of knowledge acquisition times for P1-2 (ANTCON). 4-27

Table 4.14: Breakdown of knowledge acquisition times for P1-1 (SoSiG). 4-34

Table 4.15: Breakdown of knowledge acquisition times for P1-2 (ANTCON). 4-37

Table 4.16: Excerpt from knowledge register for Project P1-1 (SoSiG). 4-42

Table 4.17: Knowledge occurrences per knowledge type for P1-1. 4-44

Table 4.18: Productive and non-productive knowledge within knowledge types. .. 4-44

Table 4.19: Productive and non-productive time percentages for P1-1. 4-44

Table 4.20: Differences of results between analysis methods for Project P1-1. 4-44

Table 4.21: Proportions of data, process and innovation knowledge for P1-1. 4-45

Table 4.22: Knowledge occurrences per knowledge type for P1-2. 4-48

Table 4.23: Productive and non-productive knowledge within knowledge types. .. 4-48

Table 4.24: Breakdown of knowledge acquisition times for P1-2. 4-48

Table 4.25: Differences of results between analysis methods for Project P1-2. 4-48

Table 4.26: Proportions of data, process and innovation knowledge for P2-2. 4-49

Table 4.27: Average of productive and non-productive knowledge for knowledge
 categories for Experiment 1. .. 4-51

Table 4.28: Total productive and non-productive knowledge for Experiment 1. 4-51

Table 4.29: Roles of ESAOA version 1. .. 4-61

Table 4.30: Roles of ESAOA version 1. .. 4-64

Table 4.31: Excerpt of artefact functional classes. .. 4-70

Table 4.32: List of commonly applied role classifications. 4-73

Table 4.33: ESAOA KMS version 1 distributions. ... 4-91

Table 4.34: ESAOA communal scripts. .. 4-92

Table 4.35: ESAOA communal programs. .. 4-94

Table 4.36: ESAOA communal templates. ... 4-96
Table 5.1: List of Experiment 2 Projects. .. 5-2

Table 5.2.1 (a): Productive and non-productive knowledge per knowledge type. .. 5-10

Table 5.2.1 (b): Proportions of data, process and innovation knowledge in P2-1. . 5-10

Table 5.2.2 (a): Productive and non-productive knowledge per knowledge type. .. 5-15

Table 5.2.2 (b): Proportions of data, process and innovation knowledge in P2-2. . 5-15

Table 5.2.3 (a): Productive and non-productive knowledge per knowledge type. .. 5-19

Table 5.2.3 (b): Proportions of data, process and innovation knowledge in P2-3. . 5-19

Table 5.2.4 (a): Productive and non-productive knowledge per knowledge type. .. 5-23

Table 5.2.4 (b): Proportions of data, process and innovation knowledge in P2-4. . 5-23

Table 5.2.5 (a): Productive and non-productive knowledge per knowledge type. .. 5-27

Table 5.2.5 (b): Proportions of data, process and innovation knowledge in P2-5. . 5-27

Table 5.2.6 (a): Productive and non-productive knowledge per knowledge type. .. 5-31

Table 5.2.6 (b): Proportions of data, process and innovation knowledge in P2-6. . 5-31

Table 5.2.7 (a): Productive and non-productive knowledge per knowledge type. .. 5-35

Table 5.2.7 (b): Proportions of data, process and innovation knowledge in P2-7. . 5-35

Table 5.2.8 (a): Productive and non-productive knowledge per knowledge type. .. 5-39

Table 5.2.8 (b): Proportions of data, process and innovation knowledge in P2-8. . 5-39

Table 5.2.9 (a): Productive and non-productive knowledge per knowledge type. .. 5-43

Table 5.2.9 (b): Proportions of data, process and innovation knowledge in P2-9. . 5-43

Table 5.2.10 (a): Productive and non-productive knowledge per knowledge type. 5-48

Table 5.2.10 (b): Proportions of data, process and innovation knowledge P2-10. . 5-48

Table 5.2.11 (a): Productive and non-productive knowledge per knowledge type. 5-52

Table 5.2.11 (b): Proportions of data, process and innovation knowledge P2-11. . 5-52

 xxii

Table 5.2.12 (a): Productive and non-productive knowledge per knowledge type. 5-56

Table 5.2.12 (b): Proportions of data, process and innovation knowledge P2-12. . 5-56

Table 5.2.13 (a): Productive and non-productive knowledge per knowledge type. 5-60

Table 5.2.13 (b): Proportions of data, process and innovation knowledge P2-13. . 5-60

Table 5.3.1 (a): Knowledge occurrences for each Experiment 2 project. 5-61

Table 5.4.1 (a): Breakdown of creativity ratings per project. 5-63

Table 5.4.1 (b): Breakdown of design ratings per project. 5-63

Table 5.4.1 (c): Breakdown of artefact ratings per project. 5-64

Table 5.4.1 (d): Totals of the code and design review ratings per project. 5-64

Table 5.4.1 (e): Commonly reported knowledge production methods. 5-66

Table 5.4.2 (a): Demonstration check sheet scores for each project. 5-68

Table 5.4.2 (b): Section scores for each requirements check sheet. 5-69

Table 5.4.3 (a): Demonstration check sheet scores compared to requirements.... 5-70

Table 5.5.2 (a): Design review averages compared to review panel scores. 5-71

Table 5.5.2 (b): Correlation results. .. 5-71

Table 5.5.3 (a): Correlations between code and design review scores and
 productive knowledge occurrences across all projects. 5-72

Table 5.5.3 (b): Correlations between review scores and knowledge occurrences.5-74

Table 5.5.4 (a): Percentage of productive innovation knowledge occurrences
 compared to requirements check sheet scores. .. 5-75

Table 5.5.4 (b): Percentage productive innovation knowledge occurrences
 compared to demonstration check sheet scores. ... 5-76

Table 5.5.4 (b): Percentage productive innovation knowledge occurrences
 compared to requirements check sheet scores. .. 5-77

Table 5.5.5: Correlations between check sheet scores and categories of
 knowledge production. .. 5-77

Table 5.5.6: Correlations between check sheets and proportions of
 knowledge production. .. 5-78

Table 5.6.1: Summary of evaluation data. .. 5-80

Table 5.7.1 (a): Percentage of productive and non-productive knowledge. 5-85

Table 5.7.3 (a): Experiment 1 averages for productive and non-productive. 5-89

Table 5.7.3 (b): Experiment 2 averages for productive and non-productive. 5-89

Table 5.7.4 (a): Emerging trend indicating relationship between productive
 innovation knowledge and quality of the prototype. ... 5-91

Table 5.7.4 (b): Trends emerging across the event chains. 5-92

Table 5.7.7 (a): Excerpt from Project P2-1 knowledge register. 5-100

Table 5.7.7 (b): Contribution of knowledge forms per role for Project P2-1. 5-101

Table 5.7.7 (c): Contribution of knowledge forms per role for Project P2-2. 5-101

Table 5.7.7 (d): Contribution of knowledge forms per role for Project P2-10. 5-102

Table 5.7.8 (a): Excerpt from Project P2-1 knowledge register. 5-104

Table 5.7.8 (b): Tool versus component knowledge occurrences. 5-105

Table 5.7.9: Separation of role, logistics, and other knowledge. 5-106
Table 6.1: ESAOA version 2 distributions. .. 6-18

Table 6.2: A tabular view of a .fci file in an ESAOA personal workspace. 6-26

Table 6.3: A tabular view of a .fcl file in an ESAOA personal workspace. 6-26

Table 6.4: Tabular view of a second version ‘.fcl’ file. ... 6-31

Table 6.5: Tabular view of a second version ‘.fos’ file. .. 6-32

Table 6.6: Examples of a .fhl file corresponding to Figure 6.14. 6-34

Table 6.7: Roles of ESAOA KMS version 2. ... 6-38

Table 6.8: Examples of artefacts and role classification. 6-39

Table 6.9: Team member specialisations. .. 6-42

Table 6.10: Artefacts of the EMASO KMS. ... 6-62

Chapter 1:

Introduction

In this thesis a specific aspect of embedded system (ES) development, referred to as

embedded system artefact organisation and adaptation (ESAOA) is studied. This

thesis is an exploratory study that focuses on the development and evaluation of a

knowledge management system (KMS) for ESAOA.

This chapter starts by defining terminology related to the broad area that this thesis is

situated in, and the specialised terms that are used in this thesis (Section 1.1). The

next section (Section 1.2) explains the rationale behind this research project,

highlighting challenges of new ES product development and the need to speed up

the process of developing these products. The thesis objective is introduced in

Section 1.3. The problem statement that leads on from the thesis objective is

presented in Section 1.4, and the focus of the thesis is described in Section 1.5. The

delimitations of the thesis, including details of the scope and constraints of the study,

are elaborated upon in Section 1.6. The final section, Section 1.7, sets out the

structure of the thesis and briefly outlines the subsequent progression of chapters.

1.1 Terminology and definitions

This section defines the terms that are used in this thesis. The first of these are

embedded system (ES) and embedded software development. The differences

between ES products and ES prototypes are explained, which is followed by a

description of computer engineering and embedded engineering. Next, differences

between project tasks and project activities are identified, from which the definition of

implementation tasks is derived. This leads into a definition of implementation

artefacts, which are used during implementation tasks. Finally, the concept of

embedded system artefact organisation and adaptation (ESAOA) activities is defined.

 1-1

1.1.1 Embedded systems and embedded software development

An ES, alternatively referred to as an embedded computer, is a specialised computer

system that is built into a larger system (or product) and is dedicated to performing a

specific task within that larger system [Catsoulis, 2002]. The design of an ES can be

highly optimised because the operations that the system needs to perform are tightly

bounded [Berger, 2002]. As a result, such systems are realised in the form of

specialised hardware platforms constructed from microprocessors or

microcontrollers, which run embedded software, and are connected to application-

specific peripherals. Embedded software is the dedicated software that runs on an

ES and that coordinates and controls the hardware to make the system perform

useful operations [Labrosse et al., 2008].

1.1.2 ES products and prototypes

In general, a prototype serves as an early product sample that is built to test a

concept [Floyd, 1984] or to determine experimentally an effective process through

which a product or product range can be produced [Brinkkemper et al., 1996]. For

instance, if an ES development company decides to create a new type of product,

the company may first develop a prototype of the product to assess a range of

issues, such as an effective choice of features, power consumption, and an accurate

cost estimate for a production version of the product [Berger, 2002]. Once the

prototype has been built (or possibly sooner), the developers may decide that the

concept is a good one (and may thus start to create a production version of the

product); alternatively the developers may decide that the concept is ineffective and

abandon the idea [Ulrich & Eppinger, 1995].

1.1.3 Computer engineering and embedded engineers

ES development has traditionally been divided between hardware design and

software design [Berger, 2002]. Hardware design involves tasks such as the creation

of schematics, the implementation of circuits, and the analysis and testing of signals

[Koopman, 1996; Berger, 2002]. The hardware aspect of ES design is considered to

fall within the discipline of electrical engineering [Sangiovanni-Vincentelli & Pinto,

2005; Seviora, 2005]. The software aspect of ES development relates to the field of

software engineering, and involves the design and implementation of hardware

drivers, signal processing routines and application code [Barr, 1999]. The low-level

coding aspects of embedded software development, such as writing device drivers

and coding in a hardware description language (e.g., Verilog or VHDL), are

commonly referred to as firmware development [Sutter, 2002].

 1-2

The separation of engineering teams between hardware engineers and software

engineers remains a common practice; but boundaries between the software and

hardware aspects of ES design are becoming blurred [Franke & Purvis, 1991]. For

example, system-on-a-chip (SoC) technologies are providing cost effective,

commercial-off-the-shelf (COTS) products that can replace entire subsystems

previously developed in-house [Rowen & Leibson, 2004]. Hardware description

languages, such as VHDL and Verilog, used to program field programmable gate

arrays (FPGAs) are replacing circuits previously implemented on comparatively bulky

printed circuit boards (PCBs) and offer better performance with more robust

packages (e.g., [Sommerville, 2006]). Computer engineering (CE) concerns the

construction and maintenance of computing systems, and involves aspects of both

electrical engineering and computer science [Coates et al., 1971]. A computer

engineer is expected to have skills related to both hardware and software

development, such as programming and software engineering abilities, as well as

proficiency in reading PCB schematics, datasheets and diagnosing hardware faults

[Soldan et al., 2004; Shackelford et al., 2006]. The term ‘embedded engineer’ or ‘ES

engineer’ refers specifically to a CE who specialises in the development of ES

products [Berger, 2002], rather than of other forms of computer systems (e.g.,

constructing supercomputers and notebook PCs).

1.1.4 Tasks and activities

This thesis adapts the definition of tasks and activities from descriptions used by the

Project Management Institute [2004]. In this thesis, a project is considered to

comprise a collection of tasks. A task is in turn accomplished through the completion

of a set of activities that are performed by team members1. A task has a specific aim,

depending on the work performed. For example, in an ES development project, a

task may involve coding a device driver for a temperature sensor.

An activity is an action carried out by one or more members of a development team

(e.g., an embedded software developer in the case of an ES development project).

An activity may be task-oriented, in which case it specifically furthers the progress of

a task, or peripheral, if the activity is not directly related to a task (this categorisation

is derived from a discourse by Hallows [2002], which indicates that activities of an

employee tend to be either centred on a certain project, or peripheral to a project). An

1 Note that the definition of an activity in this thesis is not equivalent to an activity as defined
by the Rational Unified Process (RUP) [Kroll & Kruchten, 2003].

 1-3

example of a task-oriented activity, for example one that is related to the task of

constructing a temperature sensor driver, is writing lines of C code for the device

driver module; an example of a peripheral activity, however, is doing a file backup

(i.e., a peripheral activity may be crucial even though it might not further the progress

of a project). Figure 1.1 illustrates the differences between projects, tasks, task-

oriented activities, and peripheral activities.

Project
(e.g., ES Development Project)

Task
(e.g., develop driver for temperature sensor

Task-oriented
Activity Task-oriented

Activity

Peripheral
Activity

Edit a C code file
using a text editor

Example Activity
Check syntax of code
file using C compiler

Example Activity
Install anti-virus
software

Example Activity

Figure 1.1: The association between projects, tasks and activities.

1.1.5 Implementation tasks

A development project can be divided into different phases, with each phase

involving a collection of tasks [Berger, 2002]. Section 2.2 presents an ES

development process model (an adapted version of the waterfall model [Royce,

1970]) that divides a project into seven phases, namely: 1) requirements, 2)

specification, 3) design, 4) implementation, 5) integration, 6) testing, and 7)

maintenance and upgrade. The separation of a project into phases is used in this

thesis foremost as an analytical tool to isolate certain tasks and activities in a project.

The division of a project into phases is not absolute; for example, tasks and activities

are often revisited in other phases [Schach, 2005].

 1-4

The term implementation tasks relates to tasks generally performed in the

implementation phase of a development project, as per the description of the

implementation phase given by Schach [2005].

In this thesis, use of the term implementation task refers specifically to tasks in the

context of developing embedded software as part of an ES development project (see

Section 1.1.4 for examples of implementation tasks that can occur in these projects).

1.1.6 Implementation artefacts, and soft/hard artefact classification

In this thesis, the term artefact (or ES artefact) refers to a file or object worked on, or

used by, developers during a development project (this definition is based on the

description of an artefact used in the RUP [Kroll & Kruchten, 2003]). An

implementation artefact is an artefact used or worked on during an implementation

task. The definition of an implementation artefact is intentionally broad; for example,

it includes development tools (e.g., compiler and linkers), hardware components

(e.g., a microcontroller) and computer files (e.g., PDF datasheets and code

modules). Figure 1.2 shows further examples of implementation artefacts.

In this thesis, artefacts are classified as hard artefacts or soft artefacts. Soft artefacts

are defined as digital files stored on a computer, or paper documents (e.g., a printout

of a datasheet or soft artefact). Hard artefacts are physical objects that an ES

engineer works with in a laboratory, such as electronic components, hardware

devices, tools, equipment and the embedded system being constructed. In Figure

1.2, the code file, datasheet and schematic illustrate soft artefacts; whereas the

platform, debugging component, and microcontroller demonstrate hard artefacts. The

term design artefact refers to soft artefacts that are more closely related to the design

phase of development (see Section 2.2), such as hardware block diagrams,

component diagrams and UML class diagrams [Schach, 2005], which together direct

the construction and adaptation of implementation artefacts.

 1-5

Platform

Microcontroller

Debugging Component

DatasheetSchematic

Code
file

Figure 1.2: Examples of implementation artefacts2.

1.1.7 ESAOA activities

Embedded system artefact organisation and adaptation (ESAOA) involves the

classification and structuring of implementation artefacts, collectively termed acts of

artefact organisation, and actions of physically manipulating or creating

implementation artefacts en route to making the artefacts part of a product or product

prototype, which is referred to as artefact adaptation.

Since ESAOA activities are defined to relate specifically to implementation artefacts,

task-oriented ESAOA activities can generally be considered as part of an

implementation task, and therefore relate to the implementation phase of the

development project. As stated earlier (see Section 1.1.5), the classification of a

project into phases is abstract and not absolute, which implies that a particular

ESAOA activity may extend over multiple phases of the development process;

similarly, an ESAOA activity may have an impact on multiple phases of a

development process.

2 Images obtained from http://www.atmel.com, http://www.freescale.com,
http://www.macraigor.com and http://www.piconomic.co.za.

 1-6

http://www.piconomic.co.za/

ESAOA activities can be separated into two broad categories: 1) artefact

organisation (AO) activities, and 2) artefact adaptation (AA) activities. Table 1.1 lists

examples of ESAOA activities, indicating the AO and AA classifications, together with

the higher-level implementation tasks to which they relate.

Table 1.1: Examples of ESAOA activities for certain implementation tasks.

High-level Implementation
task

Artefact Adaptation (AA)
activities

Artefact Organisation (AO)
activities

Creating start-up code for an
embedded software program

Creating a new C file to hold
the start-up code.

Making a directory called
‘Code’ to hold code files.

Adding lines of code to the
new C file.

Saving the new file as
‘start.c’.

Writing a device driver for a
temperature sensor

Changing the code of the
driver so that a different
value is written to a hardware
register.

Copying an existing device
driver module and naming it
‘tempsensor.c’.

Creating a file for use in
regression testing of the
device driver.

Placing the regression testing
file in the directory ‘test’

Source: adapted from development activities described by Berger [2002] and Fowler [2007].

1.1.8 Data, Information and Knowledge

Data, information and knowledge are usually understood as forming a hierarchy,

commonly referred to as the ‘D-I-K hierarchy’ (see Section 2.4.1), in which there is a

process through which data lead to information, and information becomes knowledge

[Groff & Jones, 2003]. Data exist at the lowest level of the hierarchy, and have no

significance besides their existence [Davenport & Prusak, 2000]. Bits, numbers and

characters are elements of data. Information is formed by giving context and

meaning to data. The particular context determines the way in which data are

assembled into information. Knowledge exists in the minds of people, and occurs

when information is combined with understanding and capability [Groff & Jones,

2003]. Capability is a person’s ability to take action. A person’s understanding is the

way in which that person interprets information. Understanding and capability are

mutually dependent: understanding is built through learning new ways to take action,

which develops capability. Conversely, by performing actions, made possible through

capability, information can be revealed to build understanding. Section 2.4.1

elaborates upon the D-I-K hierarchy by means of a scenario and a discussion of

different opinions concerning this view of knowledge.

 1-7

1.1.9 Knowledge management

Knowledge management (KM) takes place across multiple disciplines, and is used in

a wide range of applications [Wilson, 2002]. KM should be considered as a

movement with specific values, rather than a discipline [Bennet & Bennet, 2004].

There are many interpretations of what KM is. Generally, KM describes processes for

collecting data, formulating information and using knowledge [Davenport & Prusak,

1998]. In general, there are two types of knowledge that need to be managed: explicit

knowledge and tacit knowledge [Nonaka & Takeuchi, 1995]. Knowledge assets can

therefore be tangible (e.g., documents) or intangible (e.g., experience). This thesis is

concerned with tangible, rather than intangible, knowledge assets.

As is the case with ‘knowledge’, KM is explained by different people in different ways.

Broadly speaking, there are two contrasting streams of KM [Ortenblad, 2007]. The

first is the ‘knowledge-focused stream’, whereas the second stream is the

‘information-focused stream’ [McDermott, 1999a]. Both steams study the ways in

which knowledge is created, captured, stored, and shared in an organisation

[Davenport & Prusak, 1998]. Section 2.4.2.1 further explains these streams and what

is meant in this case by an organisation.

This thesis uses a definition of KM that is based on work by Drucker et al. [1998], and

follows the information-focused stream of KM, namely:

KM is the way knowledge workers (of which embedded software

developers are an example) create, capture, store and share

knowledge in an organisation.

Using the above definition, ESAOA KM can be viewed as a method to treat

information, artefacts related to the information, and the interaction between people

interested in that information, in a context of ESAOA activities performed during the

development of embedded software.

1.1.10 Knowledge management systems

A knowledge management system (KMS) encapsulates the way in which people,

processes, and artefacts work together to create, capture, store, and share

knowledge [Drucker, 1998]. A KMS thus involves the people, processes and artefacts

 1-8

that comprise knowledge work, as well as including how these elements work

together to support the creation, capture, storage and dissemination of knowledge

[Holsapple, 2003; Maier & Hadrich, 2006]. A KMS is dependent on the type of

knowledge work being done, and the context in which this knowledge work is

performed. The study of a KMS typically focuses on the ways in which the ‘know-

how’ and ‘know-who’ of knowledge workers is managed in an organisation to solve

problems, make decisions, learn facts, and find the knowledgeable people in certain

specialised areas within the organisation (Sections 2.6 and 2.7 elaborate on the

research literature concerning KM within engineering fields).

Based on the above description, this thesis defines an ESAOA KMS as follows:

An ESAOA KMS is an effective system that coordinates the way

in which people, processes, and artefacts work together to

creature, capture, store and share knowledge, in a context of

ESAOA activities performed during the development of

embedded software.

1.2 Rationale: a KMS for ESAOA activities

Recent studies have shown that the completion of embedded software development

projects is frequently late and over budget [Child, 2001; Grenning et al., 2004; Hall et

al., 2005; Charette, 2005; Ganssle, 2007]. Embedded software development is often

affected by the same problems that affect traditional non-embedded software

[Grenning et al., 2004], such as commercial pressures, unclear requirements,

unfamiliar technologies, complex projects, miscommunication and makeshift

practices – among other difficulties [Charette, 2005; Hall et al., 2005]. In addition to

these more traditional software problems, embedded software faces further

difficulties, including limited resources, real-time timing constraints, late integration

with target hardware and separate environments for program development and

program execution [Grenning et al., 2004].

1.2.1 The growing demand for embedded software

The number of projects that involve the development of embedded software is

expected to continue growing for many years to come [Graaf et al., 2003; Ganssle,

2007]. The sophistication of these products is expected to increase in the future as

they become more varied and ubiquitous [Ganssle, 2007]. For example, the iPhone

 1-9

has combined a set of comparatively limited predecessors, namely, the cellphone,

the iPod palmtop computer and an internet connection device [Apple, 2009]. As the

complexity, number and diversity of ES products increases, the companies that

produce these products are experiencing difficulties in achieving sufficient product

quality while keeping projects on-time and on-budget [Graaf et al., 2003]. In order to

improve the quality, timeliness and productivity of embedded software development,

companies need to adopt more effective approaches for their specific situations

[Ganssle, 1999; Edwards, 2003; Grenning et al., 2004].

1.2.2 The rapid expansion of knowledge

The field of computers, and particularly computer engineering, has been especially

affected by the expansion of knowledge [Nienaber & Barnard, 2007]. A major

challenge faced by ES engineers, and one which significantly influences the success

of a project, is the assimilation and application of new technologies, development

tools and methods in development projects [Linn, 2001; Graaf et al., 2003], and

avoiding the problems associated with information overload [Kass & Stadnyk, 1992;

Lyytinen & Robey, 1999]. The exponential increases in device counts and computer

performance are expected to continue for another decade and possibly longer

[Kanellos, 2003]. Whether another type of technology will succeed silicon and

continue this exponential trend is less clear, but Kurzweil [2001] observes that the

history of computing demonstrates that, when the growth of one technology levels

off, another technology emerges to continue the exponential trend. A similar

exponential increase is occurring in communication system bandwidth, both wired

and wireless, and this is sometimes called Moore’s law for communication bandwidth

[Cherry, 2004]. Consequently, embedded software is predicted to become more

powerful, more complex and more interconnected [Jerraya & Wolf 2005; Jerraya,

2004; Jantsch & Tenhunen, 2003]. ES applications are expected to expand into a

growing number of new areas, and as the number and power of embedded

computers grows, an increasing number of novel applications are likely to emerge

[Committee on Networked Systems of Embedded Computers, 2001].

ES developers thus face the challenges of rapid growth in new technologies and

market demands, and the consequential need to obtain technical knowledge and

create efficient development strategies so that products are aligned to market trends,

and that projects remain on-time and on-budget [Graaf et al., 2003].

 1-10

1.2.3 Knowledge management as a potential means to facilitate
embedded software development

Curtis et al. [1988] performed a survey of large software development companies in

1988, in which it was shown that software engineers spent significant amounts of

time learning and experimenting with new technologies for use in projects.

Embedded software has further demands for technical knowledge, such as acquiring

knowledge of specialised operational contexts and application domains

[Sangiovanni-Vincentelli & Pinto, 2005].

The role of programmability (and software adaptability and specialisation) has

expanded further, placing greater demands on embedded software developers to

assimilate and apply knowledge related to new technologies, such as system-on-a-

chip (SoC) components [Sgroi et al., 2001], software frameworks [Fayad et al., 1999],

and intellectual property (IP) blocks [Keutzer, 2002]. Embedded software engineers

are thus faced with the compounding challenges of meeting demands for new and

increasingly complex products, while obtaining the knowledge needed to make use of

the new technologies and identifying appropriate development methods to develop

software for these products [Berbers, 1999; Douglass, 2000; Berger, 2002].

Recent studies of ES projects indicate that the application of new technologies, while

adhering to projects’ time and budget constraints, remains a challenge for software

engineers [Komi-Sirviö et al., 2002; Graaf et al., 2003; Ko et al., 2007b]. There are

many strategies which address this problem, such as: more comprehensive

integrated development environments (e.g., MPLAB [Microchip, 2008]), easier to use

embedded operating systems [Baskiyar & Meghanathan, 2005], simulator

advancements (e.g., the Crossware ARM simulator [Crossware, 2009]) and model-

integrated solutions [Karsai et al., 2003], to name a few. While these advancements

can significantly speed up the process of development, these solutions are not

necessarily available to all developers (e.g., due to high licensing costs or

incompatible architectures); moreover, these tools also take time to learn.

Knowledge and the practice of effective knowledge management (KM) methods have

been acknowledged as essential to successful development projects by many

prominent authors, such as Davenport [1998; 2002], Drucker [1998], Nonaka &

Takeuchi [1995], Sveiby [1997], and Senge [1990]. These authors have also

recognised that KM, like knowledge itself, is partly dependent on the context in which

 1-11

it is used, as well as on the knowledge artefacts (or objects) with which it is used

[Knorr-Cetina, 1997; 1999; Arias & Fischer, 2000; Knorr-Cetina & Brugger, 2002]. For

example, a specialised form of development project needs a specialised form of KM,

which typically involves the process of adapting a selection of existing KM

approaches and establishing new practices [Groff & Jones, 2003; Firestone &

McElroy, 2005]. Improvements to the KM practices used by software engineers

during the acquisition and use of technical knowledge has been identified as a

means to increase the success rate of these software development projects

[Dingsøyr & Conradi, 2002; Komi-Sirviö et al., 2002; Rus & Lindvall, 2002].

1.2.4 The need for an ESAOA KMS

Based on the current literature, KM research initiatives specific to embedded

software development are less common than those related to other forms of software

development3. The literature shows that KM studies related to embedded software

development are generally focused at a high level of project management, related

more to broad issues of development and its impact on the products (e.g., [Hahn &

Subramani, 2000; Davenport, 2002; Dingsøyr & Conradi, 2002; Rus & Lindvall,

2002]), or collaboration and organisational learning techniques (see Section 2.8.4 for

details). Organisational activities occur at the macro, meso, and micro level [House et

al., 1995]. The literature predominantly covers KM at the macro level of software

development, which comprises processes that operate at a strategic level. There is

also a growing literature on the micro level of KM, such as expert networks, web

portals, document and content management tools [Lindvall et al., 2001]. However,

there is little literature concerning meso level KM of embedded software

implementation activities. Meso level tasks involve the integration of macro and micro

processes [Rousseau & House, 1994], such as approaches that facilitate the way in

which embedded software developers experiment with code, organise data and files,

and learn how to modify components use a range of development tools. These meso

level tasks can account for a significant portion of the time an embedded software

developer spends on a project (as discussed in Section 1.2.3). ESAOA activities are

at the meso level of the product development process, and may therefore have a

potentially significant effect on the progress of development. For these reasons, the

researcher decided to investigate the KM of implementation phase development

activities, with the intention of addressing this research gap in the field of KM for

embedded software development.

3 Based on a comparison of search results using Google Scholar (see Appendix E1), the
combined result for embedded software was 4.2% of those for more general software.

 1-12

1.3 Thesis Objective

This thesis builds on existing work in the field of KM for software development [Rus

et al., 2001; Trimble, 2000; Rus & Lindvall, 2002; Dingsøyr & Conradi, 2002]. As the

preceding discussion has identified, embedded software is highly knowledge

intensive [Ganssle, 1999; Ball, 2002] and dependent on a variety of complex

knowledge artefacts, such as new types of development tools and components that

result from the new technologies [Kettunen, 2003].

The broad objective of this thesis is an explorative investigation of KM within a

specific area of embedded software development, namely certain forms of activity

that are mainly performed during the implementation phase of these projects. These

activities are referred to as embedded system artefact organisation and adaptation

(ESAOA) activities. ESAOA activities involve organising (i.e., classifying and

structuring) implementation artefacts and the adaptation of these artefacts during a

development project (see Section 1.1.7).

The specific objective of this thesis is the construction, evaluation and evolution of an

experimental KMS, referred to as the ESAOA KMS, with the intention of determining

an effective structure for the implementation of such a KMS that will facilitate

knowledge production to promote successful completion of ES implementation tasks.

The ESAOA KMS is intended for use in ESAOA activities within the context of new

projects that involve prototyping novel ES products. The ESAOA KMS is expected to

incorporate KM strategies that are both more visible and more systematically applied

during a project, than is the case for an ad hoc KMS that evolves naturally during a

project (see Figure 1.3). The ESAOA KMS also needs to incorporate an analysis

system to measure the performance of KM operations performed by users of the

KMS. The main research activities in this study consequently include studying ad hoc

KM strategies used by novice ES engineers, and refining these initial methods to

create a more visible and refined KMS applied consistently by subsequent groups of

novice ES engineers. See Chapter 3 for details.

 1-13

KMS
Evolution

Evolved
KMSAd hoc

KMS

?

usesuses uses uses

Team of
novice
engineers

Team of
novice
engineers

Figure 1.3: Thesis objective – evolving a KMS for ESAOA activities.

1.4 Problem Statement

This thesis argues that new projects that involve the development of novel ES

products can be facilitated by the application of a specialised KMS, namely the

ESAOA KMS, applied within the context of ESAOA activities. These ESAOA

activities are performed by embedded software developers mainly in the

implementation phase of a project (see Section 1.1.5).

The investigation is restricted to the specific context of novice engineers (see Section

3.6.4) working on newly initiated ES projects that concern the development of ES

prototypes. Section 1.6 provides further details on the delimitations of this study.

This thesis uses the definition that knowledge is understood to reside within the mind

of an individual [Polanyi, 1958; Grant, 1996; Davenport & Prusak, 1998] (see Section

1.1.8). Based on this definition, knowledge itself is thus difficult to measure, because

it is defined as existing exclusively within a person’s mind [Polanyi, 1958].

Consequently, the emphasis of this problem statement, and the thesis as a whole, is

not on knowledge itself, but rather on knowledge-based activities, the development of

an ESAOA KMS, and the effect such a KMS would have on the creation of products.

From this research project, the following overarching research question, developed

after an investigation of the literature and a preliminary study4 (see Section 4.2), was

used to guide this research:

4 Since this is an exploratory study, the research question and analysis methods were
developed after an initial investigation of ES development practices, which was the original
objective of the preliminary study. Thus, the same Experiment 1 data was used in both the
preliminary study and in the initial data analysis – see Chapter 4).

 1-14

Research question:
What is an effective structure for the ESAOA KMS (i.e., the roles, activities,

artefacts, etc.) that will contribute to the successful completion of ES

implementation tasks?

The research design developed to address this research question is the topic of

Chapter 3.

1.5 Focus

This thesis focuses on ESAOA activities performed by embedded software

developers during new product development projects. The focus is further refined in

the following three ways:

• New product development: studying projects that involve the development of

new products;

• Product prototyping: investigating projects that aim to produce a product

prototype as part of a proof-of-concept project; and

• Component integration: examining ESAOA activities related to writing, or

learning how to write, component integration code.

The subsections that follow elaborate upon this focus.

1.5.1 Focusing on new product development

In a study of European ES development companies performed by Graaf et al. [2003],

it was found that the companies generally started new projects that were based on

previous projects. Thus new projects tended to reuse resources (such as

requirements specifications and development tools) from previous projects. While

companies that have developed ES projects previously are likely to reuse previously

developed artefacts and tools, as shown by Graaf et al. [2003], this thesis focuses on

new product development in which a development team starts a new project to

produce a new product that is not based on an upgraded version of a previous

product. Developers working in either the context of building from scratch or reusing

previous artefacts are likely to encounter similar issues; however, teams that build on

previous projects have many advantages, such as the use of systems, procedures

artefacts and tools left behind from previous developers – an aspect highlighted by

Leonard-Barton [1992] in a study of multiple development projects. In this thesis, the

focus is on teams comprising first-time developers who need to develop project

 1-15

resources from scratch and who do not have access to previous projects or project

resources that they can reuse5.

1.5.2 Focusing on product prototyping during a proof-of-concept

The objectives of development products can vary. For example, the aim of production

projects is to produce a quantity of marketable projects; whereas the purpose of

research and development (R&D) projects relates more to experimentation,

establishing development methods [Brinkkemper et al., 1996], and exploration of

concepts [Lewis, 2006]. A proof-of-concept project involves the possibly incomplete

creation of a product concept; these projects aim to demonstrate the feasibility of a

product idea, or to verify that an aspect of the concept is feasible [Erdogmus, 2002].

This thesis focuses on proof-of-concept projects in which an ES prototype is built. A

proof-of-concept project (more so than a larger scale R&D project) generally has a

specific concept to test and a corresponding plan for an experiment to perform

[Erdogmus, 2002] (whereas part of an R&D project may involve conceptualising a

concept to test). An ES product prototype built as part of a proof-of-concept project

may be functionally limited (in contrast to a marketable version of the product) and

intended only to test certain design strategies [Floyd, 1984] (Section 1.1.2 discusses

ES prototypes).

1.5.3 Focusing on ESAOA activities related to component integration

The implementation phase of product development involves the integration of a

component into an incomplete product using development tools, or the application of

development tools to make adjustments to the way in which a component is

integrated into a product, or part of a product [Schach, 2005]. The term ‘component’

refers to the parts from which a product is built (a component can be considered to

be a special form of implementation artefact). Development tools include software or

hardware tools that embedded software developers use in projects; examples include

web browsers, scripting tools, cross-compilers and remote debuggers [Sutter, 2002].

ES product development can be viewed as a process of forming a product from a set

of hardware and software components [Marwedel, 2003]. A component can be a

hardware component (e.g., a microcontroller) or software component (e.g., a code

module). In this thesis, the term component integration refers to a process by which a

5 The teams have access to resources on the Internet in the public domain.

 1-16

software developer writes or adapts code to connect components. This study focuses

on ESAOA activities related to component integration.

While component integration may overlap both the implementation phase and the

integration phase of a project, the focus remains on activities related to

implementation tasks, more specifically activities in which the software developer

modifies code components6. Component integration studied in this thesis includes

connecting software components with other software components, and connecting

software components to hardware components7 (e.g., creating or modifying a device

driver). The connection of hardware components to other hardware components

does not fall within the scope of this study.

1.6 Delimitations

The focus of this study, as elaborated upon in Section 1.5, is on KM for ESAOA

activities performed by software developers in the context of implementation tasks

performed in new proof-of-concept development projects in which an ES product

prototype is constructed (Figure 1.4 visually models the focus and delimitations of

this study).

Delimi-
tations

Implementation phase

Embedded Software
Development

Proof-of-concept projects

Prototype development

ESAOA

Figure 1.4: Visualization of the thesis focus and delimitations.

Although the focus narrows down the research area, a wide variety of possible

projects still fit the research focus. For example, such projects could be done entirely

by an individual developer, alternatively by a highly proficient team of professional

6 In this text, the integration phase can be considered as the integration of completed product
components, and to a lesser extent the writing of code that connects components.
7 This is generally referred to as hardware/software interfacing [Patterson & Hennessy, 2005].

 1-17

engineers, or possibly by a decentralised team, among other possibilities. The

delimitations outlined below indicate the specific type of development projects

investigated in this study. Although these delimitations restrict the generalisation of

the results produced, the study can still provide potentially useful insights, or suggest

strategies that may be beneficial to the wider area of the research focus, and

contribute to the knowledge in this field.

The six main aspects of the delimitation are outlined in Table 1.2, and are refined in

the subsections that follow.

Table 1.2: Summary of delimitations

Aspect Delimitation imposed
Activities studied Task-oriented ESAOA activities only
Level of developers Novice engineers
Team size and structure Small teams, of two to three members each
Number of case studies Two case studies in Experiment 1, thirteen in Experiment 2
Time-frame Experiment 1 projects studied for three months; Experiment 2

project studied for eight months
Products developed All prototypes built using the same hardware platform and

selection of development tools

1.6.1 Task-oriented ESAOA activities

This study is focused on ESAOA activities in which component integration is

performed, as explained in Section 1.5.3. Only task-oriented ESAOA activities are

investigated (i.e., peripheral activities were ignored). The emphasis is on ESAOA

activities used by developers while attempting8 to learn about, or performing,

component integration. These forms of component integration are restricted to:

• Incorporating a software artefact (e.g., a code file) into an existing application;

• Modifying code so that one code module connects to another; and

• Coding a software module to make it communicate with a hardware device.

Only activities in a single project are studied, the study does not investigate how

activities in one project relate to those in concurrent, past or future project).

8 The emphasis is on ‘attempting’ because all acts of component integration are not
necessarily immediately successful; many failed attempts may be made before a successful
strategy is discovered.

 1-18

1.6.2 Level of developers

The study focuses on novice engineers, who have completed two years of a

university computer engineering programme (further detail for this delimitation is

given in Section 3.6.4).

1.6.3 Team size and composition

A developer’s knowledge of implementation tasks results from his/her underlying

skills that are essential to the type of development concerned [Jackson & Caspi,

2005; Grimheden & Törngren, 2005]. For example, in ES development, fundamental

software development skills include the developer’s ability to write source code in a

particular programming language, and an understanding of how the source code is

turned into an executable object. Members of project teams in knowledge-creating

companies are often assigned certain roles, such as: a team leader, a knowledge

owner, or a research specialist [Abell & Oxbrow, 1999]. Each team member can

perform more than one role. Having more than one member in a team allows the

potential for capturing explicit inter-person communication (e.g., email or discussion

points recorded in meetings) between individuals filling specific roles (the generation

of such explicit knowledge would not be as natural or automatic in the case of one-

member teams). However, large teams (e.g., five or more people) can complicate the

study, such as logistic problems of getting all team members to attend meetings

[Milton, 2005]. Consequently, teams in this study are limited to two or three members

to avoid unnecessarily complicated team structures, thus keep the research focused.

1.6.4 Number of experiments and case studies

The research design involves two experiments. The first experiment (Experiment 1)

was a pilot study comprising two projects, with each project performed by two

developers. Experiment 1 was an initial investigation in the chosen research field,

which led to the design of ESAOA KMS version 1 (see Chapter 4). The second

experiment (Experiment 2) was a larger study that involved thirteen projects, each

performed by a team of three members using ESAOA KMS version 1 (see Chapter

5). Chapter 3 provides further detail on the design of these two experiments.

1.6.5 Time-frame for case studies

A requirement for this research project was to complete the acquisition of data from

case studies within a two-year period. The time period for capturing data from

projects was chosen to be three months for Experiment 1, and eight months for

Experiment 2. The rationale for these time periods is given in Section 3.2.2.2.

 1-19

1.6.6 Products developed

All projects in the study involve the construction of ES prototypes (as described in the

research focus in Section 1.5). The prototypes were all built using the same

evaluation board (the CSB337 [Cogent Computers, 2005]) and the same set of

development tools. The teams acquired and interfaced additional external hardware

and software as required. Section 3.2.2 provides detail on this delimitation.

1.7 Thesis Structure

This thesis is structured around seven chapters. The progression of the thesis, and

the focus of each chapter, is as follows:

1. Chapter 1 introduces the research area, the rationale for this research and

the focus of the thesis, together with contextual and background information.

2. Chapter 2 overviews current literature on KM, and focuses in on the research

literature on KM in software engineering and related fields. A meta-analysis of

the literature identifies KM-related issues, KM strategies and KM tools

applied, and the impact these have on product development processes.

3. Chapter 3 outlines the research design and research methods developed for

the study and evolution of the ESAOA KMS.

4. Chapter 4 presents the results of the first experiment, in which an ad hoc

KMS was applied. The results showed that, when using an ad hoc KMS, ES

developers spend more non-productive than productive time during ESAOA

activities [Winberg & Schach, 2007]. There was also a greater occurrence of

non-productive knowledge events than productive knowledge events. This

chapter also explains the first KMS prototype (ESAOA KMS version 1).

5. Chapter 5 presents the results of the second experiment, which used an

experimental research methodology that involved testing ESAOA KMS

version 1. The results indicate that the application of ESAOA KMS version 1

caused more productive knowledge events than non-productive knowledge

events than did the first experiment.

6. Chapter 6 develops the structure of ESAOA KMS version 2 based on the

findings from the first and second experiments.

7. Chapter 7 concludes the thesis, presenting recommendations and areas for

further research.

 1-20

1.8 Summary

This thesis studies a specific aspect of ES development, referred to as ESAOA. It is

motivated by the growing demands for embedded software and the need for

improvements to ES development projects so that more of these projects can be

completed on-time and on-budget [Child, 2001; Grenning et al., 2004; Hall et al.,

2005; Charette, 2005; Ganssle, 2007] (see Section 1.2). KM is a potential means of

addressing these problems (see Section 1.2.3). The specific objective of this thesis is

the construction, evaluation and evolution of an experimental KMS, referred to as the

ESAOA KMS. This KMS is intended for use in ESAOA activities within the context of

new projects that involve prototyping ES products. This thesis centres on how ES

projects are facilitated by the application of the ESAOA KMS. This research study is

focused on new product development that involves proof-of-concept projects

performed by novice engineers. Further delimitations are applied to narrow the study

(see Section 1.6). The next chapter (Chapter 2) provides a literature review that

overviews the current literature and builds towards the research design (Chapter 3).

 1-21

 1-22

Chapter 2:

Literature review: Knowledge management and
embedded system engineering

This chapter begins, in Section 2.1, by describing the focus of the literature review

and the methodology used in its construction. A funnelled approach is then followed,

in which Section 2.2 reviews fundamental terminology and theories related to

embedded system (ES) theories, embedded software development, and knowledge

management (KM). Section 2.3 elaborates on the thesis rationale outlined in Chapter

1 – highlighting the inefficiencies of embedded software development and KM

methods as a means of addressing the problems of information overload and the

management of technical knowledge. Section 2.4 discusses general theory and

terminology related to KM, clarifying how these terms should be interpreted in the

context of this thesis. Section 2.5 presents a topology of KM that maps out and

defines major categories of KM based on current research reported in the literature.

Section 2.6 details the concept of a knowledge management system (KMS),

highlighting the difficulties and principles according to which these types of systems

are designed and deployed. Section 2.7 concerns roles that people take on when

involved with a KMS. In Section 2.8, the literature review hones in on research

performed in the disciplines of electrical engineering and computer science,

reviewing state-of-the-art studies that are related to KM as a potential means of

reducing information overload and improving knowledge acquisition. Section 2.9

draws on the earlier sections of this chapter to develop the theoretical framework that

is used in the research design (see Chapter 3). Section 2.10 ends with a brief

summary and conclusion of this chapter.

2.1 Methodology of the literature review

The literature reviewed was separated into six parts, with each part focusing on a

specific topic related to the positioning of this thesis within a general field of research.

Sections 2.2 to 2.8 correspond to the topics reviewed, namely:

 2-1

1. ES development processes (Section 2.2);

2. Inefficiencies of ES development (Section 2.3);

3. General knowledge management concepts and terminology (Section 2.4);

4. Typology of KM strategies (Section 2.5);

5. Knowledge management systems (Section 2.6);

6. Roles of people involved with a KMS (Section 2.7); and

7. Use of KM in embedded software development (Section 2.8).

The literature reviewed for topics 1, 3, 5 and 6 above was based predominantly on

books, as these are fundamental concepts. The literature investigated for topics 2, 4

and 7 included mainly journal articles, conference proceedings, and reports; the

focus was on publications after 2000.

Topic 7, which narrows down the focus on studies that deal with KM in technical

product development contexts, is the most detailed part of the literature review. This

part is most closely related to the specific area of this thesis. The literature chosen for

this part was required to be empirically based and to be as recent as possible.

For each part of the literature review, the information searches that were done

captured many articles describing empirical research. Most of these were of an

evaluative nature that concerned the implementation and effects of using KM in

contexts of technical product development. The conference papers and journal

articles generally directed the researcher towards book-length studies, book

databases (e.g., IEEE Press), technical reports, and Masters and Doctoral

dissertations (these findings further motivated parts of the literature review to focus

on these types of sources).

Extensive internet searches were performed using the ACM portal, Emerald,

Engineering Village, the IEEE portal, Proquest, Science Direct, Scopus, Springerlink,

Taylor and Francis, and Web-of-Knowledge (ISI). Keywords used in these searches

included terms such as ‘embedded system’, ‘embedded software’, ‘knowledge

management’, ‘development procedures’, ‘organisational learning’, ‘implementation’

and ‘techniques’. Searches of the following journal databases were also done:

Administrative Science Quarterly, AI Communications, Automated Software

Engineering, Communications of the ACM, Computer, Computer-aided Design,

Concurrent Engineering, Decision Support Systems, Empirical Software Engineering,

European Management Journal, Expert Systems with Applications, Information and

 2-2

Software Technology, IEEE Transactions on Automation Science and Engineering,

IEEE Transactions on Knowledge and Data Engineering, IEEE Transactions on

Engineering Management, IEEE Transactions on Software Engineering, International

Journal of Software Engineering and Knowledge Engineering, International Journal

on Software Tools for Technology Transfer, Journal of Engineering and Technology

Management, Journal of Management Information Systems, Journal of Systems and

Software, MIS Quarterly, Organisational Science Journal, Software Engineering

Journal, Software Quality Journal, The Sloan Management Review, and Research in

Engineering Design.

Conference and workshop databases searched included the following: Proceedings

of the IEEE Conference on Control Applications, Proceedings of the Joint

Conferences on Knowledge-based Software Engineering, Proceedings of the

International Conferences on Product-focused Software Process Improvement

(PROFES), Proceedings of the International Conferences on Software Engineering

Advances (ICSEA), Proceedings of the International Conference on Software

Engineering and Knowledge Engineering (SEKE), Proceedings of the International

Conferences on Software Product Lines, Proceedings of the IEEE International

Conferences and Workshops on the Engineering of Computer-based Systems,

International workshop on Learning Software Organizations, Proceedings of the IEEE

International Conferences on Services Computing (SCC), Proceedings of the

International Conference on System Sciences, Proceedings of the International

Workshops on Principles of Software Evolution, Proceedings of the IEE International

Conference and workshop on the Engineering of Computer-based Systems (ECBS),

Proceedings of the IEEE Annual Symposium on Reliability and Maintainability

(RAMS), Proceedings of the Annual NASA Software Engineering Workshop,

Proceedings of the International Conference on Knowledge Acquisition, Proceedings

of the International Conference on Modelling and Management, Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI), Proceedings of the

International Conference on Management of Information and Communication

Technology, and Proceedings of the International Conference on Software

Engineering (ICSE).

A review of the articles that met the inclusion criteria was performed, focusing on the

issues identified for KM, the KM strategies or systems adopted, the tools used for

KM, and the effect of KM strategies and tools. There were very few studies that

focused on specialised, or adapted, forms of KM for use by ES engineers as a

 2-3

means of defining, guiding and improving the way in which developers address

knowledge-related difficulties associated with ES product development, although

there were studies of KM in related fields such as software engineering and

information and communication technologies (e.g., [Abrahamson et al., 2003; Lindvall

et al., 2004]). The existing KMS literature, even when it is located in technical

contexts, tends to address project management rather than KM (as defined in

Section 2.4.2), and also tends to focus more on business processes rather than

development; however, many of the strategies and tools developed for collaboration,

knowledge sharing, and other knowledge-related activities can be adapted to KM

needs (as is shown in Section 2.8.2).

2.2 The ES development process

At a high level, the design process of an ES development project can be divided into

seven main phases (as is shown by Berger [2002] and by Mäntyniemi et al. [2004]).

Figure 2.1 shows an adapted view of the waterfall model [Schach, 2005], which

reflects an amalgamation of the ES development models described by distinguished

authors in the field, namely models by Labrosse et al. [2008], Fowler [2007], and

Berger [2002]. The model shown in Figure 2.1 is not identical to the original version

of the waterfall model [Royce, 1970], since a testing phase has been added in

accordance with the emphasis on testing by these authors. Although the phases

presented by these authors are not identical, the authors’ descriptions of their models

are generally consistent with the model shown in Figure 2.1, and as elaborated upon

in the text below. For example, Berger [2002] uses the name ‘specification’ to collect

activities of the first phase, whereas Labrosse et al. [2008] use the name

‘requirements’; in contrast, Fowler [2007] chooses to name the first phase

‘requirements and specifications’, and he describes an ES development model that is

a hybrid waterfall and spiral model. This thesis uses a variant of the waterfall model

chiefly as a means of clarifying the position of this study.

As Figure 2.1 shows, an ES project generally starts by gathering requirements for the

product to be developed. This ‘requirements’ phase usually involves defining and

documenting the features and functionality of the product [Labrosse et al., 2008]. In

this phase, requirements are commonly documented in a rapid and informal manner

[Schach, 2005].

 2-4

1: Requirements
Determining needs for the product

3: Design separated into software and
hardware design, including microprocessor
/ microcontroller selection

4: Implementation including schematic
creation, coding of embedded software,
firmware, HDL, and possible development
of host-based (e.g., PC) software.

5: Integration including software with
software integration, hardware with
hardware integration and software with
hardware integration

6: Testing software modules, hardware
components; leading towards acceptance
testing and product release

2: Specification including partitioning
into hardware and software components

7: Maintenance and Upgrade such as
repairing and refining products (this phase
itself may encapsulate a whole new project)

Retirement

Figure 2.1: Embedded system lifecycle model (an adaptation and amalgamation of
models by Schach [2005], Labrosse et al. [2008], Fowler [2007] and Berger [2002]).

The specification phase can be seen as building on the requirements phase, in which

formal documentation is produced that explicitly, and precisely, describes the

functionality of the product, often including a description of the specific inputs and

outputs of the system, as well as of the constraints on the product operation [Schach,

2005]. The specification phase may also include the development of a particular

system architecture for the ES to be built [Labrosse et al., 2008].

The design phase involves refining and developing the structure of the product,

essentially working at an abstract level to determine how the product is going to

provide the functionality required [Schach, 2005]. In terms of ES design, this is often

divided between software and hardware design. The hardware design aspect

includes activities such as developing schematics for printed circuit boards and the

selection of hardware components (e.g., displays, buttons and sensors). The

software design aspect may include UML modelling, and deciding which boot loader

and operating system to use. The selection of microcontrollers or microprocessors to

use in a product is an important decision, one that should arguably be made as early

as possible, since it has a far-reaching impact on the development process (i.e., in

terms of choosing design tools and the system architecture) [Berger, 2002].

Accordingly, the design phase is sometimes split into two parts; for example,

 2-5

Labrosse et al. [2008] indicate that processor selection should take place before the

design phase starts.

The implementation phase can be separated into hardware aspects and software

aspects [Labrosse et al., 2008]. Software implementation involves writing code for

the embedded software, including application code, driver modules, boot loaders,

configuration files, and scripts – all of which may be needed to create and install

executable programs that the product will use [Fowler, 2007]. Typically, in order to

implement embedded software, the developers need to learn how to use a ‘cross-

compiler tool chain’ [Ganssle, 2007]. A tool chain is a set of tools used to develop

software; these tools are often applied in sequence so that the output of one tool

feeds into the input of the next [Wiktionary, 2008]. A cross-compiler tool chain is a

tool chain capable of creating executable code for a platform that is different to the

one on which the tool chain is run.

The hardware aspect includes activities such as writing HDL code and fabricating

printed circuit boards [Shetler, 1996; Riesgo et al., 1999]. As mentioned in Section

1.5.3, this thesis focuses on implementation phase activities, with some overlap of

integration issues.

The integration phase occurs at three levels: 1) the integration of software with

software (e.g., connecting code modules together); 2) the integration of hardware

with hardware (e.g., physically connecting a microcontroller to an external

peripheral); and 3) the integration of software with hardware (e.g., making software

work with hardware) [Labrosse et al., 2008].

Testing generally happens as an ongoing process (e.g., compiling and testing code

as it is being developed). The testing phase can range from quick and simple tasks

(e.g., compiling and running a code module on a PC) to more elaborate and time-

consuming undertakings (e.g., a factory acceptance test [Fowler, 2007]).

The maintenance and upgrade phase occurs after the product has been accepted by

the client [Schach, 2005]; studies have established that this phase commonly

involves the most effort and engineering expense for a development company

[Sommerville, 2006]. The terms ‘upgrade’ and ‘maintenance’ tend to be used

interchangeably in the literature; however, the term ‘maintenance’ generally relates to

fixing an existing product [Fowler, 2007], whereas ‘upgrade’ tends to refer to the

 2-6

development and release of a new version of an existing product [Berger, 2002]. The

team that performs the maintenance and upgrade of a project often differs from the

team that originally developed the product, which is one of the difficulties inherent in

this phase of the development lifecycle [Berger, 2002].

2.3 Inefficiencies of ES development

Recent studies have shown that embedded software development projects are

frequently late and over budget [Child, 2001; Grenning et al., 2004; Hall et al., 2005;

Charette, 2005; Ganssle, 2007]. The number of embedded software projects is also

expected to continue growing [Graaf et al., 2003], and the complexity of these

products is likely to increase further [Ganssle, 2007]. These trends were highlighted

in Section 1.2 as motivation for the need for more efficient approaches to embedded

software development.

Many factors contribute to the inefficiencies of ES development. This section focuses

on five of the major causes that, based on the recent literature, may be made more

efficient by using appropriate KM techniques. The causes focused on are: 1) general

software engineering difficulties; 2) complex and lengthy learning processes; 3) the

value and temporality of intellectual capital; 4) decentralised development, speed of

obsolescence and availability of new technology; and 5) embedded software

maintenance issues. These points are elaborated upon below.

2.3.1 General software engineering difficulties

The inefficiency of embedded software projects are caused by many of the difficulties

that are found in non-embedded software development [Grenning et al., 2004], for

example, dealing with vague requirements, makeshift practices and unfamiliar

technologies [Charette, 2005; Hall et al., 2005]. However, embedded software

developers also need to address additional challenges, which are not usually faced

by non-embedded software developers, such as working with resource limited

platforms, and using separate environments for software development and program

execution [Grenning et al., 2004].

2.3.2 Complex and lengthy learning processes

Added to the issues above and a likely contributing factor to the problems such as

time and budget overruns, are the difficulties with regard to learning and knowledge

acquisition found in embedded software development. For instance, an engineer

 2-7

generally does not know the particular implementation methods to use in a project at

the start of a project [Kitchenham et al., 1995; Ganssle, 1999]. Rather, the

implementation methods tend to develop as the engineer’s knowledge of the target

hardware, development tools and other development artefacts grows, as the project

progresses. This knowledge often develops from time-consuming activities, such as

reading datasheets, finding examples of code, discussing solutions with colleagues,

and experimenting with code [Ganssle, 1999; Labrosse et al., 2008].

2.3.3 The value and temporality of intellectual capital

Intellectual capital (IC) is the most valuable asset of a software development

organisation [Rus & Lindvall, 2002], as is the case for many other technology-based

enterprises [Sveiby, 1997]. A major difficulty for a software development firm is that

the individual engineers do not necessarily stay at the same firm; when an engineer

leaves the firm, a portion of that firm’s knowledge leaves as well [Rus & Lindvall,

2002]. Knowledge management is seen as a means of assisting with these types of

problems.

2.3.4 Decentralised development, speed of obsolescence and
availability of new technology

Software development practices are changing rapidly [Herbsleb et al., 2001; Rus &

Lindvall, 2002]. For instance, work performed on a project is being done by engineers

working on different phases simultaneously, as well as by people working in different

parts of the world [Von Krogh et al., 2003]. In these situations, developers have

additional difficulties, such as locating and sharing technical knowledge, which

provides further motivation for more effective KM in software development [Rus &

Lindvall, 2002].

2.3.5 Embedded software maintenance issues

Factoring maintenance into the development process of an ES product is important,

because changes to a product and its embedded software, after it has been delivered

and installed, are often a necessity [Lindvall et al., 2003]. There are many reasons for

the high costs and low productivity of implementing changes in any type of software,

especially if appropriate allowances for maintenance considerations have not been

made; common problems, based on findings by Lindvall et al. [2003], include the

following:

 2-8

1. The personnel that maintain the system are often not the ones who originally

developed the system.

2. In some cases, maintenance is performed by developers who are relatively

inexperienced and unfamiliar with the application domain.

3. Maintenance tends to have a poor image among software engineers; as a

result, it is often seen as a less advanced process that is allocated to junior

staff.

4. The software being maintained is often poorly documented or the provided

documentation is inconsistent with the code used.

5. In some case, a separate team, which does not include the original designers,

produces the documentation.

6. The structure of the modified software tends to degrade, as further changes

are made to it (making further changes increasingly more difficult).

7. Changes are often not carried out in a consistent and guided manner.

Many of the difficulties described above could be facilitated by appropriate KM

techniques that account for maintenance needs. Especially valuable would be

methods that help maintenance workers to learn previously established development

methods, and to avoid making the same mistakes as those made by the original

developers while formulating these methods [Dingsøyr & Conradi, 2002].

2.4 Knowledge Management Terminology

This section focuses on defining important terms related to KM. Many of these terms

are not unanimously agreed upon in the literature, as evidenced below. These terms

are defined according to their application in this thesis, highlighting interpretations of

the terms where relevant. This section builds outwards from fundamental definitions

of data, information and knowledge, towards the increasingly complex notions of KM

and knowledge flows that lead to a typology of KM approaches (in Section 2.5).

2.4.1 The Data, Information and Knowledge (D-I-K) Hierarchy

As outlined in Section 1.1.8, data, information and knowledge can be seen as a

hierarchical process, through which data lead to information, and information

becomes knowledge. This hierarchy is commonly termed the D-I-K hierarchy [Patrick,

2008; Rennolls & Al-Shawabkeh, 2008; Tian et al., 2009]. This notion of how

 2-9

knowledge is formed is used in this thesis to elaborate on issues of KM and the

acquisition of knowledge.

Data exist at the lowest level of the hierarchy, and have no significance besides its

existence [Davenport, 2002]. Bits, numbers and characters are elements of data.

Information is formed by giving context and meaning to data. A particular context

determines the way in which data are assembled into information. Knowledge exists

in the minds of people, and occurs when information is combined with understanding

and capability [Groff & Jones, 2003]. Capability is a person’s ability to take action. A

person’s understanding is the way in which that person interprets information

[Madhavan & Grover, 1998]. Understanding and capability are mutually dependent:

Understanding is built through learning new ways to take action [Kogut & Zander,

1992], which develops capability; conversely, by performing actions, which are made

possible through capability, information builds understanding.

2.4.1.1 Data, information and knowledge scenario

Figure 2.2 shows a scenario in which the differences between data, information and

knowledge are illustrated (the scenario is an adaptation of one by Groff and Jones

[2003]). In this scenario, data exist in the form of twelve numbers. These numbers

relate to a bank account, with account number 1234567, and transactions affecting

this account. Some of the transactions are withdrawals, and are thus classified as

debits, while others are deposits, and thus classified as credits. These remaining

numbers reflect the balance in the bank account after a transaction has occurred.

Since the transactions follow a certain sequence, they are ordered according to the

time at which they occurred. This procedure of classifying and organising data

elements gives the data context, and turns it into information. The specific process

involved depends on what the information is likely to be used for. In this case, the

bank statement belongs to an individual, named John, who plans to use the

information as part of a procedure for withdrawing cash from his bank account. For

this objective, John needs specific levels of understanding and capabilities to

interpret the information provided on his bank statement. He needs to understand

how to read a bank statement, and he also needs to know the procedure of

withdrawing cash from an ATM. He also needs the capability to withdraw cash from

an ATM (e.g., having access to an ATM and being in possession of his cash card).

 2-10

Data

Knowledge

A Bank
Statement for 04/06
Account: 1234567

 I have a credit

balance so I can

with raw cash d.

$100 $150

$0 $50

debit balancecredit

$0

$0 $130

$10 $120$0

$20

$0

Knowledge is information
combined with understanding
and capability:
John uses his understanding of
bank statements, to interpret
the information contained in the
document, thereby deciding an
action to perform. John

120 1000

20 0 50

0 0130

0 15010

Data exists:
Twelve numbers exist, ranging
from 0 to 150.

Information is data in context:
The numbers are put into
labeled columns. A heading
is provided according to the
context. Additional data is
added relating to the context
concerned, such as the bank
name, date and account
number.

Information

Figure 2.2: The data, information, and knowledge hierarchy, with scenario illustrating
how data in the form of numbers become information, which leads to actions (adapted
from Groff & Jones [2003]).

2.4.1.2 Knowledge acquisition and limitations of the D-I-K hierarchy

Although the hierarchy shown in Figure 2.2 indicates that knowledge is built from

information, it must be noted that knowledge is by no means derived directly from the

availability of information, nor is it derived from information alone [Patrick, 2008].

Knowledge is gained through a complex interaction between ideas, concepts and

thought patterns, which may be coupled with information, prior experience, personal

needs, and many other factors [Bennet & Bennet, 2004]. Accordingly, knowledge can

be considered as a phenomenon that emerges through complex patterns, and is

dependent on factors such as an individual’s objectives, and the context concerned,

in addition to the existence of information. It should also be remembered that the D-I-

K hierarchy can be challenged (as shown by Bellinger [2000]).

Data consist of unsystematised information. There are forms of data, however, that

are extremely complex and that require complex information systems for purposes of

data management [Espinosa et al., 2007]. Similarly, there are forms of data that are

fairly simple. The link between data, information, and knowledge is not necessarily

always hierarchical; nevertheless, it can be said that the more complex the data is,

 2-11

the more complex the information system and the more complex the knowledge

forms will be [Galliers & Newell, 2001; English, 1999].

2.4.1.3 Tacit and explicit knowledge

There are two major categories of knowledge: tacit knowledge and explicit

knowledge. Tacit knowledge is personal knowledge that is embedded in individual

experience, relating to intangible factors such as the individual’s personal values,

perceptions and beliefs [Polanyi, 1958]. Tacit knowledge has been described as

being more about ‘know-how’ as opposed to ‘know-what’ (facts), ‘know-why’

(science) and ‘know-who’ (networking) – for instance, Johnson et al. [2002] discuss

that it is easy to write down rules for playing tennis (know-what) and who the good

players are (know-who); but it is difficult to make explicit the skilful behaviour of

tennis pros (i.e., the know-how). Tacit knowledge is generally difficult to transfer

[Argote & Ingram, 2000].

Explicit knowledge is codified tacit knowledge; or more precisely, explicit knowledge

is tacit knowledge expressed in a formal language, such as having been spoken or

documented [Nonaka & Takeuchi, 1995]. Explicit knowledge can be much easier to

transfer than tacit knowledge [Argote & Ingram, 2000]. Sveiby [2001] estimates that

possibly 1 percent, or less, of all knowledge can be made explicit. However, research

has not shown that explicit knowledge is always easier to transfer than tacit

knowledge. For instance, there are certain situations where tacit knowledge is easily

transferred directly from one individual to another without using explicit knowledge; in

such situations the communicating individuals may be close together and have

similar experience levels [Dhanaraj et al., 2004; Eraut, 2000].

2.4.1.4 A definition of knowledge and where knowledge resides

As this section has shown, knowledge is an abstract concept, which is expressed in

the way it is used. An analysis of recent literature [Bennet & Bennet, 2004; Davenport

& Prusak, 2000; Sveiby, 2001] shows a common theme for defining knowledge as

information combined with capability and understanding.

A number of authors indicate that knowledge lives in the mind of people [e.g.,

Patriotta, 2004; Polanyi, 1958; Groff & Jones, 2003], which may imply that ‘explicit

knowledge’ refers to a form of information since it can be stored outside a person’s

mind. Many authors do not add this caveat, in particular Rumizen [2002], Davenport

& Prusak [2000], and Senge [1990]. It may be debatable whether or not knowledge

 2-12

exists only in the minds of people; for example, an expert system mimics the way in

which a human expert makes decisions based on a diagnosis and prior experience

[Grundspenkis, 2007; Apshvalka & Grundspenkis, 2005]. If the implementation of an

expert system is considered to be a method of codifying knowledge, then this

example indicates that the codification of knowledge can lead to more than just

information.

2.4.2 Knowledge management (KM)

As mentioned in Section 1.1.9, KM is a movement taking place across multiple

disciplines [Wilson, 2002]. The name ‘knowledge management’ is therefore better

considered a label rather than a descriptive title for the movement [Hahn &

Subramani, 2000] and is consequently explained by different people in many different

ways.

2.4.2.1 Knowledge-focused vs. information-focused streams of KM

Broadly speaking, there are two contrasting streams of KM, referred to as the

‘knowledge-focused’ stream and the ‘information-focused’ stream. Both streams

involve the way in which knowledge is created, captured, stored, and shared in an

organisation, with the intention of leveraging this knowledge inwards within an

organisation (e.g., helping developers to understand common difficulties experienced

by other teams), and outwards to people outside the organisation (e.g., assisting

customers in solving problems) [Rus et al., 2001; Wiig, 1997]. In these definitions, the

term organisation can refer to a variety of different collaborations in which people are

involved; it is not limited to corporate concerns, in that an organisation could also

refer to a team of individuals not necessarily employed by the same company, but

working towards a common purpose [McDermott, 1999b].

The knowledge stream focuses on leveraging knowledge that occurs in different

forms, such as the form of knowledge encountered in meetings compared to the form

encountered in solving problems [Sveiby, 2001; Nonaka, 1994].

The information stream, by comparison, is focused on methods for treating

information, and the interaction of people interested in that information [McDermott,

1999a]. This form of KM involves capturing explicit information and the way in which

the captured information is stored, categorised, and then recovered and interpreted

to create, recall, or apply knowledge in certain contexts [Groff & Jones, 2003; Sveiby,

2001; Grant, 1996].

 2-13

2.4.2.2 The overall goal of KM

The goal of KM is to make the enterprise act as intelligently as possible to secure its

viability and overall success [Wiig, 1997]. Based on the definition of KM by Davenport

& Prusak [1998] (see Section 1.1.9), KM can be seen as enhancing processes of

sharing, distributing, creating, capturing and understanding a company's knowledge

[Davenport et al., 1998]. Some important aspects of KM are to survey, develop,

maintain and secure the intellectual and knowledge resources of the enterprise, to

determine the knowledge and expertise required to perform work tasks, to organise

knowledge, to make the requisite knowledge available, to ‘package’ it, to ‘distribute’ it

to relevant points of action, and to provide the ‘knowledge architecture’ so that the

enterprise's facilities, procedures, guidelines, standards, examples, and practices

facilitate and support its activities [Wiig, 1995].

2.4.3 Knowledge Processes

Radding [1998] describes the concept of a ‘knowledge process’, a mostly unseen

relation of actions that takes place in the use and creation of knowledge. Radding

[1998] describes a knowledge process as consisting of four steps: 1) capture, 2)

storage, 3) processing and 4) communication. Figure 2.3 illustrates this progression

of steps, accentuating the way in which these aspects tend to become increasingly

complex. The points below elaborate upon each step.

1. Capture: The organisation (or individual) captures explicit and tacit knowledge

in the form of data or higher-level information, termed ‘raw knowledge’.

2. Storage: The captured raw knowledge (data and information) must be stored

in a place, such as a data warehouse, where it can be managed, secured and

made accessible to others.

3. Processing: Raw knowledge is transformed into valuable business knowledge

during the processing step. Processing may involve sorting, filtering,

organising, analysing, comparing, correlating, mining or a number of different

techniques. It may involve a little more than just labelling the knowledge so

that others can easily find it when they need it, or it may entail sophisticated,

complex, statistical analysis to uncover hidden relationships and insights. It is

here that human intuitiveness and experience come into play in making

decisions, and it is here that the ‘meaning’ contained in that knowledge is

determined.

4. Communications: In order for knowledge to be truly valuable, it must be

shared with others. Communications can be active or passive. Knowledge

 2-14

can be transmitted via information systems or passed on through personal

interaction. Alternatively, it can simply be placed in an accessible storage

receptacle, ready and accessible by users when they need it.

Communicate

Process

Store

Capture

Figure 2.3: The knowledge process adapted from Radding [1998].

2.4.4 Knowledge Flows

Based on the knowledge supplier/consumer concept for KM, knowledge can be

modelled as flowing from supplier to consumer [Milton, 2005]. In this model,

knowledge can flow either directly between people, or indirectly via a knowledge

base. Figure 2.4 illustrates these two forms of knowledge flow.

Knowledge flows directly between people when they communicate in person, such as

in discussions during meetings, by telephone or by email. Knowledge flows indirectly

between people through a more elaborate process whereby the knowledge supplier

codifies key elements of explicit knowledge, organises this information in a

knowledge base, and then publishes the information so that it can be accessed by

knowledge consumers.

 2-15

From

To

People

Knowledge
base

People Knowledge base

CollectingCommunicating

Accessing and
publishing

Organizing

Figure 2.4: Flow of knowledge from supplier to consumer (diagram adapted from Milton
[2005]). Knowledge flows either directly between people, or via a knowledge base.

2.4.5 Knowledge Forms

The classification of knowledge into multiple ‘knowledge forms’ is a technique

commonly used by scholars in the KM field [e.g., Polanyi, 1958; Allee, 1997; Galliers

& Newell, 2001; Alavi & Leidner, 2001]. KM authors often use this method of

classification to focus on the nature of knowledge that emerges from KM processes

[Galliers & Newell, 2001]. KM authors divide knowledge in many different ways

depending on the context of study; for example a study of KM in project management

may differentiate between technical and strategic knowledge forms [Galliers &

Newell, 2001]. Commonly used knowledge classifications are those of ‘tacit

knowledge’ and ‘explicit knowledge’ [Polanyi, 1958; Spender, 1996] (see Section

2.4.1.3).

2.5 A typology of KM

A broad range of literature related to KM has been produced, including journal

articles, papers, and books. Most are concerned with the more managerial aspects of

KM [Davenport & Prusak, 1998] and the rewards associated with being a knowledge-

based or learning organisation [Leonard, 1999]. The effective implementation of a

sound KMS and the transformation of corporations into ‘knowledge-based

organisations’ are seen as a mandatory condition for companies to succeed in the

 2-16

knowledge economy [Leonard, 1999]. However, becoming a knowledge-based

organised requires appropriate planning [Edvinsson & Malone, 1997].

The literature on KM derives predominantly from the fields of business science [Alavi

& Leidner, 1999], management [Davenport & Prusak, 1998; Martensson, 2000;

Sveiby, 1997; Teece, 1998], marketing [Davenport & Klahr, 1998], and information

technology [Guthrie & Petty, 1999; Newell et al, 1998]. Specialist forms of KM, such

as the management of technical innovation [Leonard, 1999; Nonaka & Takeeuchi,

1995], are a growing concern to researchers in the field.

The broadness of the field and the wide range of topics covered make a review of the

literature a complex undertaking. Each new piece of reviewed literature presents a

view of KM from that author’s particular interest and perspective. For this reason,

Binney’s [2001] meta-analysis of KM applications is drawn on to give a brief overview

of the general KM applications described in the literature, before addressing the

literature on KM within technical product development.

Binney [2001] clusters KM applications around common ideas, which include:

creating new knowledge; improving processes and methods; understanding patterns

in vast amount of data; tapping expertise in organisations; and developing employee

capabilities and competencies. Binney [2001] then separates the KM applications

into six main categories, which are referred to as transactional KM, analytical KM,

management of knowledge assets, process-based KM, developmental KM, and

innovation management. Alternate typologies have been provided, such as Earl

[2001]; however, the intention of this section is to provide the reader with a

broadened view on KM issues, which Binney [2001] provides.

Each type of KM described in Binney’s [2001] meta-analysis is explained in the

subsections that follow. Figure 2.5 provides a summary of the meta-analysis.

 2-17

 Transactional Analytical Asset
management

Process Developmental Innovation and
creation

K
M

 a
pp

lic
at

io
ns

 Case-based

 reasoning

 (CBR)

 Help desk

 applications

 Customer

 Service

 applications

 Order entry

 applications

 Service agent

 Support

 applications

 Data

 warehouse

 Data

 mining

 Business

 intelligence

 Managem/t

 information

 systems

 Decision

 support

 systems

 Customer

 relationship

 managem/t

 (CRM)

 Competitive

 intelligence

 Intellectual

 property

 Document

 managem/t

 Knowledge

 valuation

 Knowledge

 repositories

 Content

 managem/t

TQM

 Bench

 marking

 Best

 practices

 Quality

 managem/t

 Business

 process re-

 engineering

 Process

 improvem/t

 Process

 automation

 Lessons

 learned

 Methodology

 SEI/CMM

 ISO9000, Six

 Sigma

 Skills

 development

 Staff

 competencies

 Learning

 Teaching

 Training

 Communities

 Collaboration

 Discussion forums

 Networking

 Virtual teams

 Research and

 development

 Multi-disciplinary

 teams

En
ab

lin
g

te
ch

no
lo

gi
es

 Expert

 systems

 Cognitive

 technologies

 Semantic

 networks

 Rule-based

 expert

 systems

 Probability

 networks

 Rule

 induction,

 decision

 trees

 Geospatial

 information

 systems

 Portals,

internet,

intranets,

extranets

 Intelligent

 agents

 Web

 crawlers

 Relational &

 object

 DBMS

 Neural

 computing

 Push

 technologies

 Data

 analysis and

 reporting

 tools

 Document

 managem/t

 tools

 Search

 engines

 Knowledge

 maps

 Library

 systems

 Workflow

 managem/t

 Process

 modelling

 tools

 Computer

 based training

 Online training

 Groupware

 Email

 Chat rooms

 Video

 conference

 Search

 engines

 Voice mail

 Bulletin

 boards

 Push

 technologies

 Simulation

 technologies

Figure 2.5: The KM spectrum (adapted from Binney [2001]).

 2-18

2.5.1 Transactional KM

Transactional KM involves the application of technologies in the course of completing

a transaction or a unit or work, such as entering an order or handling a customer

query or problem. Davenport and Klahr [1998] describe this type of KM as ‘case-

based reasoning’ in a customer service application, where knowledge is ‘packaged’

for the user in the course of interacting with a system and can be accessed through

help desks, customer service, order entry and other field support applications. In

transactional KM systems, users can choose what to do with the knowledge

presented; but its access methods and presentation forms are usually not optional.

2.5.2 Analytical KM

Analytical KM interprets or creates new knowledge from significant amounts of

material or from highly disparate sources [Binney, 2001]. In analytical KM

applications, large amounts of data are used to derive trends and patterns. This

involves turning data into information that can become knowledge if a person makes

use of it. Analytical KM applications tend to focus on customer-related information

that assists marketing or product development [Yoon et al., 1999]. Competitive

intelligence applications, another example of analytical KM, are used by companies

and government agencies to analyse and understand their marketplace and assess

competitive activity [O’Dell et al., 2003; Fuld, 1994]. The most common method used

in these applications is scenario planning [Cushman et al, 1999] – used if one needs

to provide quick answers to complex questions; an example of this would be an

engineer solving a question, such as “what would I need to know about hardware

interfaces in order to develop a cellular telephone that can communicate with a PC?”

2.5.3 Management of knowledge assets

The management of knowledge assets involves the management of explicit

knowledge that has been codified in some way [Guthrie and Petty, 1999], an

example being the management of intellectual property (IP) and the processes

surrounding the identification, exploitation and protection of IP [Teece, 1998]. This

type of KM is analogous to a library, with the knowledge assets being catalogued in

various ways and made available for unstructured access and use. Knowledge

assets are often created as a by-product of ‘doing business’ and are kept for future

uses, these uses often being unknown at the time the assets are created, captured

and stored. What differentiates asset management from analytical systems is that the

assets are often more complex [O’Dell et al., 2003]; they may also require some level

of intervention in order to codify them. For example, the capture of project or product

 2-19

development history typically requires user intervention, in addition to certain types of

prior experiences and a working product.

2.5.4 Process-based KM

Process-based KM includes the codification and improvement of processes, work

practices, procedures and problem-solving methods. Process-based KM is often an

outgrowth of other disciplines such as total quality management (TQM) and process

reengineering. The knowledge assets produced in this category are also known as

‘engineered assets’ in that they often involve working with specialists to document

best practices in standard formats [Henniger, 1997b]. Process knowledge assets are

often improved through internal (or in-house) lessons, formalised processes,

publicised best practices, and benchmarking [Feltus, 1995; Hill, 1999; O'Dell &

Grayson, 1999].

2.5.5 Developmental KM

Developmental KM applications focus on increasing the competencies of an

organisation's knowledge workers. This is also referred to as investing in human

capital [Edvinsson & Malone, 1997]. These applications cover the transfer of explicit

knowledge via training sessions (e.g., training ES engineers on a new compiler tool

chain), or the planned development of tacit knowledge through developmental

interventions [Elliott, 1999] (e.g., arranging to capture and systematise informal

knowledge during a project). In addition to traditional training in ‘explicit knowledge’,

developmental KM relates to products, methods and technologies, with emerging

emphases on developing a ‘learning organisation’ [Senge, 1990] and ‘communities of

practice’ [Wenger et al., 2002] to enable the exchange of ideas and experiences.

2.5.6 Innovation management

Innovation-based KM applications focus on providing an environment in which

knowledge workers can collaborate in the creation of new knowledge. While there is

still a necessity for a certain amount of individual innovation, innovation increasingly

comes from interdisciplinarity and teamwork. This category of KM is summarised by

Nonaka & Konno [1998], who claim that knowledge is manageable only insofar as

leaders in an organisation are able to accept and nurture knowledge creation.

Nonaka et al. [2001a] uses the term ba, a Japanese word, to express the concept of

an environment in which knowledge workers of various disciplines can come together

 2-20

to create new knowledge. The role of top management is to provide ba for knowledge

creation, and to manage ‘knowledge emergence’ [Nonaka & Konno 1998].

The most common application referenced in the literature concerning innovation

management is the creation of new products or company capabilities [Binney, 2001].

2.6 Knowledge management systems (KMSs)

Broadly speaking, a KMS refers to a system for managing knowledge within an

organisation, which supports the creation, capture, storage and dissemination of

knowledge among members of the organisation or a broader, related community

[Alavi & Leidner, 2001; Dalkir, 2005]. A KMS is often a component of a broader KM

initiative that may in time be part of a higher-level and organisation-wide initiative

involving various forms of upgrade and improvement, such as overhauling technical

support infrastructures [Alavi & Leidner, 2001]. Maier & Hadrich [2006] emphasise

that the term ‘KMS’ is used ambiguously in the literature and that the notion of a KMS

generally refers to an abstraction of enabling technologies for effective KM.

According to the current literature concerning KMS development (such as Holsapple

[2003], Groff and Jones [2003], and Maier and Hadrich [2006]), the implementation of

a KMS generally comprises three parts. Based on Groff and Jones [2003], these

parts are more in the form of phases, which may be revisited as the KM initiative

progresses; the phases are:

1. The initial step is to develop an overall strategy for a KM initiative, which

identifies the organisation’s goals and how to achieve them.

2. Next, processes and activities that facilitate KM are implemented, as well as

methods for collecting and distributing knowledge across the organisation.

3. The processes and activities decided in the second step are then enhanced

through the development of tools and other artefacts (collectively referred to

as the KMS framework in this thesis) to support these KM processes.

In software engineering contexts, a KMS is likely to have as its ultimate goal the

reduction of software development costs, ideally together with improvement in

software quality and reduction in the workload of software engineers [Dingsǿyr &

Conradi, 2002]. The management, collection and distribution of knowledge involved

in such an initiative is likely to be done by the project managers and software

 2-21

developers themselves (considering the complexity of this knowledge), or it could be

done by a separate team (see ‘knowledge brokers’ in Section 2.7.9). An example of a

tool to support this form of KM, where operational information or knowledge can be

found by different practitioner groups of a company (e.g., developers, project

managers, quality management) usually tend to be in the form of corporate intranet

systems where explicit knowledge is represented and stored in databases, web-

pages and other types of computer files [Dingsǿyr & Conradi, 2002].

2.6.1 The two principle uses of a KMS

Two different uses of a KMS can be identified [Dingsøyr & Conradi, 2002; Hansen et.

al., 2001], namely:

1. Codification: the systematisation and storage of information that represents

knowledge use by an organisation, in order to share this knowledge more

efficiently among people in the organisation; and

2. Personalisation: supporting the flow of information in a company by storing

information about knowledge sources in a company.

The codification strategy does not fit all types of knowledge [Dingsøyr & Conradi,

2002]. In situations where knowledge is extremely context-dependent, and where the

context is difficult to transfer, it can be dangerous to reuse knowledge without

analysing it critically first [Jǿrgensen & Sjǿberg, 2000]. An additional strategy (apart

from the two mentioned previously) is to support the growth of knowledge and the

creation of new knowledge by arranging for innovation through special learning

environments [Kessels, 2001] or expert networks [Davenport et al., 1998].

2.6.2 Growth of a KMS

Knowledge is context dependent, which leads to KM being dependent on the ways in

which specific knowledge workers in an organisation perform knowledge work.

Different organisations have different types of knowledge workers who have

dissimilar KM needs that change over time [Dignum, 2006]. For this reason, a KMS

usually needs to be custom designed for the specific organisation concerned, with

the design being sufficiently flexible to respond to changes in the organisation.

Consequently, a KMS should not be considered as a once-off development project,

but rather as a continuous development effort that grows an organisation’s KMS, as

the organisation evolves [Groff & Jones, 2003].

 2-22

It is difficult to ascertain the KM needs of an organisation and then to integrate a new

KMS into the organisation in a short time period. Typically, an organisation’s KMS is

incrementally modified, gradually moving the organisation away from the use of ad

hoc KM methods towards more formalised strategies that are consistent between

knowledge workers (as is described by Easterby-Smith & Lyles [2005] in terms of the

implementation and refinement of KM practices).

The development of a formalised (or visible) KMS can be seen as paralleling the

customary seven phases of development [Schach, 2005]. However, take note that a

KMS is not a software tool, but rather an interconnection of people, organisation

practices, artefacts and other aspects that may be supported by various software

tools [Davies, 1998].

2.6.3 Establishment and evolution of a KMS

The establishment and maintenance of a KMS generally involves a sequence of

phases, which may have to be repeated; as mentioned earlier (at the start of Section

2.6), there are usually three phases: 1) developing the strategy; 2) deciding on and

implementing the KM processes; and 3) enhancing the KMS through refinement and

development of specialised artefacts and tools (i.e., establishing a supporting

framework) [Groff & Jones, 2003].

In this thesis, Groff and Jones’ [2003] three phases for implementing a KMS are

expanded into a seven-phase model describing a general approach to initial

development and then incremental, long-term refinement of the KMS. This

incremental, long-term refinement is referred as KMS evolution in this thesis (see

Section 3.1.2). This generalised model is based on an integration of several

published methodologies, including Nonaka’s “Knowledge Spiral” [Nonaka et al.,

2000, pg. 9], Allee’s “Organisational Knowledge Management Model” [Allee, 1997,

pg. 48] and Milton’s “Knoco Ltd 12-component framework” [Milton, 2005, pg. 10].

This generalised model of KMS evolution is outlined below:

1. Phase 1: Assessment of readiness: The organisation makes an initial

assessment of its readiness regarding cultural issues, processes and

technology. The purpose of this phase is to identify which perspectives on KM

are critical for the particular business concerned and its context.

 2-23

2. Phase 2: Knowledge audit: A KM initiative should have defined boundaries.

The single most common reason for problems in the KM field is the failure to

focus on a manageable problem. The organisation should identify which

organisational, personal and technical knowledge is most important. Potential

benefits should also be identified at this stage, because these will provide

measures of success.

3. Phase 3: Current initiatives: The purpose of this phase is to map initiatives

that are already underway or planned, which have a bearing on the KM

initiative as defined in Phase 2. This will enable the various initiatives to be

harmonised and will assist the process of gaining support from the

appropriate stakeholders.

4. Phase 4: People and guidelines: At this stage, it is necessary to ensure that

all the basics of good information management are in place before trying to

construct a KM system. Incorporating the principles of good information

management is fundamental to the development of a KMS. It is important to

take a process perspective that crosses internal boundaries within the

organisation. A plan to deal with the cultural and human change issues

should be created at this stage. This phase includes identifying which

knowledge workers are in the greatest need for more formalised KM methods.

It is also essential for the chosen KMS to be compatible with the

organisation's practices and culture.

5. Phase 5: Design/mapping: The purpose of this phase is to maintain the

momentum of the project by mapping the knowledge requirements and

building a model of the KM design. This phase also involves deciding on

which knowledge workers are going to be users of the KMS, and deciding

which types of knowledge work have the greatest need for a formalised KMS.

The KM needs for knowledge workers involved in this work should be

identified and the ways in which these individuals currently perform KM (even

ad hoc KM) should be investigated. This involves identifying people involved

in the KMS, processes by which these people manage knowledge, and the

artefacts (such as software tools, files or equipment) which are used in the

processes. Coordinated KM strategies would then be designed and gradually

introduced into the organisation, leading to the organisation using an

increasingly more formalised and visible KMS.

 2-24

6. Phase 6: Technology: At this stage, the requirements for the KMS are clear.

The organisation now needs to think about the right platforms, technologies

and communications infrastructure (collectively referred to as the KMS

framework in this thesis – see Section 2.6.6) to deliver the solution.

7. Phase 7: Review of benefits: The purpose of this phase is to review progress

in order to ensure that the business benefits identified have been delivered

and to identify actions for further improvement of the system.

An additional advantage to a KMS initiative is that the individuals involved often

obtain a detailed understanding of the underlying KM strategies and fundamental

techniques related to the knowledge work concerned, which may be of value even if

the resultant KMS is short-lived [Dingsǿyr, & Conradi, 2002]. There are a variety of

disadvantages associated with a KMS initiative, of which the major drawbacks

include the amount of time required to study knowledge work [Jǿrgensen & Sjǿberg,

2000] and the cost of purchasing or implementing customised tools for the KMS

[Herrmann et al., 2004].

2.6.4 Structure of a generic KMS

This section briefly outlines the structure of a generic KMS. As was the case for KMS

evolution in the previous section, the generic structure of a KMS described below is

an integrated view of strategies described by influential theorists, specifically Nonaka

et al. [2001b], Allee [1997], Van der Spek & Spijkervet [1997] and Milton [2005].

The structure of a KMS can be divided into six interrelated aspects, namely: roles,

groups, desires, work, workflows and artefacts [Van der Spek & Spijkervet, 1997].

Each aspect, which provides a different view of the KMS, is outlined below:

1. Role: describes the behaviour, responsibilities, and needs of a certain type of

person involved with the system. Each role desires a certain objective.

2. Group: a collection of people, which can be a combination of the same or

different roles.

3. Desire: a body of knowledge that a role wants to learn and/or to share; for

example, a knowledge worker may desire to learn how to use a certain piece

of equipment.

 2-25

4. Work: a type of work performed by a certain role to achieve a desire (such as

dialogue, web searches, writing, etc.).

5. Workflow: describes when and in what sequence activities are performed to

achieve a certain objective.

6. Artefact: physical resource (e.g., books and equipment) or digital resource

(e.g., software tools, documents and other files) used in activities.

The KMS aspects described above are highly interrelated; these aspects are used to

describe the design of the KMS by describing slices of the system that abstract the

details of the other aspects. When defining a new KMS, an aspect to start with is that

of the roles, because desires, activities and the other aspects follow naturally from

the act of describing a role. This sequence thus provides only a rough guideline to

the way in which a KMS can be expressed and then progressively refined to describe

its structure and operation in more detail [Van Zolingen et al., 2001].

2.6.5 Visibility of a KMS

The terms ‘hidden KMS’ and ‘visible KMS’ are used in this thesis to distinguish

between, respectively, the initial KMS and the resulting KMS of a KM initiative (as

would result from performing the phases discussed in Section 2.6.3, for instance).

These terms are further elaborated upon below.

Prior to the establishment of a KMS, as might be the case before the first phase of

establishing a KMS [Groff & Jones, 2003], knowledge workers within the organisation

may be using a variety of inconsistent and poorly defined ad hoc KM methods (such

as described by Alavi and Leidner [1999]). The term ‘hidden KMS’ or ‘invisible KMS’

is used in this thesis to refer to this type of situation, where the KM methods of an

organisation are not purposely studied and refined1.

In the course of developing an explicit KMS, as per following the phases discussed in

Section 2.6.3, the organisation generally moves from the hidden KMS that uses ad

hoc KM methods, towards a more ‘visible KMS’ where the KM methods are more

explicit, and thus more visible, and the methods used consistently among the

knowledge workers.

1 Considering the generally loose definition of KMS given in Section 2.6, it may be that any

organisation that performed KM also has some form of KMS, even though this KMS may not

be documented or somehow articulated by the individuals within the organisation.

 2-26

2.6.6 Framework of a KMS

The term KMS framework is used in relation to a visible KMS (i.e., a KMS that has

reached the sixth ‘technology’ phase of evolution described in Section 2.6.3). The

framework of a KMS refers to the supporting elements (e.g., software tools and other

support technologies) of the KMS and the documentation (e.g., role and process

descriptions) that makes it visible.

2.7 Roles of people involved with KM

The main ingredients of successful KM in an organisation is the willingness of people

to share knowledge [Snowden, 1998] and effective leadership to establish and direct

the KM practices [Pan & Scarbrough, 1999].

Common roles that exist in a KMS include the chief knowledge officer (CKO), KMS

user, change agent, knowledge engineer, knowledge steward, knowledge analyst,

knowledge worker, and knowledge broker. This section overviews these, and other,

commonly occurring KM roles used by organisations involved with technical product

development. These roles are described according to their use by prominent

authorities in the field, including Davenport and Prusak [1998], Drucker et al. [1998],

Groff and Jones [2003], Holsapple [2003], McDermott [1999a], Milton [2005], Nonaka

& Takeeuchi [1995], and Sveiby [2001].

As noted before, a KMS is needs to be adapted for the specific type of knowledge

work and organisation concerned; consequential, a particular KMS may include only

a selection of the roles described here, or it may include a variety of additional roles.

However, the roles of CKO, knowledge worker, and knowledge engineer are likely to

exist in virtually any KMS, given the definition of these roles (see Section 2.7).

2.7.1 Knowledge suppliers and knowledge consumers

Milton provides an abstracted view of a KMS by viewing an organisation as

consisting of two types of people: knowledge suppliers and knowledge consumers2

[Milton, 2005]. Many of the roles described later can be viewed from the perspective

of either supplying or consuming knowledge.

2 Milton [2005] uses the term “knowledge user” instead of “knowledge consumer”; but the term

“knowledge consumer” is used here to avoid confusion with the term “KMS user”.

 2-27

Milton’s [2005] concept is principally based on knowledge consumers drawing

expertise from knowledge suppliers. From this perspective, knowledge suppliers

create knowledge through experience (performing actions and interpreting the

results) and from reflecting on prior experiences to derive guidelines, theories, rules

and heuristics. Knowledge consumers, in contrast, consult knowledge suppliers to

assist in creating new knowledge, or to leverage other people’s knowledge in order to

accomplish tasks more quickly and with fewer mistakes. An individual switches from

the role of knowledge consumer to that of knowledge supplier, as he or she changes

from personally performing knowledge work to assisting others in accomplishing such

work [Milton, 2005].

2.7.2 Chief Knowledge Officer (CKO)

The CKO is in charge of the KMS, and is therefore responsible for the establishment

and continued operation of the KMS [Bonner, 2000]. The main tasks of the CKO are

to coordinate users of the KMS and to ensure that each aspect of the KMS is

functioning smoothly. The responsibilities of the CKO include finding executives to

join the steering committee, overseeing the acquisition of knowledge engineers to

build the KMS, and ensuring that the various roles of the KMS are allocated

[Holsapple, 2003].

Before an organisation delves into the time-consuming task of determining detailed

requirements for a new KMS, the organisation first needs to decide whom to

designate as the CKO, viz. the person that will lead the KM initiative. The CKO is

usually a senior corporate executive who has detailed experience in many of the

tasks performed by the users of the planned KMS [Rumizen, 2002]. The CKO needs

to be available to spend large amounts of time on KM tasks and on administering the

KMS; he or she should also have up-to-date personal experience of tasks performed

by users of the KMS [Davenport et al., 1998].

2.7.3 KMS user

A KMS user either draws knowledge from an organisation using the KMS (i.e., acting

as a knowledge consumer), or is actively involved in adding to that organisation’s

knowledge through participation in the KMS (i.e, acting as a knowledge producer)

[Milton, 2005]. Developers of the KMS (i.e., the knowledge engineers) are also

considered as users of a KMS because, by building the system itself, they are

contributing to the knowledge of the organisation.

 2-28

The most common user of a KMS should be the knowledge worker (Section 2.7.4). If

the knowledge worker is not the most frequent user of the KMS, then the cost of

maintaining the KMS is unlikely to be recovered from its use [Simard et al., 2007]. A

simple statistic that a knowledge analyst can use to determine the feasibility of a

KMS is to compare how often knowledge workers use the system with how often

knowledge engineers add to the system [O’Brien, 2006]. If knowledge engineers add

to the system more than knowledge workers use the system, then there is clearly a

fault in the workings of the KMS [O’Brien, 2006].

2.7.4 Knowledge worker

Knowledge workers are educated persons who use their education and experience to

achieve their objectives [Drucker, 2000; Groff & Jones, 2003]. Knowledge workers

predominately use their minds more than their hands to accomplish work [Drucker et

al., 1998]. The term ‘knowledge work’ is used to generalise the type of work done by

a knowledge worker. ES engineers can be considered a type of knowledge worker,

considering the complicated products they work on, the range of concurrent and

interrelated technical activities typically performed in these projects [Kettunen, 2003],

and their general dependence on education, experience, and mental problem-solving

and innovation abilities. Concrete examples of KM activities performed by ES

engineers include researching operations of microprocessors and peripherals to write

device drivers, and studying based software (produced by a prior in-house project or

externally) for reuse in a new project [Kettunen, 2003].

2.7.5 Change agent

A change agent is a person or a team (e.g., a consultancy firm) that is responsible for

planning and implementing changes in an organisation [Vinter, 2005]. The CKO is

often the principal change agent in a KMS, being responsible for planning how the

organisation needs to change to adopt the KMS [Abell & Oxbrow, 1999]. But this

undertaking can be difficult, time-consuming, and fraught with political and cultural

problems. For this reason, the responsibility of changing the organisation’s culture to

accept a new KMS is sometimes delegated to a change agent [Groff & Jones, 2003].

2.7.6 Knowledge engineer

The main task of the knowledge engineer is to make explicit knowledge usable

[Borghoff & Pareschi, 1998]. Knowledge engineers essentially design and implement

the support infrastructure for a KMS, updating or pruning the system while it is in use.

 2-29

They also add resources and documentation to the knowledge base. Important

characteristics of a knowledge engineer are to maintain consistency in the resources

developed, and to ensure that these resources are easy to use [Grant, 1996].

Activities performed by a knowledge engineer (adapted from Grant [1996] and

Cortada & Woods [1999]) include:

1. Documentation, such as writing down procedures explaining how to use

features of the KMS.

2. Classifying and associating documents, programs and other resources.

3. Programming, such as developing executable macros and programs to

automate routine tasks performed by knowledge workers. This approach can

be used to capture elaborate and frequently performed procedures in a highly

repeatable manner, without the user of these programs having to read

through detailed information and perform manual operations.

4. Transcribing rough notes and recordings of procedures carried out by

knowledge workers for inclusion into the knowledge base.

The types of resources developed by a knowledge engineer depend both on his or

her capabilities, and on the needs of the knowledge users addressed. The

knowledge engineer may also work with information technologists who maintain file

servers, databases and other IT systems. A knowledge engineer thus generally

benefits from an understanding of the computer systems and IT resources available

to the organisation [Cortada & Woods, 1999].

The knowledge engineer may have a second role as a knowledge worker within the

organisation. Depending on the complexity and scale of the KMS concerned,

individuals may be responsible for several roles [Maier, 2004].

2.7.7 Knowledge steward

The knowledge steward has two chief responsibilities: capturing and codifying tacit

knowledge, and facilitating the use of the KMS [Holsapple, 2003]. Knowledge

stewards make tacit knowledge explicit by conducting interviews with knowledge

workers, or observing (and recording) knowledge workers in action [Tsui, 2002].

Knowledge stewards may transform their recordings into more meaningful

documents before handing them over to the knowledge engineer for adoption into the

 2-30

KMS; or the knowledge steward may work closely with the knowledge engineer

towards this purpose [Holsapple, 2003].

Knowledge stewards are not always themselves knowledge engineers because each

role requires different skills; for example, a knowledge steward needs expertise in

conducting interviews and unobtrusively observing knowledge workers in action,

whereas a knowledge engineer requires skills for developing resources for the KMS.

The knowledge steward could also be seen as an assistant to the knowledge

engineer, assisting the knowledge engineer in time-consuming activities, such as

conducting interviews, observing knowledge workers, and helping users on a one-on-

one basis [Bergeron, 2003].

2.7.8 Knowledge analyst

The role of the knowledge analyst is similar to that of a system analyst, in that the

knowledge analyst chiefly studies the KMS, looking at its broader effects, such as

correlating changes in the KMS to changes in the company’s profits [Capshaw,

1999]. The knowledge analyst generally uses statistics to discover means of making

the KMS more efficient, often disseminating findings in person to relevant parties

[Bergeron, 2003].

2.7.9 Knowledge broker

The duty of a knowledge broker is to help knowledge workers connect to knowledge

that is not their own [Piaseki, 2005]. This generally means helping knowledge

workers to find other people from whom they can learn. Knowledge brokers usually

have large and diverse social networks, and know the strengths of the specific

individuals in their social networks [Maier & Remus, 2003].

Knowledge brokers are sometimes involved in the act of communication between the

knowledge workers they connect. For instance, the knowledge broker may be called

on to act as a translator or mediator to facilitate communication between people who

speak different languages. This can include situations in which the communicating

parties are using languages foreign to one another, or where they have different

dialects and forms of jargon in the same tongue [Cortada & Woods, 1999].

 2-31

2.8 KM in technical product development

The research literature related to the use of KM in the technical and software product

development context is drawn on in this section of the literature review. The findings

discussed in this section have been separated into three parts:

1. Managing development teams;

2. KM tools for managing individual and team knowledge;

3. Dealing with information overload.

The literature on KM in contexts of technical product development and innovation

includes several studies concerning the factors that affect product development team

performance, as presented by authors such as Aurum et al. [2003], Dingsǿyr &

Conradi [2002], Kettunen [2001; 2003], Lynn et al. [2000], Lindvall et al. [2001],

Lindvall & Rus [2002], Rus et al. [2002], Törngren et al. [2007] and Ulrich & Eppinger

[1995].

Literature focused specifically on the implementation phase of embedded software

development projects was limited. Although there is potentially significant value that

can come from applying KM techniques in embedded software development,

literature searches on this issue show a general lack of consistent investigations and

results in this field, a result that also seen by Rus et al. [2001]. The most relevant and

constant publications found on this topic include Aurum et al. [2003], Dingsǿyr and

Conradi [2002], Lindvall and Rus [2002], and Kettunen [2001; 2003].

The research-based KM literature within technical product development contexts

mostly addresses the issues of theoretical foundations, practical techniques, software

tools, and applications and practical experiences of engineers in technical contexts

such as software engineering. The application of KM in technical contexts has tended

to focus on the management of systems, such as transport systems [e.g., Herrmann

et al., 2004], ICT systems [e.g., Carlsen et al., 1999; Fischer & Schneider, 1984],

requirements engineering [e.g., Kirikova & Grundspenkis, 2000; Sommerville, 2005],

and the development of KM software for various ‘soft skills’ applications (e.g., user-

feedback on technical products [Hoffmann et al, 1999]). Much of the literature is also

more focused on issues such as management of knowledge to assist with other

forms of management [e.g., Langer et al., 2006; Gao et al., 2005; De Meyer et al.,

2002], methods of improving organisational or team communication [e.g., Counsell et

 2-32

al., 2005; Dionne et al., 2004], performance analysis of engineering teams [e.g.,

Kettunen, 2003; Wandeler et al., 2006], and strategies and tools to manage technical

product development (but with less emphasis on management of the knowledge

produced by these developers) [e.g., Cordeiro et al., 2007; Gopalswamy et al., 2004;

Jepsen et al., 2007; Kommeren & Parvianien, 2007; Eppinger et al., 1997].

2.8.1 Managing development teams and their knowledge

A product development team is often forced to manage with incomplete information

and lacking technical knowledge during parts of a project. Additionally, frequent

changes to a product and its related information are more inherent in the nature of

development, rather than an exception [De Meyer et al, 2002]. Project teams do not

work in isolation; and studies of KM in larger organisational contexts emphasise the

need to understand the interactions between individual, team, project, company and

commercial environment. This necessitates considerations, not only with regard to

individual product development projects, but also in relation to multiple projects

performed in an organisation and their interplay over time. A complex interaction

exists between project teams, the company that performs them, the market at which

resultant products are aimed, and other macro environment issues [Ulrich &

Eppinger, 1995]. Multi-site considerations are likely to cause additional complexities

in large and globally dispersed organisations [Desouza & Evaristo, 2003].

A number of common solutions are applied to the management of knowledge-based

teams. Based on a broad view of the literature, these strategies have been grouped

into six main categories, namely: 1) steering committees [Holsapple, 2003], 2)

communities of practice [Wenger, 1998], 3) team learning [Bűchel & Raub, 2002], 4)

team knowledge sharing [Kettunen, 2003; Louridas, 2006], 5) distributed teams

[Langer et al., 2006], and 6) sub-contracting [Kommeren & Parviainen, 2007]. A

summary of each category follows.

2.8.1.1 KM steering committee

A governing body is generally required to establish and direct a KMS in a large

organisation. This governing body is commonly referred to as the KM steering

committee and is chaired by the CKO [Holsapple, 2003].

2.8.1.2 Communities of practice

A Community of Practice (COP) is often a component of a KMS [Wenger et al.,

2002]. A COP can essentially be viewed as a voluntary group of people who interact

 2-33

regularly to learn from one another. Members of a COP benefit from gaining deeper

insights and understanding of problems by being able to exchange ideas and help

one another, which can lead to valuable benefits and new innovations [Brown &

Duguid, 1991]. The COP coordinator facilitates the operation of a COP, such as

scheduling times and venues for meetings, and informing people in the organisation

of the existence of the COP and of when and where the meetings are held.

The COP coordinator or ‘champion’ is typically a knowledge worker and a member of

the COP [Smith & McKeen, 2003]. The role of COP coordinator can be a rotating one

where the member acting as COP coordinator hands over coordination tasks to

another member after some time. The COP coordinator does more than scheduling

meetings and encouraging attendance, however; the most important skills of the

COP coordinator are to assist the COP to develop as a community (rather than as a

regulated work group), and to chair meetings so that all members can participate

fairly [McDermott, 1999a].

2.8.1.3 Team learning

Team learning has been recognised as an important success factor for product

development and innovation [Lynn et al., 2000]. The project team should negotiate a

shared vision and common objectives to improve success of this strategy [Lynn et al,

2000]. Various forms of knowledge networks usually occur in team learning within a

context of R&D or innovative product development [Bűchel & Raub, 2002].

2.8.1.4 Team knowledge sharing

A product development team needs to master many forms of technical knowledge to

be able to develop a product successfully; but not every member of the team has to

know everything [Kettunen, 2003]. Inter-team knowledge transfer is an important

enabler of accelerated product development. Inter-project learning also facilitates

larger-scale productivity improvements within technical development contexts

[Kettunen, 2003].

Tacit knowledge sharing takes place in interactions between people, but enabling

conditions must be satisfied in order for such knowledge-sharing interactions to take

place [Nonaka & Takeuchi, 1995]. For example, the emerging Agile software

development methods encourage intensive communication with less formal

documentation [Abrahamson et al., 2003; Lindvall et al., 2004]. Some types of

knowledge are not easy to disseminate on paper alone and need additional face-to-

 2-34

face communication. When product and process knowledge is to be shared, team

proximity is often an issue [Kettunen, 2003].

2.8.1.5 Distributed teams

Distributed product development projects are becoming an increasingly common

phenomenon, which is showing potential benefits such as improvements in time-to-

market efficiency and access to greater and less costly human resources [Langer et

al, 2006]. In a paper describing the experience of over 10 years of distributed

development at Philips, derived from about 200 projects, Kommeren and Parviainen

[2007] identify a number of lessons learned from multi-site development. In particular,

they point out that explicit agreements and ways of working should be defined – with

the following areas needing the most attention: 1) team coordination and

communication, 2) requirements capture and architecture design, 3) integration, and

4) configuration management.

2.8.1.6 Sub-contracting

The main lesson learned from subcontracting technical product development is the

need for explicit attention and ways of working with respect to selection of suppliers,

specification of the work to be subcontracted, and establishment and content of the

contract [Kommeren & Parviainen, 2007].

2.8.2 KM tools for managing individual and team knowledge

The research literature evaluates several strategies, applications and tools for

managing individual and team knowledge. These are summarised below.

2.8.2.1 Training workshops

The CKO is responsible for arranging training workshops to bring people into the

KMS and to train these new users of the system. In the case of a large KMS,

separate training workshops may be arranged for each user group (usually a

department), and these may be presented by the knowledge engineer allocated to

that user group [Lynn et al., 2000]. The CKO may delegate training workshops to

experienced knowledge stewards, but usually knowledge stewards are involved with

training on a one-on-one basis, which is often combined with observing knowledge

work [Bűchel & Raub, 2002].

2.8.2.2 Yellow Pages

An organisation may produce a ‘yellow pages’ catalogue [Dingsǿr, 2003] which lists

people in the organisation and their areas of expertise. This catalogue contains email

 2-35

addresses, wikis, blogs, homepages and the like. A ‘yellow pages’ is used by

knowledge workers as a means to find colleagues who can provide the expertise

needed to accomplish certain forms of knowledge work [Cortada & Woods, 1999].

2.8.2.3 Performance analysis

Performance analysis is usually used as a project management tool, and involves

measuring the performance of a team’s work [e.g., Kettinger et al., 1997], rather than

the team’s knowledge. However, several simulation-based tools have been

developed for the analysis of knowledge production and transfer, such as the one

used in the development of embedded real-time systems [Wandeler et al., 2006].

Simulation-based KM tools are able to analyse knowledge-based performance early

in the life cycle of product development. Wandeler et al. [2006] developed a

simulation approach based on real-time calculus. They believe this approach to be

an efficient way of evaluating knowledge performance due to its high level of

abstraction, which also makes the technique suitable for early design exploration.

2.8.2.4 Responsibility charts

Responsibility charts are popular tools for project planning in general [Turner, 2009].

For example, Andersen [1996] has proposed project responsibility charts for the

systematic identification of project milestone responsibilities. Anderson’s ideas can

be adapted for KM in ES product development by defining the producers and

consumers of the key information and mapping them together as a chart.

Figure 2.6 illustrates a project knowledge sharing chart. This tabular method makes

the knowledge artefact dependencies of each team member clear (in a large project,

there would be many connections linking to individuals outside the project team)

[Kettunen, 2003]. Both tangible and intangible knowledge items are included,

because not all useful information is in a tangible form. For example, previous project

experiences may be useful but largely intangible knowledge.

 2-36

 Roles
 Software project internal Software project external
Knowledge
artefacts

Project
manager

Designer System
specifier

Hardware
manager

Quality
manager

Previous
projects
history

User n/a n/a n/a Provider

Software
specification
A

Author Reader n/a n/a n/a

System
specification
B

Reader n/a Responsible Contributor n/a

Hardware
data sheet

n/a Reader Reviewer Responsible n/a

ASIC
hardware
behaviour

n/a User n/a Provider n/a

Standard
operating
procedure

Reader Reader n/a n/a Responsible

User’s Guide n/a Author n/a Reviewer Reviewer
Test process
experience

Provider User n/a n/a n/a

Figure 2.6: ES project knowledge sharing chart (adapted from Kettunen [2003]).

2.8.2.5 Status tracking

Charts similar to responsibility charts (see Figure 2.6) for managing team knowledge

have been developed to describe when particular types of information are needed in

a project (Romano et al. [2002], for instance, discuss techniques for collaborative

project work).

2.8.2.6 AI tools

Artificial intelligence approaches have proposed agent-based frameworks for

modelling organisational and personal knowledge from two conceptual models: the

first describes the intelligent enterprise memory, the second models an intelligent

organisation’s KMS [Grundspenkis, 2007; Ellis & Wainer, 2002; Knapik &

Johnson,1998].

2.8.2.7 Shared buffers

Team-based knowledge sharing can be enhanced thought the use of ‘shared buffers’

[Gao et al., 2005].

 2-37

2.8.3 Managing information in technical development projects

KM strategies and technologies to assist or improve product development teams to

find appropriate data for their projects can be divided into knowledge acquisition [Birk

et al., 1999] and knowledge reuse [Tautz & Althoff, 1997] approaches, and various

combinations thereof [Birk & Tautz, 1998]. Communication gaps and missing

information have been recognised as typical causes of project failure in large-scale

project work [Kettunen, 2001]. What is needed then is a KM tool to ensure that critical

information is both produced by the right persons at the right time, and utilised by all

the relevant parties. Broad issues that need to be addressed in the design and

implementation of these tools relate to the management of information and strategies

for finding information during product development. The next two subsections

(2.8.3.1 and 2.8.3.2) explore these issues more closely.

2.8.3.1 Issues in information management

Based on the literature, there are three broad categories of information management

related to technical product development, namely:

1. Managing product requirements and specifications;

2. Management of documentation; and

3. Improving information storage and search techniques.

Each category above will be explored further.

Requirements and specifications

A seminal investigation was conducted by Curtis et al. [1988]; it showed that a lack

and insufficient spread of domain knowledge and requirements-related gaps are

major difficulties in the development of technical products. Kettunen [2001] similarly

found that problems relating to requirements and specifications were among the main

causes of trouble for telecommunications equipment development. Incomplete

software requirements and specifications of the system are generally troublesome for

embedded software projects [Kettunen, 2003]. In the case of ES development, it is

important that the software developers have sufficient knowledge of the ES to be

produced and its hardware behaviour in order to work efficiently on the software part

of product design [Kettunen, 2003].

 2-38

Documentation

In technical product development environments, there is often a trade-off between

the completeness of documentation and the effort required to develop and maintain

these documents [Schach, 2005]. The key is to find a practical balance so that the

risk caused by partial or incomplete information is justified by the resource

expenditure; earlier literature on risk-driven specification acknowledges this strategy

[e.g., Boehm, 1988]. The more recent Agile software development approach favours

methods that avoid producing possibly intermediate or valueless documentation that

is likely to be made obsolete or redundant [Kettunen, 2003].

Improving data storage and search techniques

Being familiar with search engines and search functions is clearly important when

working in knowledge-rich contexts [Kitamura et al., 2006]. Osiov et al. [2006] state

that ‘linguistic knowledge’ is required for search relevance improvement. A good

understanding of these issues and of the effective use of keywords and directory

structure layouts improves both search strategies and organisation of data [Capra et

al., 2007].

2.8.3.2 Tools for information management

Development projects need methods by which team members can find relevant and

usable data efficiently, as well as strategies to capture valuable data without

excessive manual intervention [Kettunen, 2003]. Common methods to achieve these

objectives include: ontologies for creating and maintaining data records [e.g.,

Kitamura et al., 2005], planning templates [e.g., Kettunen & Laanti, 2005], computer-

aided software engineering [e.g., Wood & Agogino, 1996], web-based AI tools [e.g.,

Grundspenkis & Kirikova, 2005], and product data management tools [e.g., Eppinger

et al., 1994]. These approaches are discussed below.

Ontologies for the creation and maintenance of data records

Engineers often have difficulty in reusing technical documents because these

documents tend to be written in an ad hoc manner, often using a technical and

possibly non-standard vocabulary developed through the course of various projects

performed by the engineers concerned; these documents may also be context- or

project-specific [Kitamura et al., 2005]. Important aspects to consider in improving the

usability of technical documents include consistency in terms, names and acronyms

used in the documents and a consistent strategy for locating and identifying files and

directories that contain documentation [Patil et al., 2005]. In the information sciences

 2-39

and computer science fields, the term ontology refers to ‘a specification of a

representational vocabulary for a shared domain of discourse’ [Gruber, 1993]; such

an ‘ontology’ can assist developers in the reuse of and sharing of technical

knowledge [Stojanovic et al., 2002]. In an investigation of ways to resolve these

difficulties, Kitamura et al. [2005] developed an ontological framework for exchanging

product development knowledge, for which the ontology can be used to systemise

information records to improve their reuse.

Computer-aided software engineering (CASE)

In embedded software development projects, the software developers must

understand not only the general operation of the target hardware but also the overall

functionality of the combined hardware/software system [Ball, 2002].

Hardware/software co-development (including co-specification and co-design)

attempts to build this kind of shared system-level knowledge [Chiodo et al., 1994].

There have been various approaches to create CASE tool environments for such

developments, where these tools can be used to offload some of the technical know-

how and manual tasks, for which the software engineer would otherwise be

responsible [Heikkinen, 1997].

Web-based AI tools

Rodgers et al. [1999] describe a design support system known as WebCADET that

uses distributed Web-based AI tools. The system can provide support for designers

when searching for design knowledge. WebCADET uses the ‘AI as text’ approach,

where a knowledge base system can be seen as a medium to facilitate the

communication of design knowledge between designers.

Planning templates

Kettunen [2003] describes a planning template that assists in the identification and

provision of the necessary knowledge for the product development team (Figure 2.7

shows an example of this).

 2-40

Planning template

Customer–supplier process cat (CUS):
Acquisition
Supply
 Who are our customers (external and internal)?
Requirements elicitation
 What do the customers really want from us?
 Who is responsible for the elicitation of the customer
requirements?
Operation
Engineering process cat (ENG):
System requirements analysis and design
 Where do I get my system requirements?
 How do I know the software architecture (and system
design)?
Software requirements analysis
 Which items (documents) comprise my software
requirements package?
 How are the requirements managed (changes)?
Software design
 What design methods and tools do I use?
 How do I change the component/subsystem external
interfaces?
 Where can I find the hardware data sheets (if any)?
Software construction
 What compilers etc. tools do I use?
 What implementation rules do I have to obey (e.g.
coding standards)?
Software integration
 What kind of integration and testing should I do?
Software testing

Figure 2.7: Embedded software project KM planning template (adapted from Kettunen
[2003]).

The planning template shown in Figure 2.7 lists software product development

process areas based on the ISO/IEC 15504 Reference Model. The accompanying

questions (in italics) are intended to help managers and designers identify the

practical information needs in particular areas of development. Each member of the

project team would be required to fill in the template from his or her point of view.

Each response helps the manager to consider the actual needs of that person.

Overall, this KM method based on planning templates was found to be useful mainly

 2-41

in the early phases of a project [Kettunen, 2003], in which it may also be used for

identifying staffing and training needs.

Product data management tools

Product data management tools offer an integrated approach to combine all the

information of complex products consisting of various subsystems and components

into a consistently managed and accessible system [Zha & Du, 2006; Zha & Du,

2005; Feldmann, 1999; Lindeman & Moore, 1994].

Luqi et al. [2004] developed a documentation-driven development (DDD) approach

for the management of data in complex real-time systems. This approach can

enhance the integration of computer aided software development activities, which

encompass the entire life cycle of a project. DDD provides a mechanism to monitor

and quickly respond to changes in requirements, and it provides a friendly

communication and collaboration environment to enable different stakeholders to be

easily involved in development processes, thereby significantly improving the agility

of software development for complex real-time systems. DDD is planned to support

automated software generation based on a computational model and some relevant

techniques. DDD includes two main parts: a documentation management system and

a process measurement system.

2.8.4 Managing knowledge of technical development processes

This subsection begins by reviewing three general types of development process

knowledge described in the research literature. Issues related to process

management are then discussed, which leads into a review of tools for managing this

knowledge in the context of technical development projects (issues or examples

concerning ES development are included where applicable).

2.8.4.1 Development process knowledge: the input, in-situ and output
knowledge types

The literature identifies three main types of engineering design process knowledge

that need to be managed in technical product development contexts (based on

findings from Pena-Mora et al. [1993; 1995], Zha et al. [2002] and Zha and Du

[2006]). These types of knowledge are outlined below:

1. Input knowledge: the knowledge that developers bring with them, which

relates to the specific engineering or design processes to be performed;

 2-42

2. In-situ knowledge: the knowledge related to engineering processes that

developers acquire during the development project; and

3. Output knowledge: the knowledge that results from a project.

2.8.4.2 Input, in-situ and output knowledge in embedded software
development projects

Input knowledge relates to existing knowledge and its representation, including

design knowledge in handbooks, datasheets and other (often downloadable)

documentation, together with the design ‘know-how’ (see Section 2.4.1.3) that is

likely to exists in a ES development organisation. Output knowledge comprises not

only concepts and expertise related to the product being developed, but also

competencies in project-related and process-related issues, including specialised

knowledge about the organisation [Zha et al., 2002].

The importance of input knowledge has been recognised [Pena-Mora et al., 1993;

1995] but there have been fewer research endeavours focused on in-situ or post-

project output knowledge in development contexts [Zha et al., 2002; Zha & Du,

2006]. Zha et al. [2002] suggest that in-situ or ‘on-the-job’ product design knowledge

can also be categorised according to off-line and on-line knowledge, where the

former refers to knowledge acquired in mid-stream (and usually involves leaving the

job at hand), and the latter refers to new design knowledge created while working on

a design task.

The production of output knowledge involves complex sets of information, as is the

case for input knowledge [Zha et al., 2002]. In practice, a portion of design

knowledge remains outside the formal project documentation (e.g., product manuals

and reference texts), and this would include informal documentation (e.g., private

notes in a logbook) as well as that which is ‘undocumented’ [White, 2005]. In ES

development this loss of knowledge tends to happen, for example, when an ES

engineer’s understanding of a specific hardware platform has been learned during

the development process and later forgotten, needing to be relearned, during

maintenance [Molnar & Nandhakumar, 2007].

During a project, new processes and tools may be developed, from which the project

team can gain new personal experiences and skills [Simard et al., 2007]. In the case

of ES projects, developers typically formulate a particular set of techniques (e.g.,

 2-43

implementation methods) to develop systems using a specific selection of hardware

and tools [Graaf et al., 2003]. These implementation methods involve sequences of

actions or patterns that relate to the way in which development tools are used to

create and modify specific parts of a product [Gamma et al., 1997]. This knowledge

of development techniques is valuable to the organisation, especially when it comes

to using or adjusting processes and tools during operations [Simard et al., 2007].

2.8.4.3 Approaches to software engineering processes improvement

Many strategies for improving software engineering processes have been developed,

and these can aid in the retention and representation of software engineering

knowledge. Examples of these methodologies include (based on Fuggetta [2000],

Schach [2005] and Sommerville [2006]):

1. Structured techniques, including using structured analyses of past

experiences to make informed design decisions;

2. Fourth generation programming languages (4GL) [Martland et al., 1986];

3. Computer-aided software engineering tools [e.g., IBM, 2009];

4. Formal methods, including formal specification and verification of software

[e.g., Edwards et al., 1997];

5. Cleanroom methodologies, particularly methods to reduce software defects

[e.g., Prowell et al., 1999];

6. Process models that provide descriptions of software engineering techniques

and problem-solving strategies [e.g., Brinkkemper, 1996]; and

7. Object-oriented technology to identify objects in the problem to be solved, and

to use those in generating software solutions [Jacobson et al., 1999].

The methodologies listed above are closely related to processes of creating software.

The next section focuses on techniques for managing knowledge related to software

development, or using a formal KMS for managing software-related knowledge.

2.8.4.4 Issues in software processes KM

In a meta-analysis of the KM research literature in software engineering, Dingsǿyr &

Conradi [2002] found several descriptions of a KMS; however, most studies did not

deal with how KMS worked in the process of implementation in the organisations

where they are deployed. Based on Dingsǿyr and Conradi [2002] results, KM

technologies show potentially beneficial results. However, there are relatively few

 2-44

scientific articles that evaluate how these different methods actually work [Glass,

1999]; thus further research is needed.

Based on findings from the current literature [e.g., Rus & Lindvall, 2002;

Balasubramanian et al., 2005; Zhou et al., 2007], the management of ES

development processes tends to involve one or more of the following issues:

1. Managing complexity;

2. Selecting effective process models;

3. Using platform-based approaches;

4. Selecting an appropriate interfacing strategy;

5. Evolving the product;

6. Maintaining the product;

7. Planning for uncertainty or risk;

8. Concurrently developing and co-designing the product; and

9. Identifying approaches for achieving product variety.

The issues listed above are elaborated upon in the sections that follow, in which

references are made to relevant research and other publications.

Management of complexity

The recent literature on KM in technical product development, including ES

development, has focussed on approaches of dealing with the complexity in these

contexts [e.g., Zhou et al., 2007]. In a software engineering context, KM tends to

focus on learning, such as capturing and reusing experience [Rus & Lindvall, 2002].

Common KM problems in software development are misunderstandings and

imperfect communication caused by out-of-date documents, incomplete terminology

definitions, undocumented information and unclear instructions [Skuce, 1995].

Reducing the complexity of ES product development through improved engineering

methods (such as techniques mentioned in Section 2.8.4.3) is a recurring theme in

the recent literature. Complexity reduction usually involves standardisation [Object

Management Group, 2002], modelling [Karsai et al., 2003], scenarios and process

reference models [Larsson et al., 2007]

Balasubramanian et al. [2005] find that the problem of learning overload commonly

occurs in ES development teams, which is often caused by using many different

 2-45

platforms and architecture-dependent tools. Baksi et al. [2001], working on

embedded software for the MILAN project, discuss model-based integration of

reusable components as a potential means to avoid similar types of learning

overload. Likewise, Greenfield et al. [2007] recommend a methodology based on

patterns, models, frameworks, and tools to reduce learning times. Gopalswamy et al.

[2004] emphasise the need for work product variation management tools to handle

the increasingly enlarging scope and use of model-based control systems.

Selection of a process model

An important KM decision has to do with the selection of a software process model

[Kettunen & Laanti, 2005]. An appropriate process model can help developers to

cope with challenges and complexity of a project; whereas an unsuitable choice of

process model can add to the difficulties of development. A process model used for

one project is not necessarily appropriate for another project [Kroll & Kruchten, 2003].

Some project-related problems can be traced to the process models used [Kettunen

& Laati, 2005]. Kettunen & Laati [2005], for instance, recommend that a development

organisation does a comparison of known software process models, including Agile

methods, to build a process model selection frame that can be used as a systematic

guide for choosing the process model for a project.

Platform-based approaches

A platform-based approach for technical product development allows companies to

eliminate redundancies, efficiently utilise its resources and provide products for a

wider market [Seth, 2007]. This approach centres on developing and sharing key

components and technologies among products. By creating a common software

platform, this concept can be applied to ES software development in which software

modules and applications can be shared across products within a product family

[Seth, 2007]. Existing products could be made into platforms to serve as a foundation

on which new products are developed – but there are limitations to this approach,

such as microcontroller architecture incompatibilities [Mäkäräinen, 2000].

Interfacing strategy

Embedded systems concern a variety of interfaces: hardware/hardware interfaces (or

physical connections), hardware/software interfaces (such as device drivers), and

software/software interfaces (such as the methods with which an application program

communicates with the operating system) [Berger, 2002]. Software developers are,

to some extent, limited to hardware interfacing choices made in the product design

 2-46

phase [Kettunen, 2003]. Hardware/software partitioning and platform-based design

issues could be incorporated into a KMS following an incremental approach, as

researched by Mäkäräinen [2000] in the case of incorporating embedded software

change management support into development practices.

Product evolution

A technical product is seldom created entirely from scratch; it usually reuses a variety

of artefacts and components – some of which may have been developed in-house,

while others have been sourced externally. In such a situation, the software team is

likely to have access to an initial (possibly disorganised) base software version at the

start of a new project [Kettunen, 2003]. In such a situation, the software team may

still need to learn how to incorporate or modify the existing artefacts for use in a new

project. In so doing, the team needs to obtain enough detail about the artefacts and

existing design decisions before they can start modifying and extending them.

Forsberg et al. [2000] describe techniques to facilitate such tasks, for example, by

building a terminology base.

Product maintenance

Process knowledge includes an understanding of software ‘fragility’, which relates to

the tendency of a particular piece of software to be unstable, unreliable or entirely

non-functional at some required level of operation. Fragility is manifested in various

ways, such as unreliability during times of high demand, lack of security,

performance lapses, computation failures and upgrading difficulties [Joy & Kennedy,

1999]. Embedded software is often developed from, or dependent on, legacy code,

sometimes with minimal or no modifications being allowed to parts of the code due to

compatibility requirements, short development lead-time, and budget constraints

among other factors [Ko et al., 2007b]. If legacy code is repeatedly revised without

considering issues of maintenance, the code gradually becomes harder to maintain,

eventually needing to be entirely reengineered to make it maintainable [Ko et al.,

2007b]. Existing reengineering research on ES tends to focus more on hardware

issues than embedded software issues [Ko et al., 2007b]. Improvement to the

maintainability of embedded software for ‘corrective maintenance’ includes other

reengineering approaches, such as: process reengineering, reengineering views, and

reengineering infrastructure [Aman et al., 2006]. Freeman and Schach [2004] point

out that the maintainability of object-oriented software products is partly dependent

on the maintainability of the inheritance hierarchy concerned.

 2-47

Planning for uncertainty

Technical product development is characterised by uncertainty and frequent

changes, which often occurs in complex ES development projects [Mellis, 1998]. In

turbulent environments, flexibility of the product development process (i.e., its ability

to accommodate frequent and last-minute changes) is a key factor for success

[Mellis, 1998; Mikkonen & Pruuden, 2001]. Cordeiro et al. [2007] describe an Agile

development methodology that combines agile principles with organisational patterns

as a potentially efficient means to build embedded real-time systems that have

stringent constraints.

Concurrent development

Speed is an important success factor for software product development [Smith &

Reinertsen, 1998]. But this can be difficult to achieve; for instance, even a small bug

can take a long time to correct. This is one of many reasons that make it difficult to

determine accurately how long it will take to complete a piece of software [Dingsǿyr

and Conradi, 2002].

One way to accelerate product development is to compress development workflows

by performing normally sequential work to some extent in a parallel (overlapping)

manner, or even to skip some intermediate steps [Heikkinen,1997]. A difficulty with

such concurrent development, however, is that some work is dependent on the

completion of previous work, or cannot be accomplished with incomplete information

that would otherwise be provided from a previous, dependant work. In other words,

managing concurrent ES engineering tasks, and these kinds of interdependencies,

can be difficult to perceive and achieve [Heikkinen, 1997].

Achieving product variety

Manufacturers of technical products are under pressure to produce a number of

product series with an increasing number of variants, while simultaneously

decreasing development costs low and time-to-market [Graaf et al., 2003]. Jepsen et

al. [2007] investigated minimally invasive methods for migrating products developed

by a company to a software product lines approach, as a means to overcome these

types of challenges. Larsson et al. [2007] describe a KMS that helps to reduce risks

and that works in similar situations.

 2-48

2.8.4.5 Tools for managing knowledge of software development processes

Generally speaking, an engineer does not have immediate access to (or know)

implementation methods at the start of a project, except possibly in trivial cases

where the engineer has experience with the specific platform and tools chosen for

use in a project [Kitchenham et al., 1995; Ganssle, 1999]. Implementation methods

develop as the engineer’s knowledge of implementation techniques, target hardware,

development tools and other development artefacts grows. The development of

implementation methods in ES involves a significant amount of knowledge work,

which often involves time-consuming activities, such as reading datasheets, finding

example code, discussing solutions with colleagues, and experimenting with code

[Ganssle, 1999; Labrosse et al., 2008].

A review of tools commonly used for managing knowledge of software development

processes is provided below, including: 1) matrices for capturing and storing data, 2)

representational models for modelling knowledge flows, 3) the concept of experience

factories, and 4) case-based reasoning.

Matrices for capturing and storing data

A variety of matrices have been used to capture and store data related to knowledge

about engineering processes. For example, a variety of ‘Design Structure Matrices’

(DSM) were developed for managing team-based knowledge, component-based

knowledge, activity-based knowledge, and parameter-based knowledge [Zha & Du,

2006]. A DSM is a compact matrix representation of knowledge related to a

development project. The matrix contains a list of all constituent subsystems and

activities and the corresponding information exchange and dependency patterns. A

DSM can be used by knowledge workers to find information pieces (or parameters)

that assist at the start of a certain design activity, and show what information

generated by the activity is likely to feed into it (i.e. which tasks within the matrix use

the output information). The DSM can prove useful in managing complex projects,

highlighting issues such as information needs, requirements and task sequencing

[Eppinger et al., 1997]. A web-based prototype system for modelling development

process using a multi-tiered DSM was developed at MIT [Browning, 1999].

Representational models

Many representation approaches exist for modelling knowledge flows in engineering

processes. These methods often use a high level of abstraction to categorise existing

 2-49

knowledge and related experiences into a series of design principles and constraints.

TRIZ is an example of this approach [Altshuller, 2004]. An alternate method is to

partition design knowledge according to certain case descriptions; some case-based

design tools use this approach [Wood & Agogino, 1996].

Researchers at the Engineering Design Centre at Lancaster University established a

knowledge representation methodology and knowledge base vocabulary for

mechatronic systems (used in their Schemebuilder tool) based on the theory of

domains, design principles and computer modelling [Counsell et al., 1999]. Blessing

[1993] proposes the process-based support system (PROSUS) based on a model of

the design process rather than the product. Another focal research area is using

ontologies for product representation (e.g. Patil et al., 2005).

The experience factory

Reusing experiences in the life cycle experience of processes and products for

technical product development is often referred to as having an ‘Experience Factory’

[Houdek et al., 1998; Basili et al., 1994]. Using this approach, experience can be

collected from different development projects and ‘packaged’ in an experience base

(this ‘packaging’ process entails generalising, tailoring and formalising experience

around reuse). A similar system, the CODE prototype, is a KM system that serves as

a medium for knowledge capture and transfer, in which ‘packaging’ is also used to

make knowledge from prior experiences more easily available [Skuce, 1995].

Examples of experience packages (based on Skuce [1995]) include: product

packages (information about the lifecycle of a product and lessons learned); process

packages (information on how to perform a process and reuse it); relationship

packages (for analysis); tool packages (for use of a tool and related experiences);

management packages (reference information for project managers); and data

packages (containing data relevant to a technical product or its activities, such as a

project databases [e.g., Dingsǿyr & Conradi, 2002]).

Case-based reasoning

Case-based reasoning (CBR) is an approach that could facilitate technical decision-

making during software development projects [Henniger, 1997a]. Many companies

have used similar systems for retaining and retrieving experiences [Aamodt & Plaza,

1994]. Althoff et al. [1999] report on the benefits of this technology for experimental

software engineering. CBR has also been used successfully in building learning

organisations [Althoff et al., 1999]. Wangenheim et al. [1998], who evaluated several

 2-50

CBR approaches for experience reuse, found that CBR could be an effective means

for reusing experience from software engineering. CBR generally uses a form of

underlying experience database (or knowledge base); Broomé & Runeson [1999]

reported on the important technical requirements for such a database. Bergmann et

al. [2003] researched the feasibility of combining ideas of an experience factory with

a CBR system.

A number of companies, such as Computas [Carlsen et al., 1999], Hewlett Packard

India [Bhave & Narendra, 2000], the COIN EF system in use at the Fraunhofer IESE

[Tautz et al., 2000], and a variety of Norwegian organisations [Conradi & Dingsǿyr,

2000] have implemented a case-based KMS (or similar organisational learning

approaches) for experience reuse, which have shown positive results. Another

example of a CBR system, which was developed at a university, is the BORE system

for problem-solving experiences [Henninger & Schlabach, 2001].

2.8.5 Managing innovation in technical product development

Innovation shifts the KM paradigm to one of ‘new knowledge production’, in other

words, knowledge of a new way of doing something [McKeown, 2008]. Knowledge of

an innovation or new technique for accomplishing something may involve

collaboration and sharing of knowledge [Fischer, 2001], but the emphasis is on

developing something new – possibly a new method to solve an existing problem, or

a new technique to address a new issue [Fischer, 2001].

A principal question regarding the effective production of innovative knowledge is

how this knowledge, and its associated innovation processes, is managed. Some

authors suggest that innovation cannot be effectively managed [e.g., Kitchenham,

1998].

As mentioned in Section 2.4.2, KM involves the way in which knowledge is created,

captured, stored, and shared, with the intention of leveraging this knowledge within

an organisation [Rus et al., 2001; Wiig, 1997]. Specific issues related to KM of

innovation are discussed below:

1. Technology: Companies determine how to develop their information and

communication technology (ICT) to facilitate innovation, and how their ICT

can be customised for this kind of knowledge. Dhont [2003] uses the term

‘playful technology’ to describe technologies that enable innovation.

 2-51

2. People: Companies need suitable training, recruiting and selection

procedures to suit and encourage innovation; Nonaka & Takeeuchi [1995]

highlight further issues of combination, socialisation, internalisation and

externalisation of knowledge.

3. Intra-organisation: Supporting the innovative capacity of a company, with

processes designed to foster ’creative competence development’ is a core

aspect of work performed [Miesing et al., 2007].

4. Inter-organisation: Contacts are managed with customers and suppliers.

Companies need to have an open mind with regard to the problems and

needs of their customers and suppliers [Harvey & Speier, 2000].

The speed, competitiveness and overall success of companies are beginning to rely

increasingly on the innovation and creativity of the company [Carneiro, 2000;

Malhotra, 2007]. However, approaches to KM can confound innovation with an

excessive amount of information and procedures [Dhont, 2003]. In such situations,

KM may be seen as a centralised ‘database’ with a goal of collecting information

about innovation. Majchrzak et al. [2003] point out that information dates quickly and

that the emphasis should rather be on building and managing innovative capacity,

which is likely to have greater value to a corporation. KM for innovation should focus

on helping innovators to generate new ideas, to transform such ideas into working

products, and to ensure that these capabilities are shared and strengthened among

the creative teams of the organisation [Majchrzak et al., 2000].

Gibbons et al. [1994] maintain that a new mode of knowledge production is

emerging, which has profound implications for both the competitiveness and

sustainability of product development. Gibbons et al. [1994] draw a distinction

between two modes of knowledge production referred to as Mode 1 and Mode 2.

Mode 1 knowledge relates to problems set and solved in a largely academic context

(e.g., universities), whereas Mode 2 knowledge is carried out in a ‘context of

application’ (e.g., in an industry context, such as a factory) [Gibbons et al., 1994]. In

the context of new product development, an innovative organisation is likely to use

more Mode 2-type development and problem solving processes [Gibbons et al.,

1994]. Such an approach is likely to 1) constantly generate new ideas, 2) provide the

 2-52

capacity to change new ideas into products, and 3) ensure that knowledge is

disseminated to all the knowledge workers concerned [French & Bell, 1990].

2.8.5.1 Management of innovation issues in product development

Broadly speaking, forms of innovation in the context of technical product

development can be divided into three main types: 1) process improvement models,

2) implementation of new technologies, and 3) process re-engineering [Vinter, 2005].

Techniques related to KM for innovation that have been identified as areas to

develop further, and that currently show a significant level of interest (in terms of

recent publications) include the following: 1) balancing creativity against systems

[Counsell et al., 2005], 2) methods for efficient technology transfer [Wandeler et al.,

2006], and 3) creative problem solving [Van Zolingen et al., 2001]. These research

areas, and the seminal work related to them, are described below.

Creativity vs. ‘systems’

In their study of prototyping in five companies, Counsell et al. [2005] reported on the

following main issues: 1) non-adherence to standard prototyping guidelines was

common; 2) developers often engaged in ’sketchy’ change request procedures; 3)

there was frequent concern about time and cost deadlines not being met; and 4)

developer experience was found to be an essential requirement for innovation.

Clearly, a balance is required: an extremely formal KMS puts too much stress on

knowledge workers who will then not be committed to the goals of KM, whereas an

overly relaxed and informal approach may deny individuals the support they should

get from the system.

In a paper reporting on the findings of a case study that explored micro level factors

surrounding the processes of creativity and process management in a creative ISO

certified organisation, Molnar and Nandhakumar [2007] argue that structured KM

provides a framework for organisations. However, they also observed diverse

opinions and attitudes towards KM inside organisations. Additionally, this framework

results not only in positive effects but also in certain constraints for organisations.

These constraints in turn influence the processes and innovations of organisations.

The creative potential helps to overcome the given constraints of a structured

process. Consequently, the paper claims that within a creative business environment

it is essential to maintain these creative potentials [Molnar & Nandhakumar, 2007].

 2-53

Technology transfer

The accelerating development of technology transfer and knowledge diffusion

activities can have a profound impact on technology oriented companies and their

potential for innovation, also supporting their need for this work to be carried out

more rapidly to meet market demands [Zander & Kogut, 1995; Ernst & Kim, 2002;

Pérez & Sanchez, 2003].

Creative problem solving

Innovation is strongly linked to problem solving [Van Zolingen et al., 2001] and this is

particularly evident in ES product development, for example, developing fast and

reliable digital signal processing code that runs on resource-limited hardware [White,

2005].

2.8.5.2 Tools for managing innovation in product development

A number of tools have been developed to assist the process of innovation. These

tools include methods to overcome mental inertia [Souchkov et al., 2005], strategies

to improve personal creative skills [Tierney & Farmer, 2002], heuristics that avoid

psychological inertia during problem solving [Nakagawa et al., 2002], reengineering

techniques, and guidelines for novel product conceptualisation and development

[e.g., Blosiu, 1999; Altshuller, 1998]. A selection of tools that appear in the literature

and that relate to the management of innovation knowledge is reported on below.

TRIZ

Perhaps the most widely used tool in the context of technology mapping for the

transfer of technology is TRIZ (an abbreviation from the Russian for ‘theory of

inventive problem solving’) [Altshuller, 2004]. TRIZ includes the following parts:

1. Laws and trends of the technology evolution. This part of TRIZ studies and

formulates general trends of engineering system evolution.

2. Problem solving techniques. The techniques aim at building a problem model

and producing recommendations on how to solve the problem.

3. Principles for the elimination of technical contradictions.

4. Inventive standards, which solve inventive problems by representing them in

terms of substance-field interactions and applying generic patterns for

interaction transformations.

 2-54

5. Pointers to effects. This part of TRIZ focuses on studying how to use the

knowledge of natural sciences (physics, chemistry, geometry) in the inventive

process.

6. Algorithm of inventive problem solving. An integrated technique aimed at

solving the most difficult inventive problems that contain physical

contradictions.

7. Collections of selected patents. This part contains patent descriptions drawn

from diverse engineering domains. The patents are structured according to

inventive principles used to eliminate one or other types of contradiction.

Reverse engineering

Reverse engineering (RE) is the process of discovering the technological principles

of a device, object or system through analysis of its structure, function and operation

[Muller et al., 2000]. RE often involves taking apart a product, such as an electronic

product or software program3, and then performing a detailed analysis on its

operation. Usually this strategy involves making a new product that provides many (if

not all) of the same features as the original product, but without performing a

verbatim copy of the original product [Chikofsky & Cross, 1990]. The key to

innovation in RE is to recombine the knowledge and routines in efficient ways

according to the current situation [Ståhle & Grönroos, 2000].

A number of different RE approaches are used, including Function Analysis (a

modified version of traditional Value Engineering Analysis with the focus on

functional decomposition and analysis of design products and technologies) and

Ideal Modelling (of function-based redesign, also known as ’trimming’), which aims to

perfect the product design and to formulate new problems (i.e., ones for which

innovative new solutions are needed) [Warden, 1992].

Technology mapping

Technology mapping is a high-level planning tool for supporting the planning and

control of technology management, and for supporting national and sector ‘foresight’

initiatives [Coombs & Hull, 1998]. However, existing models of technology transfer

have been investigated separately with regard to the methods, stakeholders, and the

3 In terms of a software program, this may be working with the original source code (which

may lack documentation) or compiled machine code.

 2-55

elements of how the transferors and transferees assimilate, adopt, develop, and

transfer technology in various organisational settings [Simonin, 1999; Argote &

Ingram, 2000]. Chan and Yu [2004] investigated a structured approach, which makes

use of knowledge networks, for analysing the technological merit of innovative

products and their impact on a value chain.

Cummings and Teng [2004] claim that a company should recognise that the

development of knowledge repositories, portals connecting with external databases,

and alerts about recent developments in the field will be of limited value for

knowledge transfer. They recommend that companies should supplement these

activities with mechanisms for connecting people to people through web

conferences, communities of practice, discussion boards, chat rooms, instant

messaging, and other forms of expertise identifiers and expert collaboration, all of

which are useful for knowledge to be transferred effectively.

Tools for supporting emerging innovative processes

Business processes, especially those in knowledge intensive environments, often

emerge organically, rather than following predictable and predefined steps [Covin &

Slevin, 1989; Sabat, 2007]. Supporting emergent processes is one of the key issues

for collaborative knowledge sharing. Luqi et al. [2004] introduce WorkPath, which is a

component-based workspace meta-model used to support emergent processes. Key

elements that construct workspace and WorkPath include knowledge worker roles,

actions, artefacts, workspaces and reference relation methods [Luqi et al., 2004].

2.8.6 Dealing with information overload

The term ‘information overload’ refers to situations in which a person is oversupplied

with information, or when the amount of information exceeds the cognitive capability

of a person [Ho & Tang, 2001]. Too much collection, sharing and distribution of

information can lead to information overload and obstruction of work [Bouthillier &

Shearer, 2002].

Dealing with information as a commodity does not necessitate knowledge production

[Castells, 1996]. As the scenario in Section 2.4.1 shows, some kind of processing

and interpretation, which depends on the prior competencies and experience of the

individual concerned, are needed to make effective use of information. Information

can be comparatively easy to obtain compared to the effort involved in making use of

it [Oluic-Vukovic, 2001]. This is particularly true for information found on the internet.

 2-56

However, if a resource is available on the internet, this is not necessarily any

guarantee of its importance, accuracy, utility or value [Berghel, 1997].

This section briefly outlines major issues related to information overload associated

with the application and development of technology, namely:

1. Dimensions of information overload; and

2. Reducing information using infomediary tools

2.8.6.1 Dimensions of information overload

Ho and Tang [2001] argue that there are three dimensions to information overload: 1)

information quantity, 2) information format, and 3) information quality. Information

quality relates to the amount of information for a particular activity (e.g., results

returned for a web search). Information format can relate to the way in which

information is presented to the user (e.g., the layout of a text document and the use

of tables and images in the document), and to the way in which the information is

stored (e.g., the document in the form of a Microsoft Word document or a Latex file;

the type of executable file format of a program; and the image file format used to

store an image). Information quality is a more subjective measure of these three

dimensions, concerning issues such as the usefulness of the information provided

and the difficulty involved in interpreting the document that contains the needed

information.

2.8.6.2 Addressing information overloading with infomediary tools

An infomediary tool is designed to cut down on the problem of information overload

by acting in a similar way to that of an ‘intermediary’ or a ‘filter’ by attempting to

reduce the amount of information presented to a user, and to impart the information

in a manner that is more usable (for a particular purpose) than the original

information sources in their ‘raw’ states (e.g., web pages or online articles) [Ordanini

& Pol, 2001]. For example, a comparison infomediary tool analyses a set of

documents and presents a summary of the differences found between them [Ho &

Tang, 2001].

Ho and Tang [2001] investigated a variety of commonly used infomediary tools and

identified the information overloading dimensions each approach seemed to address

to reduce the problems of such information overload. Table 2.1 is an adaptation of

 2-57

the results produced by Ho and Tang [2001, pg. 94]; each row corresponds to an

informediary model and the information overload dimensions it addresses.

Table 2.1: Commonly used infomediary tools and dimensions of information overload
they address [Ho & Tang, 2001; Berghel, 1997].

Infomediary
tool

Description Dimensions of information
overload addressed

Portal Typically a web service providing
searching and yellow pages
facilities, often classifying web-
based information according to
predefined subjects.

Assists in reducing information
quantity.

Virtual
community

A community of people that share
common interests and techniques
through e-mail, chatting,
newsgroups, or discussion boards.

Assists in resolving information
quantity by focusing on one
specific topics of interest. Voting
and ranking features helps with
information quality.

Transaction
aggregator

Electronic marketplaces that enable
customers to connect with each
other and purchase products in the
same place (or on the same
website).

These services (e.g.,
Amazon.com) help to reduce time
in finding information about
products and buying the product,
addressing information quantity
and quality.

Syndication Collects and packages digital
information from many sources that
use potentially dissimilar
information formats or
representation standards.

Addresses issues of information
quantity and information format.

Personalisation Helps in making (from a potentially
large set of options) a selection of
information that is of most value to
an individual.

Mainly addresses information
quantity, e.g. automatically
navigating multiple web sites to
manage a person’s information.

Comparison Searches in real time across many
websites (e.g. retailer sites) giving
comparative information. For
example, showing different prices
and features for a certain make of
car sold by online retailers.

Assists in reducing information
quantity and information quality.

2.9 Conceptual framework for researching a KMS

The most important part of implementing a KMS is the strategising and establishment

of effective guidelines and infrastructure that knowledge workers will use to carry out

KM activities in the organisation (this was elaborated in Sections 2.4 and 2.6). The

overarching purpose for the KMS is typically to make the organisation concerned

operate more intelligently in order to secure its continual viability and success. These

guiding principals are emphasised by Edvinsson & Malone [1997] (see Section 2.6)

and is corroborated by many other researchers, such as work by Karadsheh et al.

[2009] in which they formulated a generalised theoretical framework for KM of

organisational processes. Karadsheh et al. [2009] showed that the overall objective

 2-58

of a KMS is also commonly viewed as an approach to implementing KM strategies

that somehow lead to knowledge workers saving time, effort or costs, and preferably

a combination of all three.

The objective of the ESAOA KMS is guided by the KM literature guidelines as

discussed above, which are predominately related to KM at the organisational level,

or macro level as defined by [House et al., 1995] (see Section 1.2.4). However, the

ESAOA KMS focuses on meso level processes. For this reason, the above-

mentioned broad objective of a KMS needs to be narrowed down to the appropriate

level of KM work that the ESAOA KMS will be used with. In the case of the ESAOA

KMS, the KM work of focus is ESAOA activities that are performed by novice

engineers to produce knowledge needed to complete implementation tasks during

ES prototyping projects. Thus, the objective of the ESAOA KMS is to facilitate

knowledge production during ESAOA activities, to promote successful completion of

ES implementation tasks.

Since ESAOA activities focus on changing and classifying artefacts that may be

further adapted by the same or different individuals at a later stage, the ESAOA KMS

design has been chosen to follow the personalisation trait of KM [Hansen, 1999]

rather than the codification trait (i.e., having a focus on facilitating the flow of

information about knowledge sources, as apposed to how knowledge is captured –

see definitions in Section 2.6.1). Furthermore, the ESAOA KMS will follow the

information-focused stream of KM, comprising KM methods that focus on the way

knowledge workers treat information and the interaction between people interested in

sharing information [McDermott, 1999a] (see Section 2.4.2).

Researchers, such Wiig [1997], Davenport [2002] and others, caution that the

establishment of a KMS is not straightforward; it could take months or years to

complete (as discussed in Section 2.6). Consequently, these researchers commonly

recommend an incremental and iterative approach to the KMS development. In

addition, as discussed by Alavi & Leidner [1999], an understanding of the knowledge

work that the KMS will be used for, is needed prior to imposing the new KM

strategies into an organisation. Methods to measure the effectiveness of the KM

techniques implemented and their influence on the organisation is also required (see

Section 2.6.3). These measurements could be done independently, such as in the

form of a ‘knowledge audit’ [Groff & Jones, 2003] applied to knowledge artefacts that

are produced, or by using other techniques; depending on the organisation and

 2-59

knowledge work involved, these techniques could include surveys [Gold et al., 2001],

employee performance evaluations and product quality inspections [Alavi & Leidner,

2001] among other methods.

Following the above recommendation of expert researchers, the ESAOA KMS will be

developed incrementally. Accordingly, a study will first be performed to gain a clear

understanding of the specific knowledge work involved, together with establishing

techniques to measure KM for the context involved. Next, appropriate KM methods

will be planned and the ESAOA KMS constructed. This will be followed by putting the

new KMS into operation, and gathering data to determine in which ways, and to what

extent, the KMS benefits knowledge workers. Further revisions to the KMS can then

be performed to incrementally develop increasingly improved versions of the KMS.

The strategy described above was used in planning the research design for this

thesis (presented in Chapter 3). The research design has been implemented in the

form of an experimental methodology involving two experiments. The first experiment

corresponds to the study of knowledge work, whereby data will be obtained from

developers using their own ad hoc KM methods (i.e., they will not using a KMS). KM

measurement techniques will then be developed based on findings from the

experiment and through the use of relevant works from the KM literature. Next, the

first version of the ESAOA KMS will be developed, and then tested during the second

experiment. Future refinements to the KMS will then be formed.

The next chapter takes the fundamental framework described in this section and

refines it into the comprehensive research methodology used for this thesis.

2.10 Summary and conclusion

This chapter outlined KM needs, strategies and tools that are of relevance to ES

projects in product development environments, if not directly in the field of ES

product development (for which this specific form of literature is limited [Rus et al.,

2001]). The literature indicates that managing knowledge in technical product

development is dependent on the related systems, infrastructures, and other context-

specific sources and sites where knowledge is developed and where learning takes

place (see Section 2.8). The literature suggests that there are four main

considerations when developing a KMS, in particular:

 2-60

 2-61

1. Knowledge workers and knowledge-based teams;

2. Data and information finding tools and systems;

3. Knowledge-based engineering processes; and

4. Innovation, knowledge production and creative problem solving.

Each of these knowledge-based aspects concerning product development requires

different forms of KM and KM tools (discussed in Section 2.8.2). Within each of these

areas, there is likely to be explicit as well as tacit knowledge, and tangible as well as

intangible knowledge assets – all of which require appropriate forms of KM.

The literature review has demonstrated that there are many gaps in the research

literature on the implementation of KM systems and tools in ES engineering (as

elaborated upon in Section 2.1) and particularly in terms of KM for technical

development (as seen in Section 2.8). This gap in the literature confirms the need for

more studies focused on KM for ES product development.

This chapter has shown that managing intellectual capital (IC), intellectual property

(IP) and innovation is becoming increasingly important in the ES field (see Section

2.3), not least because of the knowledge-intensive nature of this work. In short, and

as can be generally seen in this literature review, KM for ES product development

should be an integral part of the activities for efficient ES product development

organisations working in today’s turbulent business environments.

 2-62

Chapter 3:

Researching embedded system artefact organisation
and adaptation (ESAOA) knowledge

This chapter explains the research design and methods for evolving a knowledge

management system (KMS) for embedded system artefact organisation and

adaptation (ESAOA) knowledge.

Section 3.1 describes the key concepts and specialised terms used in this chapter.

Thereafter, the research objective, which was outlined in Section 1.3, is recapped

and elaborated on in Section 3.2. The main research problems associated with

studies concerning the research objective, and the ways in which these problems are

addressed in this thesis, are discussed in Section 3.3. The problem statement,

together with its associated sub-problems is then described in more detail in Section

3.4. The experimental research design for the ESAOA KMS is presented in Section

3.5. The selection criteria for the experiments, such as the development projects,

sites and participants, are outlined in Section 3.6, whereas ethical concerns are

addressed in Section 3.7. Data collection methods are described in Sections 3.8, and

figures are provided to show samples of collected data. The data analysis strategy is

given in Section 3.9. The data synthesis procedures are explained in Section 3.10,

which involved merging and generalising the detailed results from the data analysis

process to obtain a more abstract view of the KM processes. Section 3.11 presents

the ESAOA conceptual modelling language that is used in the data synthesis phase.

Section 3.12 concerns the artefact and prototype assessment that was performed at

the end of the experiment and provided a means to compare the KM results to the

product prototype and artefacts produced by the teams. The final section, Section

3.13, explains how the research findings are arranged in the subsequent chapters.

 3-1

3.1 Key concepts

A KMS is the way in which people, processes and artefacts work together for the

creation, capture, storage and sharing of knowledge [Drucker, 1998]. The actual

design of such a KMS depends on the type of knowledge work being done, and the

context within which it is performed (see Section 2.6). The study of a KMS typically

focuses on the way in which the ‘know-how’ and ‘know-who’ of knowledge workers is

managed in an organisation to solve problems, make decisions, learn facts, and find

the most knowledgeable people in certain specialised areas within the organisation.

Chapter 2, for instance, has already elaborated on KM and the contexts of ES

product development.

3.1.1 ESAOA knowledge

The term ESAOA knowledge is defined as knowledge that is needed to carry out

ESAOA activities (see also Section 4.2.5). ESAOA knowledge is a form of

implementation knowledge produced and used during the implementation phase

[Schach, 2005] of ES development projects. It is technical knowledge that is related

to the specific types of implementation activities, which are the concern of this thesis

(see Section 2.2 for details concerning the implementation phase of ES

development). As was described earlier, implementation is the process by which a

developer transforms a product design into a physical product [Schach, 2005].

Implementation knowledge is defined in this study as knowledge that developers use

during the implementation phase of a project in which they are actively involved in

building a product.

Generally, implementation knowledge encompasses the extremely wide range of

competencies that a developer uses to perform implementation tasks. For example,

in the case of ES development, implementation knowledge includes the engineer’s

knowledge of back-end tools used in developing software (e.g., the ability to use text

editors and web browsers), and techniques for programming-in-the-many (i.e.,

strategies for working in a team of developers) [Bendix, 1993; Medvidovic & Mikic-

Rakic, 2003; Schach, 2005]. This thesis concerns implementation knowledge that

relates specifically to the engineer’s understanding of, and his/her ability to select

and use, development tools and components to perform implementation activities.

Development tools include the compilers, linkers, oscilloscopes, multimeters, and

other software programs and equipment that ES engineers use to develop ES. The

components used to construct an ES comprise both electronic components (e.g.,

 3-2

microchips, switches and displays) and software components (e.g., embedded

operating systems and code modules).

Although implementation knowledge is generally associated with the implementation

phase of a development project, such knowledge can be produced and applied at

any point in a project. It therefore encompasses a broad expanse of knowledge.

ESAOA knowledge, which is the focus of this thesis, consequently refers to a smaller

subset of implementation knowledge, specifically implementation knowledge that is

used to carry out ESAOA activities (i.e., knowing how to organise and adapt ES

artefacts).

3.1.2 Towards a study of directed KMS evolution

Developing a KMS for a certain context of knowledge work is not a simple

undertaking that can be accomplished in a few hours (as can be seen in initiatives

studied by researchers such as Wiig [1997], Alavi & Leidner [1999] and Davenport

[2002], and further discussed in Section 2.6). Rather, a KMS tends to be developed

over time for the specific context in which it is to be used [Hu & Chen, 2002]. Such a

context often has an elaborate arrangement of dependent factors, involving the

actual knowledge work, the specific organisation involved, and its working

environment. Furthermore, knowledge work also changes over time in response to a

variety of influences, which results in the KMS used by knowledge workers being in

constant flux [Carneiro, 2000; Bergeron, 2003].

The term KMS evolution is used in this thesis to encapsulate the process by which a

team of developers moves from initially using an ad hoc KMS towards using a newer

and more evolved KMS. As explained in Section 2.6.2, the process of evolving a

KMS involves gradually changing an existing KMS towards an increasingly more

evolved system, in which the system becomes more visible, more consistently

applied across different projects and individuals, and generally better understood by

the people who use it. KMS evolution can be considered as an ongoing process that

starts when a certain group of knowledge workers begins to collaborate, and that

ends when the group stops work and separates.

3.1.3 Directed KMS evolution

For the sake of clarity, the concept of directed KMS evolution refers to KMS evolution

that is consciously studied and controlled, in contrast to a KMS that evolves naturally

as an unobserved phenomenon. Customised KM tools and personnel assigned to

 3-3

specialised KM roles are considered to be part of a more refined, or more highly

evolved, KMS (as per the sixth phase of evolving a KMS defined in Section 2.6.3).

Figure 3.1 illustrates directed KMS evolution, showing that an ad hoc KMS is

purposefully monitored and changed to produce a refined KMS. The term ‘directed

KMS evolution’ thus concisely describes the focus of this chapter, which is to

describe a methodology for directed evaluation of an ESAOA KMS.

Ad hoc
KMS

Evolved
KMS

Initial Context
Knowledge

Enhanced
Context
Knowledge

Directed
KMS Evolution

?

Figure 3.1: Directed KMS evolution.

3.2 Research objective: A KMS for ESAOA activities

In this thesis, knowledge is defined to reside exclusively within a person’s mind (see

Section 2.4.1) [Groff & Jones, 2003], which makes it difficult to measure. For this

reason, the emphasis of the research objective is not on knowledge itself, but rather

on the KM methods and ESAOA activities (defined in Section 1.1.7) that relate to a

KMS. The research objective of this thesis can thus be expressed as follows:

Research Objective
The objective of this thesis is the construction, evaluation and evolution of an

experimental KMS, which is referred to as the ESAOA KMS.

The ESAOA KMS is intended for use in ESAOA activities within the context of new

projects that involve prototyping novel ES products (see Section 1.5 for details). The

aim of the ESAOA KMS is to facilitate the progress from the use of an ad hoc KMS

towards a more highly evolved KMS in which KM strategies are made visible and

applied systematically (see thesis objective introduced in Section 1.3).

The subsections below further motivate and refine the specific objective of this thesis

together with the scope and delimitations imposed on this work.

 3-4

3.2.1 Specific objective: Moving from an ad hoc to a formalised KMS

Experts on software methodology, such as Brinkkemper et al. [1996], Kroll &

Kruchten [2003] and Jacobson et al. [1999], indicate that processes need a suitable

level of ‘ceremony’ for the work and working environment involved. A high level of

ceremony implies processes have “comprehensive supporting documentation and

traceability maintenance among artefacts” [Kroll & Kruchten, 2003, pg. 50]. In

contrast, a low level of ceremony implies less supporting documentation and little

formalism in the working procedure. A formal KMS involves certain costs and manual

overheads to carry out KM methods while knowledge work is performed [O'Dell et al.,

2003].

As is the case with the representation of software methodologies, a KMS also needs

a suitable level of ceremony in order to make it expressive and usable. Likewise, the

methodology for evolving a KMS for ESAOA knowledge needs to be expressed and

evaluated at an appropriate level of detail, while imposing a minimal amount of

additional manual overheads for the knowledge workers concerned: in other words,

representing the KMS with either too much, or too little detail can result in the system

being ineffective and not applied consistently amongst knowledge workers [Kettunen

& Laanti, 2005].

An additional challenge, in terms of instituting a formal KMS, is that the KM

overheads of an ad hoc KMS may appear to be less than those of a more formalised

KMS; such an opinion may be due to the perception that the KM methods of an ad

hoc KMS are invisible, while those of a formalised KMS are more visible and

therefore appear to impose more overheads [Lynn, Reilly & Akgűn, 2000]. As a

result, engineers may feel their own ad hoc methods are better than the formalised

methods imposed on them. However, KMS can provide longer term benefits that

benefit the project later, or during product maintenance [Alavi & Leidner, 2001].

In consideration of the above issues, the construction, evaluation and evolution of the

experimental ESAOA KMS to be constructed needs to involve suitable levels of

ceremony and process descriptions, while simultaneously avoiding excessive

overheads, to ensure its usability for consistent application among developers.

 3-5

3.2.2 Scope and delimitation: ESAOA during component integration

The boundaries of a KM initiative need to be established so that the effort expended

in studying, formalising, and adjusting the system is restricted; this can be

accomplished by defining the scope of the initiative [Groff & Jones, 2003]. Such a

definition of scope includes, among others, describing the objectives of the KM

initiatives (or work related to those initiatives), the timeframes, and the number of

people studied.

Specific delimitations identified for this study are outlined in the subsections that

follow. The broad areas of delimitation were guided by Groff & Jones [2003].

3.2.2.1 Delimitation of tasks

An important delimitation chosen in this study is the restriction on the types of

knowledge work to be studied. For example, when studying the KMS used by

software engineers, a scope limitation may be to focus on a specific type of

engineering task, and to exclude administrative, marketing, and more basic project-

related tasks, which together may accumulate a volume of data that cannot be

handled within the limited time of such a study.

Due to the broad extent of implementation knowledge that is produced in a project,

this thesis is restricted to a subset of implementation knowledge that is generated

during the development of ES products: in particular, it focuses on implementation

tasks in which engineers learn how to use development tools and components. The

emphasis is on managing ESAOA knowledge, which is closely associated with an

engineer’s knowledge of the development tools and product components used to

construct an ES. More specifically, the research design focuses on how developers

organise and adapt implementation artefacts to create, capture, store and share

knowledge of product components, as well as on the use of development tools to

implement a product.

In order to focus on ESAOA knowledge, a research strategy is needed to isolate this

knowledge and its related activities from other forms of knowledge and development

work that occurs during projects. Such a separation is an analytical tool because

knowledge itself is an abstract phenomenon that can be viewed as the complex

interaction of an individual’s history of experiences [German & Hindle, 2006].

Experience can be obtained in many contexts, such as reading, talking, and

performing experiments in a laboratory; for many forms of knowledge work, the

 3-6

experiences that give rise to knowledge are not limited to the context in which

knowledge work is performed. Based on these insights, it is important to recognise

that the separation of knowledge into knowledge categories is an analytical strategy

(other analytical strategies include methods such as performance analysis [Kettinger

et al., 1997] and examination of knowledge objects [Knorr-Cetina, 1997]).

ESAOA knowledge is isolated from other forms of implementation knowledge using

the definitions below. The first definition delineates the concept of routine

development tasks. The second definition describes implementation knowledge in

relation to these routine development tasks. The third definition explains artefact

organisation and adaptation (AOA) knowledge based on the first two definitions.

Thereafter, a concise definition for ESAOA knowledge, a specialised form of AOA

knowledge, is given.

Definition 3.1: Routine development tasks are low-level practices

common to projects in a certain field of development. An example of a

routine development task in the field of software development, for

instance, is writing code for a program procedure using a text editor.

Definition 3.2: Implementation knowledge is used by a developer to

incorporate a component into an incomplete product using development

tools, or to use development tools to adjust the ways in which a

component is built into a product (or part of a product). An example of

implementation knowledge would involve knowing the sequence of

operating system services to call in a function to configure an interrupt

service routine for a particular microcontroller. Implementation knowledge

builds on the broader and more fundamental knowledge used in routine

development tasks.

Definition 3.3: Artefact organisation and adaptation (AOA) knowledge

concerns an engineer’s understanding and ability to organise (i.e.,

classify and structure) implementation artefacts, as well as the engineer’s

understanding of and capability to adapt these artefacts during the

implementation of a product. Examples of AOA knowledge include

understanding the logic behind the structure of a project directory, and

knowing how a particular artefact was adapted to incorporate it into the

product being built.

 3-7

From the definition of AOA knowledge above, a more refined version of AOA

knowledge restricted specifically to the implementation phase of an ES can be

created. This knowledge form is the primary area of interest of this study.

Definition 3.4: Embedded system artefact organisation and adaptation

knowledge (or ESAOA knowledge) is a specialised form of AOA

knowledge that concerns an ES engineer’s understanding and ability to

organise and adapt implementation artefacts during the implementation

phase of embedded system projects. ESAOA knowledge essentially

focuses on knowing how ESAOA activities are performed.

Examples of ESAOA activities were given in Section 1.1.7, which mentioned

activities of “creating a new C file to hold the start-up code”, “making a directory

called ‘Code’ to hold code files” and “saving the new file as ‘start.c’”. Examples

of ESAOA knowledge, based on the aforementioned activities, would include

comprehending the logic behind naming the file ‘start.c’, reasons for placing the

file in the subdirectory named ‘Code’, and understanding of how code in the

‘start.c’ was implemented or adapted for the particular ES platform used.

3.2.2.2 Delimitation of time

An optimal timeframe for the study had to be developed. The first experiment

delimited the time to approximately three months. This was found to be an insufficient

time for complex ES product development. The timeframe for the second experiment

was thus extended to eight months. This was found to be sufficient for the first

iteration, or prototype building (see Chapter 5).

3.2.2.3 Delimitation of team size

An engineer’s knowledge of implementation tasks results from his/her underlying

skills that are essential to the field of development concerned [Caspi et al., 2005;

Grimheden & Törngren, 2005]. For example, in ES development, fundamental

software development skills include the engineer’s ability to write source code in a

particular programming language, as well as his understanding of how the source

code is turned into an executable object. The size of the ES development teams was

restricted as a means to simplify the study and possibly to reduce the number of

development techniques used in the project. Consequently, Experiment 1 comprised

teams of two member each (in order reduce issues of complexity related to team

 3-8

dynamics, since the experiment was also a form of pilot study to establish the initial

KMS), whereas Experiment 2 comprised teams of three members each (in order to

investigate projects involving more complex team dynamics).

3.3 Research problems

A KMS exists for any form of knowledge work. A KMS ranges from being entirely

informal, invisible, and poorly understood, to being formalised, visible, and well

understood. A KMS also varies from being useful to the knowledge workers who use

it, to being an impractical system that is more of a hindrance than an aid to

knowledge work. The nature of a KMS raises a number of issues that need to be

addressed in developing appropriate research methods for studying KM. These

issues are elaborated on in the sub-sections that follow, highlighting significant

challenges that are likely to occur while researching KMS evolution.

3.3.1 Associative memory, time-limited knowledge, and repeated
learning

Product development projects, and in particular complex projects such as ES

development projects, draw on a significant amount of knowledge, a large portion of

which is produced while working on the project [Cross, 1994]. The research design

and data capturing methods need to consider this. Knowledge is produced through a

process of interpreting information, which occurs in a variety of learning activities,

such as reading, discussing, writing, and listening. However, the various ways in

which knowledge is produced poses challenges for the data capturing methods.

Once an individual has acquired knowledge, that knowledge will not necessarily be

retained by that individual for a long period of time. This is due to human memory

being associative, meaning that memories are recalled in response to stimuli

[Anderson & Bower, 1980]. A research method that was developed to address the

difficulty of tacit knowledge, or knowledge-locked-in-memory, is that of the

‘discourse-based interview’ [Odell et al., 1983], which uses stimuli to trigger

memories, such as using objects or documents to elicit memories of experiences that

involved that object.

Product development typically involves the use of many different types of information

sources from which knowledge is produced [Kettunen, 2003]. These information

sources include people (e.g., colleagues or trainers), documentation (e.g., journals,

 3-9

datasheets, manuals), and Internet resources (e.g., forums and blogs). Due to the

associative, and time-limited, nature of knowledge, knowledge workers need to use

such information sources so that they can reproduce knowledge used previously in

order to solve an immediate problem. This process of relearning knowledge may

involve reviewing the same information sources as used for the original instances of

learning, or studying alternative information sources (e.g., notes in a logbook, or

comments in source code) that contain sufficient information to trigger the memory

(or “to stimulate the mind to … derive that knowledge” [Anderson & Bower, 1980, pg.

4]) and thus to reconstruct the original knowledge. Information sources, such as

paper or digital documents, emails, and talking to people, are not the only means, or

necessarily the only sufficient means, of reconstructing learning. Performing actions

and observing results, such as changing the configuration of a tool and seeing what

happens, are also means by which knowledge can be gained, or previously learned

knowledge relearned. For these reasons, the different phases and versions of

product development are useful data sources for KMS research.

Developers are generally aware of the time-limited nature of knowledge,

understanding, for instance, that a complicated task that took many hours to

complete, may have initially involved a significant amount of reading and

experimentation, and that this may need to be repeated due to the knowledge from

the original learning efforts being forgotten. For this reason, developers typically keep

copies of the information sources that they used, and often keep logs of procedures

that they used to solve problems. This recorded information not only saves time in

locating original information sources, but it may be essential in reconstructing

knowledge. For research purposes, the developers’ logs form an important data

source.

3.3.2 Information overload

The need to reproduce knowledge leads to developers justifiably retaining

documentation, saving web pages, making logs, archiving software tools, and

collecting email, amongst other tasks that involve retaining information. Although the

retention of information is highly desirable from a research point of view, it can have

some detrimental consequences for product development. For example, a developer

may become overwhelmed by the sheer amount of information retained for a project,

making the task of reproducing knowledge extremely time-consuming. This situation

is obviously worse for a developer maintaining a project developed by someone else

[Aman et al., 2006].

 3-10

3.3.3 Research challenges: Confidence, confusion, and lost property

ES engineers involved in the complex process of developing embedded products do

not always have time to take perform tasks to facilitate research processes applied to

their work. This problem is particularly apparent when the design process is rushed,

as often happens close to a milestone delivery date. During the design process, there

are inevitably lost documents, unlogged changes, unrecorded trials, and other

activities that the researcher may not be made aware of. There are further

complications, in terms of the people studied, which can influence the research

process, such as the extent to which an engineer has read about the application

domain for the product (e.g., for the development of medical systems, a developer

that has studied medical systems may be at an advantage over those who have not).

The researcher may also be unaware of the degree to which the engineers

understand, or are confused by, their own processes. Kamsties & Rombach [1997]

discuss these problems in depth in relation to researching requirements

specifications for ES; their recommendations have influenced the research design

described below (see Section 3.5 below).

This section has highlighted the research challenges, as well as ways in which these

were addressed. The next section explains in greater depth the research focus and

its associated sub-problems, research questions, and assumptions made.

3.4 Problem statement

This thesis argues that new projects that involve the development of novel ES

products can be facilitated by the application of a specialised KMS, namely the

ESAOA KMS, applied within the context of ESAOA activities. As specified in Section

3.2.2, this study focuses on the management of ESAOA knowledge performed during

ESAOA activities.

3.4.1 Research question

As described in Section 3.2, the research objective focuses on the construction,

evaluation and evolution of an experimental ESAOA KMS. Following the information-

focused stream of KM (defined in Section 2.4.2), the ESAOA KMS needs to be

structured appropriately for the effective capture, organisation, classification, and

dissemination of ESAOA knowledge. Based on the generic design of a KMS given in

Section 2.6.4, this means refining the various aspects of the KMS, such as the

 3-11

people (or roles), activities and artefacts, so that the KMS as a whole can operate

effectively. The following question was accordingly composed to guide this research:

Research question:
What is an effective structure for the ESAOA KMS (i.e., the roles, activities,

artefacts, etc.) that will contribute to the successful completion of ES

implementation tasks?

3.4.2 Sub-problems

In order to gain further insight into answering the above research question, the

general problem statement, described at the start of Section 3.4, has been divided

into a set of related sub-problems, which will be used to investigate the research

question from different perspectives. Each sub-problem is described in the form of a

sub-problem statement, and is accompanied by a short explanation for its inclusion.

Each sub-problem was chosen to gain insights into directing the design of the

ESAOA KMS, such as contrasting the effectiveness of different KM approaches,

which in turn also help in gaining insights into how the research question can be

addressed.

1. Identify different forms of ESAOA knowledge: The information stream of

knowledge followed in this thesis (see Section 2.4.2) necessitates identifying

which forms of knowledge occur in projects and how different methods are

used to facilitate use of these dissimilar types of knowledge [Sveiby, 2000;

Nonaka, 1994]. Consequently, this thesis will investigate the various forms of

ESAOA knowledge that occur in ESAOA activities. Some ESAOA activities

may make heavier use of a certain type of ESAOA knowledge, which will

provide insights into specialised KM approaches for particular kinds of

ESAOA activities.

2. Determine the relative complexity of different ESAOA KM tasks: KM tasks

performed during some ESAOA activities may be more time consuming or

complicated than those executed in other activities. Identifying the relative

difficulty of these KM tasks will highlight areas of the KMS that can be

optimised.

3. Establish the relative difficulty of ESAOA knowledge production associated

with different ESAOA knowledge forms (based on knowledge forms identified

in sub-problem 1): Some forms of ESAOA knowledge may be easier to

 3-12

produce than others; knowing what forms of knowledge are more difficult to

produce will make it possible to optimise the KMS design.

4. Investigate how the time taken to complete different ESAOA activities may

vary, and what factors may contribute to these variations: A particular type of

ESAOA activity may take on average a much longer time to complete

successfully than other activities; identifying such activities will help to

optimise scheduling of tasks in designing the KMS.

5. Evaluate the relative frequency of different types of problem/solution

occurrences in which ESAOA knowledge is used: Some types of

problem/solution occurrences, or sequences of problem-solving tasks, may

tend to be more common than others. Insight into these will help in structuring

KM tasks.

6. Determine the portion of ESAOA activities that are incomplete or that have

been abandoned: Insights into these problems may indicate a lack of

knowledge producers or poor knowledge producer/consumer relations in the

KMS (as per the KM perspective presented by Milton [2005] and discussed in

Section 2.7.1). These findings can provide indications where the KMS needs

to be optimised, for example by providing team members additional training to

help with communication tasks.

7. Establish how the structure of a general KMS (see Section 2.6.4) is refined to

become an ESAOA KMS: This aspect focuses on refining the roles, groups,

activities and other aspects as laid out in Section 2.6.4. A means of modelling

the structure will be needed to aid explanations.

8. Determine implementation tasks that benefit the most from an ESAOA KMS:

When implementation tasks involve a variety of ESAOA activities, they can be

considered to be at a higher level. Identifying these general types of

implementation tasks makes it possible to produce higher-level guides to be

used in building a KMS.

3.4.3 Research assumption

It is assumed that the embedded software engineers will be able to use the ESAOA

KMS to learn, recall, and express ESAOA knowledge that occurs during the

implementation phase of embedded software development projects. This assumption

is based on the general case of ‘knowledge workers’ [Drucker, 1998] being able to

use a formalised KMS to learn, recall and express effectively the form of specialised

knowledge for which the formalised KMS has been designed. Embedded software

engineers are an example of such ‘knowledge workers’ [Conradi & Fuggetta, 2002].

 3-13

3.5 Research design

The research design is intended to enable the study of the KM methods used by ES

engineers to manage ESAOA knowledge in the process of developing a product. The

scope of KMS evolution for the purposes of this thesis is limited to a single type of

knowledge worker, namely, ES engineers.

Empirical research methods were applied in two experiments, which are respectively

referred to as Experiment 1 and Experiment 2. The research methods are described

in detail in this section. The research methods were developed following an

experimental approach, which started by collecting data concerning KM methods

from case studies based on data collection techniques used by Cross [2000; 2004]

and Cross et al. [1996]. These techniques involved collecting data from a variety of

sources in order to represent a broad spectrum of observations of designers at work.

The data sources included minutes of meetings and records (e.g., reports) written by

the designers themselves, among other sources. This strategy was used to enable

observations to range “from the most direct contact with working designers to the

most abstract and theoretical, such studies include the following types: interviews

with designers, case studies of particular design projects, observations of designers

at work, and protocol studies of design activity, laboratory experiments based on

selected features…” [Cross 1990, pg. 130].

After data were collected from the first experiment, a preliminary study of the data

was performed. The preliminary study involved observation of the data, with support

from the literature, and influenced by approaches used by Cross [1994; 2004] and

Cross et al. [1996]. The objective of the preliminary study was the development of

data analysis methods for evaluating the KM techniques in the experiments (see

Section 4.2). Section 3.9 describes the data analysis method.

3.5.1 Research design for evolving the ESAOA KMS

The research process followed the progression of capturing data, analysing it, and

creating or refining the ESAOA KMS. The research design thus comprised a cycle of

the following three parts:

1. Data are obtained from an experiment;

2. Data are analysed in order to gain insights into the ESAOA KMS;

 3-14

3. The KMS is refined based on the results of the analysis. The cycle then

repeats.

This cycle has been represented as the two separate but interacting phases of KMS

Framework Construction (referred to as the ‘C phase’) and KMS Analysis (referred to

as the ‘A phase’). Data obtained from experiments were fed into the A phase of the

cycle. As mentioned in Section 2.6.4, the framework of a KMS refers to the visible

aspects of a KMS, such as supporting artefacts, tools, and role descriptions. Thus

the C phase concerns obtaining and developing artefacts and documents that can be

used to establish a KMS within a project team, whereas the A phase involves

studying the resultant KMS in use by the team.

Two iterations of the A and C phases were performed for this thesis. Accordingly, two

experiments, referred to as Experiment 1 and Experiment 2, were carried out to

obtain data for the A phases. The preliminary study preceded the first A phase, and

was used to develop the data analysis and KM measurement procedures that were

later used in the A phases. Figure 3.2 illustrates the research design. As indicated in

the figure, the same data from Experiment 1 was used in both the preliminary study

and in the first A phase.

Figure 3.2: Research design for studying evolution of the ESAOA KMS.

The research began with Experiment 1 (see top left of Figure 3.2), which involved

capturing data related to ad hoc KM strategies used by ES engineers during ESAOA

activities. These ad hoc KMS strategies are represented in Figure 3.2 as the ad hoc

KMS (or KMS version 0), which had no predefined design or framework. The ESAOA

 3-15

activities are represented in Figure 3.2 as a block containing circular arrows

(representing activities that the developers performed in the). Experiment 1 continued

for three months.

Experiment 1 was followed by the preliminary study (see Section 4.2) in order to

develop the analysis techniques applied in the first A phase. The first A phase was

carried out using the same data as that used in the preliminary study. After this, the

first C phase was carried out (the block on the top right of Figure 3.2), which involved

designing the initial ESAOA KMS (or KMS version 1, shown as the gears on the

bottom left of Figure 3.2), together with developing the tools and artefacts of its

supporting KMS framework. This initial KMS framework comprised the artefacts and

support structures that were part of the more coherent and visible ESAOA KMS,

based on the ad hoc KM practices observed in Experiment 1.

After the initial ESAOA KMS had been constructed, Experiment 2 began, with 13

separate ES development teams using the KMS. This experiment continued for a

period of eight months, in which the ESAOA activities were directed by means of the

initial ESAOA KMS. At the end of the experiment, each team perform a product

demonstration (see Section 3.8.6) and project artefacts of each team were assessed

(see Section 3.12) – these assessments were later used to compare the quality of

project artefacts, the product prototypes and the results obtained from the analysis

phase. After this, the second iteration of the A phase was done, during which the

data from Experiment 2 were analysed. The second C phase was subsequently

carried out to develop a refined version of the initial ESAOA KMS, which was referred

to as the refined ESAOA KMS (or ESAOA KMS version 2, illustrated by the gears on

the bottom right of Figure 3.2). This refined ESAOA KMS provides a starting point

that can be used in future projects.

The subsections that follow elaborate on the description of the experiments and the

design of the various versions of the ESAOA KMS.

3.5.2 Overview of Experiment 1

As illustrated in Figure 3.2, Experiment 1 consisted of first capturing the data from ad

hoc ESAOA activities, then analysing these activities, and lastly constructing the

tools and other structural aspects (see Section 2.6.4) of the initial ESAOA KMS

based on the results of the analysis. In this experiment, two ES product development

projects were carried out by two separate teams of ES engineers, each of which

 3-16

used their own ad hoc KM methods. The selection criteria for the ESAOA activities,

sites, and participants used in the experiments are described in Section 3.6. Ethical

considerations related to the experiments are description in Section 3.7. The data

collection, data analysis, and data synthesis methods are respectively elaborated in

Sections 3.8, 3.9, and 3.10.

3.5.3 Construction of the initial ESAOA KMS

The initial ESAOA KMS was developed in two steps. The first step involved exploring

design strategies, modelling methods, and listing resource needs (i.e., identifying the

parts needed for the KMS framework). This step also involved a requirements

analysis [Kirikova & Grundspenkis, 2000; Broomé & Runeson, 1999] of the KM

needs in projects, in addition to formulating the ESAOA modelling language (see

Section 3.11) that would be used to describe the design of the initial ESAOA KMS.

The second step involved designing and implementing the structural aspects (i.e. the

KMS framework) of the initial ESAOA KMS; this included selecting appropriate

resources and software tools, as well as writing executable scripts and software

programs to facilitate use of the ESAOA KMS.

3.5.4 Overview of Experiment 2

The initial ESAOA KMS was set up in each of the 13 ES teams who participated in

Experiment 2, and the data were captured from this experiment over a period of eight

months. The data were then studied in order to improve upon the initial ESAOA KMS,

thus generating the refined ESAOA KMS and its accompanying framework.

3.5.5 Construction of the refined ESAOA KMS

Through a synthesis of the Experiment 2 data (detailed in Section 3.10), the effects

of using the ESAOA KMS became clearer. KM methods that were either effective or

ineffective were identified, and these findings were used to change the design of the

initial ESAOA KMS in order to create a more refined ESAOA KMS, while also making

corresponding changes to the underlying KMS framework.

3.6 Selection criteria: ESAOA activities

This section presents the selection criteria for the experiments (i.e., the ESAOA

activities as shown in Figure 3.2 above), together with the summarised design briefs,

the research sites, the choice of research participants, and the choice of reviews for

 3-17

artefacts and prototype demonstrations. The section begins with a detailed overview

of the ESAOA activities as research experiments, and motivates for the value of

experimentation in obtaining sound empirical evidence related to ES KM methods

[Kamsties & Rombach, 1997].

3.6.1 ESAOA project selection and project briefs

The development projects in Experiments 1 and 2 involved teams of novice

engineers developing novel ES products. According to Cross [2004], novice

designers typically follow more ‘depth-first’ practices than the ‘breadth-first’

approaches used by experienced individuals; accordingly, this research looks only at

novice engineers (as emphasised in Section 1.6).

The selection criteria for ESAOA activities in both experiments were largely the

same. For example, in both experiments the ES products had to be non-trivial, being

of a type that might in fact be developed commercially. The conditions of

development were thus made similar to those of commercial projects; however, due

to the delimitations of this study, together with the time and budgetary constraints, a

highly accurate simulation of a typical commercial context could not be attained. In

both experiments, the engineers were required to install an embedded operating

system, to program device drivers, and to write ES application code that used the

device drivers and operating system services, which are commonly undertaken in

commercial projects (see Section 2.2). These tasks are complex and encompass

many activities generally found in knowledge work (see Section 2.7.4), including

activities such as researching components (e.g., reading datasheets), looking for and

understanding examples (e.g., finding and reading sample code), and testing

development solutions (e.g., integrating and running sample code).

The projects followed similar stages in both Experiment 1 and Experiment 2, which

are listed below. The first five stages occurred before the experiment proper was

started. Data concerning ESAOA activities began to be captured at stages seven,

and continue until stage twelve. The entire sequence took three months in the first

experiment and eight months in the second. The stages are as follows:

1. Teams were organised.

2. The products were conceptualised through participant brainstorming and

emailing of ideas.

3. Contracts were developed and specific projects assigned to teams.

 3-18

4. Requirements were specified – teams worked on their specifications and met

with the researcher to refine the requirements (all teams made a start at this

stage to obtain reference documentation, such as looking up information

related to the specific application domain for their proposed product).

5. Review 1: the first code and design review was conducted a two to three

weeks after the teams had decided on a prototype to construct (this review

focused on checking that the developers had a clear idea of what they

planned to do, and to what extent they had creative ideas of how to do it).

Teams received feedback from the researcher during and after this review.

6. The high-level design process was applied.

7. Implementation commenced, and the experiment proper was started (i.e. data

were captured from ESAOA activities).

8. Review 2: the second code and design review of each team occurred shortly

after the team had made the transition from working on the high-level design

(such as block diagrams and UML class diagrams) toward working mainly on

the implementation (e.g., building circuits and writing embedded software).

Teams also received feedback during and after this review.

9. Product parts were integrated;

10. Review 3: the third review only occurred in Experiment 2 (as a refinement to

the analysis process). The third review did not involve any face-to-face

meetings; instead the researcher closely scrutinised project artefacts.

Feedback of this review was not given to the teams.

11. Product demonstration took place, comprising a simulated acceptance test.

12. A review of the subsystems, components, and tools used was conducted

(using a requirements check sheet). The experiment ended at this point.

Table 3.1 provides a list of the ESAOA activities studied, together with a brief

description of each project and a motivation that explains why and how it

approximates an actual commercial project. The numbering of the projects reflects

whether they were done as part of the first or second experiment. Projects related to

Experiment 1 (from which ESAOA KMS version 1 was constructed) were given

project numbers P1-1 and P1-2. Projects related to Experiment 2 were numbered P2-

1 to P2-13.

 3-19

Table 3.1: Overview of the projects studied in Experiment 1 and 2.

Project
No.

Project Title Project Description Motivation

P1-1 Software Signal
Generator (SoSiG)

Programmable signal generator, able to
communicate and to be programmed using a
standard ASCII terminal over a serial
interface.

Similar to products used
by commercial
developers.

P1-2 Antenna Controller
(ANTCON)

Control system to control and monitor the
azimuth and elevation of an antenna
pedestal. Connects to parent radar control
computer over TCP/IP using Ethernet.

Based on an existing
RADAR control system
used in military
applications.

P2-1 Location-aware Tourist
Information System
(TIS)

The Tourist Information System is a global
positioning system (GPS) device that allows
a tourist to determine his/her current position
and provides relevant information about the
current area.

Similar to the idea of
GPS-type navigation
systems in wide use.

P2-2 GPS Bus Stop
Navigator (GBT)

A GPS-based device that gives the closest
bus station to the current position and the
time of the next bus to a given destination.
Provides a function to show the optimal path
to the final destination.

Idea to extend GPS
navigation system for
use with public
transportation.

P2-3 Vibynet A ‘Vibynet piece’ is a compact electronic
device carried or worn by people. It has an
identity code and allows storage of other
identity codes used to recognise other
Vibynets pieces in the vicinity. Features:
shows recognised identity codes, direction,
distance, call.

Product to be used by a
wide range of private
individuals, similar to a
‘beeper’ product.

P2-4 MyIP Phone Station
(MPS)

The voice over internet protocol (VoIP)
answering machine with video is a stand-
alone (non-PC) system that connects
directly to your Ethernet. Answers any VoIP
calls not answered manually within a certain
time limit.

Product similar to a
commercial telephone
answering machine.

P2-5 Home Automation
System (HAS)

Consists of a central unit that connects to
other systems/household products around
the house, such as input devices (keypads
and sensors, etc.), and output devices (LCD
screens, linear actuator, etc.).

Builds on the idea of
‘intelligent home’
products and service
(see http://www.
intelligenthome.com.au/)

P2-6 Automation
Headlights Dimmer
(AHD)

System will sense a bright on-coming light
source and dim headlights until the light
source has passed.

Similar to DIY kits
advertised in Popular
Mechanics magazines.

P2-7 Field Sensor for
Maglev Trains (FSMT)

Based on the idea of using electromagnetic
fields to levitate and drive high speed trains.
Focused on a system for sensing
electromagnetic fields and telling other
systems.

A type of off-the-shelf
component that a
development company
may buy.

P2-8 Cordless Stereo (CST) A stereo that has no speakers but outputs
digital audio for connection to Blue Tooth
headphones.

Similar to commercially
available Blue Tooth
products.

P2-9 Central Alarm Clock
(CAC)

Main controller based in a common room in
the home. Has buttons that correspond to
rooms in the house. Remote control to help
parents wake kids up without moving an
inch. Communicates over AC power lines.

Similar in concept to
burglar alarm systems,
which are commonplace
products.

P2-10 Voice Activation
System (VAS)

Voice recognition system to
activate/deactivate/control electrical
appliances (e.g. TV's, lights).

Similar to automatic
dimmer switches that
are readily available.

 3-20

http://www.%20intelligenthome.com.au/
http://www.%20intelligenthome.com.au/

P2-11 Supermarket Query
Device (SQD)

Device communicates with supermarket
server, which holds database of items on
special. Lets user browse through current
specials, locate items of interest.

Comparable to
electronic information
directory found in
shopping centres.

P2-12 Personal Protection
Device (PPD)

Has one button that can be used to set off
an alarm to notify campus/site security
people that a certain individual, at a certain
location, is in danger so that the closest
security officers can be sent to the rescue.
Device is small enough to attach to ID swipe
card or to wear around neck.

A product that could
replace a standard panic
alarm system.

P2-13 Vehicle Usage Tracker
(VUT)

Affordable vehicle usage monitoring kit (for
DIY installation). Displays real-time car
statistics, such as average speed and fuel
consumption. Colour display and audio
warning system.

Could be sold as a DIY
kit, like others currently
advertised in Popular
Mechanics magazines.

3.6.2 Site selection

An ES laboratory, rather than a workplace, was chosen as the main site for the

experiments. Conditions were created (including project meetings, deadlines, code

and design review meetings and demonstrations [Jurison, 1999; Schach, 2005]) that

would closely simulate conditions likely to be encountered in a commercial

development context.

Laboratory conditions make it possible to ensure consistency and conformity across

the experimental projects in terms of team size, role allocation, task difficulty, access

to resources – and other factors that would impact on the reliability and validity of the

research findings and the robustness of the knowledge produced by the research

process [Brennan & Gupta, 1993; Törngren et al., 2007]. The logistics of managing

the activities of 15 different teams are clearly facilitated by the laboratory conditions.

The choice of the laboratory as a site was also made for ethical reasons, namely to

ensure the confidentiality of individuals and organisations, and to protect their

intellectual property rights (see Section 3.7). For the same reason, simulations done

in the laboratory were studied, rather than actual work done in private organisations.

Although all the developers worked mainly in the laboratory, they also had the option

to take work home with them (however, they were not permitted to take any of the

laboratory equipment or embedded platforms out of the lab). Work outside the lab

was thus limited to activities such as coding and web searches (in Experiment 2,

those developers who had chosen to do some project work outside the lab installed

the necessary tools for the ESAOA KMS on their own computers).

 3-21

3.6.3 Selection of embedded platform, cross-compilers, and IDE

The ES development process (elaborated in Section 2.2) involves using one or more

microprocessor or microcontroller architectures, together with a collection of software

development tools, which are used in conjunction with these processors.

In order to improve consistency in the results of this study, the same processor

architecture was used in all projects in both experiments. In Experiment 1, the

developers could choose their own cross-compiler tool chain (provided it was based

on the open-source GNU Compiler Collection [GCC, 2008a]), embedded operating

system and integrated development environment (IDE). However, in Experiment 2 all

teams started with the same cross-compiler tool-chain, embedded operating system

and IDE, as these aspects had been fixed by the initial ESAOA KMS. In both

experiments, the developers were permitted to add other types of development tools

to supplement the prescribed tools, such as computer-aided software engineering

(CASE) tools to assist software development, and computer-aided design (CAD)

programs for drawing schematics. Experiment 2 developers could furthermore modify

or upgrade the development tools that were provided with the initial ESAOA KMS

framework. This was permitted, as it was expected that the use of certain peripherals

by a team might necessitate adapting the tools as well as making changes to other

artefacts provided with the initial ESAOA KMS.

The cross-compilers and IDEs were required to be free or open-source programs that

had versions available for Linux. All the embedded software was consequently built

using cross-compilers that executed under the Linux operating system. Linux-based

tools were chosen so that they could be installed on a centralised server and

accessed remotely by the developers. This strategy was followed to facilitate remote

access as well as to ensure that the project repositories and development tools were

all kept in a centralised store (and so that it would thus be easy for the researcher to

obtain a copy). In Experiment 2, an added advantage of this strategy was that it

helped to reduce the lengthy process of installing and configuring the initial ESAOA

KMS framework on each developer’s computer workstation1.

1 In Experiment 2, developers were permitted to spend extra time configuring their own
personal desktop or laptop computer with Linux and the same set of tools for the ESAOA
KMS. These team members were responsible for ensuring that additional tools and resources
they used on their own computers were not lost once the experiment ended.

 3-22

3.6.3.1 The CSB337 embedded platform

The CSB337 evaluation board from Cogent Computers [2005] was used as the

embedded platform in all projects. The CSB337 contained an ARM9-based

microcontroller, specifically the AT91RM9200 manufactured by ATMEL [ATMEL,

2005]. The Advanced Risk Machine (ARM) architecture was chosen because none of

the participants in the experiments had prior experience with this architecture. The

CSB337 is illustrated in Figure 3.3.

Different application-specific hardware devices were used in the projects studied.

This hardware was connected to the CSB337 board via standard hardware

interfaces, such as SPI [Davis, 2008] and RS232 [Catsoulis, 2002], which were

provided on the evaluation board.

Figure 3.3: The CSB337 evaluation board produced by Cogent Computers.

3.6.3.2 GCC cross-compiler tool-chains

The GNU Compiler Collection (GCC) cross-compiler tool chain was used as the

primary software development tool for all the projects. Two specialised versions of

the GCC were prepared for use in Experiment 2; both versions were tailored for

 3-23

compatibility with the AT91RM9200 microcontroller and the CSB337 evaluation

board. The first version of the GCC (namely ‘gcc-arm9tdmi’) was prepared for

compiling code that could run without an underlying embedded operating system, i.e.

it was loaded and executed directly from the MicroMonitor boot monitor [Sutter,

2002]. The second version of the GCC (called ‘arm-linux-gcc’) was prepared for

compiling code that executed on an embedded Linux operating system, namely

uCLinux produced by SnapGear [SnapGear, 2007]. Both versions of GCC were

initially prepared by developers in Experiment 1 as part of their projects; both teams

independently chose the ‘GCC crosstool’, a framework developed by Kegel [2007]

that assists in customising and building GCC tools for a wide range of processors.

Both versions of the GCC were rebuilt by the researcher and incorporated into the

initial ESAOA KMS; they were integrated in a way that allowed them both to be used

in a similar manner (from the command line).

In the laboratory, for both experiments, the central server ran Knoppix [Knoppix,

2009] (version 3.4 was used for Experiment 1 and version 3.6 for Experiment 2).

Each computer workstation in the lab could dual-boot either Linux2 or Microsoft

Windows XP. The developers could access the central server and run X-windows

tools [Scheifler & Gettys, 1986] from either operating system3.

3.6.3.3 Integrated development environment

The ‘KDevelop’ integrated development environment (IDE) [Gehrmann et al., 2004]

was used by all projects (in Experiment 1 both teams had independently chosen this

IDE, and it was consequently integrated into the initial ESAOA KMS). In Experiment

2, the developers had the choice of using either KDevelop or using the compiler tools

directly from the command line (i.e., running make and text editors from the

command line in a Linux terminal).

3.6.4 Participant selection

The participants are referred to as novice engineers in this thesis. The participants

were all registered students in the electrical and computer engineering (ECE)

programme at the University of Cape Town (UCT). Experiment 1 teams comprised

undergraduate university students in their fourth year, each working on an embedded

2 Debian 3.0 ‘woody’ was used for Experiment 1 and Ubuntu 4.10 for Experiment 2.
3 Regardless of which operating system the developers booted, they used their lab
workstation as a front-end to the same Linux-based tools running on the central server.

 3-24

system as part of their final year project (Appendix D.1 further details these teams).

Experiment 1 comprised two teams of two members each. Experiment 2 teams

comprised undergraduate university students in the third year, all enrolled in the

embedded systems (EEE3074W) third year course at UCT (Appendix D.2 gives

further details of the participants). Experiment 2 involved 39 students, divided into

thirteen teams of three members each.

Experiment 1 used fourth year students because the third year embedded systems

course had not yet been created at the time of the first experiment. Participants in

both experiments were enrolled in the ECE programme. All participants completed

the same set of first and second year core courses, including the prerequisites

courses specified for EEE3074W, which ensured that all the participants had the

necessary competencies to work on the embedded systems projects.

The fourth year students of Experiment 1 had an advantage that they had already

completed the third year courses, with the exception of the embedded systems

course (EEE3074W) that did not exist at the time (they took an alternative elective

course in its place). This plan was intentional for two main reasons. Firstly, this study

focuses on management of ESAOA knowledge – a skill that none of the participants

in either experiment received formal training in. Secondly, the results of the ESAOA

KMS would be strengthened (rather than diminished) if it is found that Experiment 2

participants, who had generally received one year less university education than the

other participants, were found to achieve better results (i.e., if third years did better at

managing knowledge with the KMS, despite the fourth years’ additional year of

education, it would then be clear that the KMS had beneficial influences).

3.6.5 Reviewer selection

The prototype and artefacts produced by each team were assessed. This provided a

means to compare the overall quality of artefacts and prototypes produced by each

team to the KM results of the team. This review process was divided into two parts:

1) assessment of requirements and artefacts using the requirements check sheet

(e.g., rating the final version of code modules and design documents); and 2)

evaluation of the final prototypes using a demonstration check sheet. The

assessment criteria were based on the literature; see Section 3.8.6 for details. The

review panel performed both assessments; this panel comprised of two individuals:

the research and an electrical engineering Masters student with embedded systems

experience. The second reviewer was included to reduce subjectivity, and to broaden

 3-25

inputs, during reviews (this process was inspired by Briggs [1992] and Zingheim &

Schuster [1995]).

3.7 Ethical considerations in the ESAOA activities

All the developers involved in the study were emailed a letter (see Figure 3.4),

requesting that they agree to be part of the research project, and informing them that

their anonymity would be maintained. The participants were assured that

confidentiality will be maintained, and that their contact details would not be made

public, and that any institutional or organisational affiliation they might have (besides

an affiliation to the University of Cape Town) would not be specified.

The projects were structured as simulations, performed separately from other

projects that the participants may have been involved with. In addition, the teams all

worked within time limits (not more than an average of one day per week over a

period of eight months) in order to ensure that the research activities did not interfere

overly much with their other work.

 Dear Sir/Madam:

Thank you for agreeing to participate in my PhD study. I will
undertake to ensure your confidentiality by not revealing your
name, contact details, or institutional/organisation affiliation. You
are entitled to withdraw from this research project at any time.

By return of email please indicate your consent to participate in the
research. Please feel free to raise any issues or concerns with me.

With thanks

 Simon L Winberg

Figure 3.4: Consent letter emailed to participants in Experiments 1 and 2.

3.8 Data collection

Similar data collection processes were used in the first and second experiments. As

mentioned in Section 3.5, this process of capturing of data from ESAOA activities

was influenced by Cross [2000] and Cross et al. [1996]; the specific methods that

were used are described in the subsections that follow. The data capture methods

have been specialised towards the ESAOA activities described in Section 1.1.7.

 3-26

There were seven main sources of data, namely: 1) code and design reviews; 2)

email archives; 3) forums; 4) project meetings; 5) developer logs; 6) product

demonstrations; and 7) End-of-project surveys. These data sources are detailed in

Sections 3.8.1 to 3.8.7 respectively, and limitations of these data capture methods

are described in Section 3.8.8.

3.8.1 Code and design reviews

There were two code and design reviews per project in Experiment 1 and three in

Experiment 2 (i.e., 43 reviews all together); the reviews are referred to as Review 1

to Review 3. These took the form of both on-line collaboration and face-to-face

meetings between the researcher and the members of the project teams (many of

which correspond to meeting listed in Section 3.8.4) – except for the third review, in

which teams either emailed a selection of artefacts to the researcher, or allowed the

researcher to access their team artefacts remotely. Most of design reviews 1 and 2

were conducted in person between the researcher and team members, otherwise an

on-line collaborations tool was used, namely ‘Yahoo! Instant Messenger’ [Yahoo!

Messenger, 2004]. Digital design documents were accessed when needed via

network file sharing.

The data produced in these reviews included notes of researcher-team member

correspondence, documentation regarding code and design changes, activity logs,

rating forms (for Experiment 2 only) and memos recording allocation of further tasks

and responsibilities to team members. Figure 3.5 is an example of an activity log,

showing the tasks carried out by team members.

Person Hrs Title Description

1 James*
+ Mary*

1 Meeting 1 Meet to discuss project requirements and
how to split the workload.

2 James 1.5 Task breakdown Perform task breakdown as per project
requirements

3 Mary 0.5 CVS repository Set up the CVS repository for the group

...

*All names are pseudonyms, to preserve the anonymity of participants

Figure 3.5: Example of activities log.

 3-27

In Experiment 2, the researcher performed a quantitative rating of each team’s

deliverables for each design review.

The first review involved evaluating the overall creativity of the concept prototype

proposed by the team; the proposed functionality and elegance of the planned

prototype was also judged at this review (Appendix B.4.1 shows the evaluation form

used). The criteria used for evaluating creativity were based on properties of creative

projects described by Runco & Pritzker [1999], Sefton-Green & Sinker [2000], and

Sophia [2006] – these properties were for projects in general; for the purpose of this

study they were made specific to the ES field and expressed as rating criteria.

The second review concerned evaluating the design (a sample of the evaluation form

is provided in Appendix B.4.2). The evaluation criteria were largely based on work by

Douglass [1999], Liu [2000] and Schach [2005]. During the second design review,

participants were asked to orally comment on knowledge production methods and

information sources that they used in their project. Each team was asked to respond

to the same set of three questions, which were designed to respectively gain insights

into production of data knowledge, process knowledge, and innovation knowledge. A

time limit of ten minutes was given to these questions. The researcher used

handwritten point-form notes to record responses to the questions (Appendix B.5

presents a scanned copy of the question form). After the last design review, the

researcher investigated all the notes and compiled a list of commonly occurring

responses to each question (these are reported on in Section 5.4.1.2). These

questions were handled orally to avoid team members spending valuable project time

making sense of survey questions, possibly misunderstanding the question, and

writing unclear responses (likely to necessitate follow-up meetings).

The third review involved evaluating artefacts, such as code files and prototype

enclosures (see Appendix B.4.3 for the evaluation form used). The third review

meeting was not held in person; instead the researcher was emailed artefacts or

given remote access to project artefacts. The evaluation criteria chosen for this

evaluation were based on a combination of techniques; these comprised: metrics that

could be implemented quickly to rate code [Kan, 2002]; textbook- and teaching-

based methods to rate schematics, circuits and other design artefacts (specifically,

based on guidelines explained by Nelson et al. [1995] and Mano & Ciletti [2006]);

other artefacts (e.g., reports and logs used to record procedures) were also

evaluated using more general principals (specifically, methods to assess quality of

 3-28

specification documents [Davis et al., 1993], following the general guideline provided

by Schach [2005] that states the quality of software relates to the extent to which its

specifications are met). Change or additions to the default ESAOA support tools (i.e.,

ESAOA scripts and programs) provided in baseline workspaces were noted.

Determining changes to baseline scripts/programs were done using the GNU find

utility program [GNU, 2008b], and additional scripts were found by comparing file

listings in the Tools directory of the baseline team workspace and the team’s

modified team workspace. The third code and design review did not evaluate the

quality of artefacts in the final product; this was done after the demonstrations using

the requirements check sheet (see Section 3.8.6).

3.8.2 Email archive

Email correspondence between the development teams and the researcher were

archived. In Experiment 1, 42 emails were archived, and in Experiment 2 460. Figure

3.6 provides a sample.

Figure 3.6: Example of email message (email #283) stored in the email archive.

3.8.3 Group forums

Three on-line forums were used in Experiment 2, namely a ‘Project Discussion

Forum’, a ‘Development Forum’, and a ‘General Forum’. These forums allowed

engineers to post questions relating to the specific project, or to issues with product

development, or to raise general concerns. These forums could be accessed by all

the participants in the study; any one of the participants could read and respond to

postings (Figure 3.7 shows a sample posting). Data obtained from these three group

forums comprised 527 postings. A forum was not used in Experiment 1.

 3-29

Figure 3.7: Example of a posting from the ‘Project Discussion Forum’.

3.8.4 Project meetings

Each of the project teams held meetings to clarify development tasks, to assign (or

re-assign) responsibilities, and to track progress. There was variation in the number

of project meetings held, with some teams meeting more frequently and others less

frequently. Data obtained from project meetings took the form of informal minutes,

notes, and/or memoranda. Table 3.2 lists the meetings, indicating their focus and the

date on which they were held.

Table 3.2: Project meetings.

Project
No.

Meeting
No.

Focus of meeting Date

P1-1 1 Meeting to clarify project brief of the Software Signal
Generator (SoSiG) product, and to meet team members.

10-Jun-04

2 Initial planning meeting. 14-Jun-04
3 Progress meeting. 11-Aug-04

P1-2 1 Meet to clarify project brief for the Antenna Controller
(ANTCON) product, to meet team members and to
discuss their roles.

7-Jun-04

2 Planning meeting and division of development tasks. 14-Jun-04
3 Progress report meeting. Refine concept design, and

focus for development tasks. Initial code design review.
11-Aug-04

4 Meeting with researcher to discuss progress, focus. 13-Sep-04
5 Final code and design review. Focused largely on Linux

driver for DAC device.
30-Sep-04

P2-1 1 Introduce team and assign roles. Discuss plan for the
Location-aware Tourist Information System.

14-Mar-05

2 Meeting to clarify concept of location-aware tourist
information system and division of work.

23-Mar-05

3 First progress report. Review breakdown and task
allocation. Discuss problem of GPS module interfacing.

19-Jul-05

4 Second progress report. 29-Sep-05
P2-2 1 Meet members; discuss GPS bus stop navigator idea. 17-Mar-05

 3-30

2 First status review meeting, plans for prototype. 20-Jul-05
3 Second status review meeting. 27-Sep-05

P2-3 1 Clarify project brief for VibyNet concept. 14-Mar-05
2 First review meeting. 19-Jul-05
3 Second review meeting. 30-Sep-05

P2-4 1 Assign roles to team members and introduce the VoIP
answering machine concept.

15-Mar-05

2 First review meeting. 21-Jul-05
3 Second review meeting. 30-Sep-05

P2-5 1 Introduce team, assign roles discuss overview of Home
Automation System concept.

17-Mar-05

P2-6 1 Introduce members (3rd member absent), discuss plan
for prototyping the Automation Headlights Dimmer
concept. Decide on team leader and responsibilities.

10-Mar-05

2 Meet with 3rd member to discuss project and his
involvement.

15-Mar-05

3 A second review meeting was not performed as a team
member was ill.

N/A

P2-7 1 Introduce team and the Magnetic Field Sensor System. 14-Mar-05
2 First review meeting, refine plan for prototype. 20-Jul-05
3 Second review meeting. 29-Sep-05

P2-8 1 Introduction of team members, allocate roles, overview
of Cordless Stereo concept.

17-Mar-05

2 First review meeting. 19-Jul-05
3 Second review meeting. 27-Sep-05

P2-9 1 Initial meeting, introduce members, assign roles, discuss
central alarm clock concept.

15-Mar-05

2 First review meeting. 18-Jul-05
3 Second review meeting. 27-Sep-05

P2-10 1 Meet group, clarify the Voice Activation System (VAS)
concept.

17-Mar-05

2 First review meeting. 21-Jul-05
3 Second review meeting. 27-Sep-05

P2-11 1 Initial meeting. Introduce team members and discuss the
Supermarket Query Device concept.

18-Mar-05

2 First review meeting. 18-Jul-05
3 Second review meeting. 03-Oct-05

P2-12 1 Initial meeting to meet members and discuss brief of the
Campus Protection Device (CPD) concept.

15-Mar-05

2 First review meeting. 22-Jul-05
3 Second review meeting. 30-Sep-05

P2-13 1 Initial meeting to introduce members and discuss
overview of the Vehicle Usage Tracker (VUT) concept.

18-Mar-05

2 First review meeting. 21-Jul-05
3 Second review meeting. 26-Sep-05

3.8.5 Developer logs

All engineers kept logs of the major problems that they encountered, as well as trial

solutions (solutions completed but later found to be ineffective or inappropriate and

then replaced) and final solutions (solutions that were not later replaced) – or, in

some case, dead-end solutions (i.e. possible solution that were started on but not

completed and later abandoned).

 3-31

There were 15 primary logs (one log per project), with some project teams keeping

multiple logs (logs kept by individual developers that were later either submitted in

addition to the primary log or added to the primary log before it was submitted).

Some developers kept digital logs in the form of spreadsheets or text documents (as

illustrated by Figure 3.8), but most teams used log books or A4 paper to record hand-

written records.

PID

Problem

Solution / Comments

Time
(h)

1 What components should
be used for interface
board?

Searched internet, requested prices from
supplier

2.00

2 How should the files be
managed?

Keep work files on local workstation, use
samba to copy back/forth from server

0.10

3 Problem mounting samba Recompiled kernel on developer PC 2.00
4 How to connect up

CSB337?
Connected RS232 to port 0, needed 9
pin Female D connector. Eth crossover
cable.

0.20

5 How to communicate with
CSB337 over RS232?

Need a terminal program for Linux. Had
short look, but no luck. Try again later.

0.50

 …
15 Power supply problems Power supply seems faulty. Testing it. 1.40
16 Replace power supply Replaced power supply, some time to

find replacement.
0.50

17 Compiling Snapgear Found snapgear linux. Seems better.
Decided to toss emdebian. Attempting to
compile snapgear. Gives errors.

5.00

 …
31 Gave up on Snapgear Searched Snapgear fixes; decided to

give up on it after not finding anything
useful.

1.00

32 DC motor interface Researching DC motor drive 1.00
33 AC-DC circuit Constructed AC-DC circuit prototype on

breadboard.
2.10

34 AC-DC circuit Problem with AC-DC circuit; rebuilt it 3.00

Figure 3.8: Example of developer log.

3.8.6 Product demonstrations and project evaluations

Each team demonstrated their product on completion. Table 3.3 provides the

schedule of demonstrations for Experiment 1, and Table 3.4 below is the schedule

for Experiment 2. Each demonstration took between 30 to 60 minutes. All team

members participated in the demonstration. The demonstrations were given to the

review panel, which comprised the researcher and the second reviewer (an electrical

engineering Masters student with embedded systems experience). Teams did not

watch one another’s demonstrations.

 3-32

In addition to a basic introduction, each development team was expected to explain

their methods, tools and components that they used. For Experiment 2, each team

was permitted to use their ESAOA KMS during the demonstration and when

answering questions. Figure 3.9 is a photograph of a typical demonstration set-up.

Table 3.3: Schedule of Experiment 1 demonstrations.

12 November ‘04 Project 14 October ‘04 Project

15h00 P1-1 15h00 P1-2

Table 3.4: Schedule of Experiment 2 demonstrations.

13 October ‘05 Project 14 October ‘05 Project

09h00 P2-4 09h00

10h00 P2-13 10h00 P2-6

11h00 P2-8 11h00 P2-5

12h00 P2-3 12h00 P2-7

14h00 P2-9 14h00 P2-10

15h00 P2-12 15h00 P2-11

16h00 16h00 P2-1

The demonstration data comprised a demonstration check sheet (Figure 3.10), a

requirements check sheet (Figures 3.11 and 3.12). Both types of check sheets

included categories that were awarded numerical ratings between zero and a

maximum value (indicated on the sheet). Space for additional comments was

provided. All criteria of the demonstration check sheet were given rating values

between 0 and 10. The ratings were chosen to develop a quantitative assessment of

the final prototype and how well the team was able to demonstrate their prototype,

and, in the case of the requirements check sheet in particular, a numerical value

indicating the quality, organisation and access of artefacts. These values were also

used as a means to compare the resultant products and artefacts between projects.

 3-33

Figure 3.9: Example of ES prototype set up for a demonstration.

The demonstration check sheet was completed in rough by researcher during the

product demonstrations, and then the researcher and second reviewer discussed

and agreed upon the final ratings in private after each demonstration. The agreed

upon ratings for each team was then entered into a final digital version of the

demonstration check sheet. Figure 3.10 shows the final demonstration check sheet

for Project P2-6.

The demonstration check sheet comprised sixteen criteria, each criterion rated from

0 (for entirely lacking), 1 to 4 (to indicate a level of poor performance), 5 in indicate

mediocre performance, 6 to 9 (for good performance) and 10 (to indicate excellence).

As shown in Figure 3.10, descriptions are included or each criteria and ratings.

The requirements check sheet was completed by the review panel after the

demonstration. A similar procedure as to the one used for the demonstration check

sheet was used in deciding ratings of the requirements check sheet; to be specific,

the researcher completed a draft version of the check sheet and the ratings were

then discussed with the second reviewer, and if necessary modified, to reach agreed

upon ratings for each criterion.

 3-34

The requirements check sheet provides a broader set of rating criteria. A different

rating strategy was also implemented for this check sheet; criteria that were more

important were given higher maximum rating values. The maximum rating value was

approximately based on the amount of effort involved in providing a solution for that

requirement. For example, in Figure 3.11, the schematic was given a maximum

rating of 30, whereas the responsiveness of the system was given a maximum rating

of 3. The requirements check sheet was used to rate the construction of the product,

the quality of the product, its operation (Figure 3.11), and the quality and organisation

of its design artefacts (Figure 3.12).

The structure of the requirements check sheet, and the evaluation of the

requirements, were based on theories of embedded and real-time systems by Liu

[2000] and Douglass [2000], and on evaluation methods described by Briggs [1992].

The check sheet had to maintain a level of generality, as the same criteria were to be

used with a variety of different products, not all of which had the same set of

requirements. Consequently, the specific items in the requirement check sheet

include issues that are generally considered important concerns for embedded

system products (as identified by Liu [2000] and Douglass [2000]), namely,

robustness, predictability and timeliness (which have accordingly been included in

the requirements check sheet). The weighting for each set of criteria (e.g., 44% for

functional requirements) are approximately based on the relative effort involved in

satisfying the corresponding aspects of the product (these estimations are broadly

based on work by Blackburn et al. [1996] and Ko et al. [2007a]).

 3-35

 Figure 3.10: Demonstration check sheet for project P2-6.

 3-36

PROJECT REQUIREMENTS CHECKSHEET
Issue Max Section

Total
Category
Weight

P1 P2 … P13

1. FUNCTIONAL REQUIREMENTS
 Note: Rating of functional requirements for a particular product are
 based on the specific use-cases provided in the product's requirements

44%

…

Hardware 50 48 33 50

Prototype assembly
 - robustness & elegance
 - for enclosure, see below

20 18 18 20

Schematics and/or circuit diagrams 30 30 15 30
70 60 59 29 Software / Program Execution

0 0 0
Penalties for execution errors:
- Program runs smoothly: no penalties
- Program hangs after a while or handles
 invalid/valid input poorly or terminates
 unexpectedly: up to 20 points removed
- Program does not run: see penalty notice below

2 2 2Start-up message displayed 2
Argument parsing works 6 6 6 6
Menu works 14 6 6 0
Menu ease of use
 (6=user friendly; 0=very user unfriendly)

6

6 6 0

Communications 21 19 21 21
Event & service processing 21 21 18 0
2. TEMPORAL REQUIREMENTS
 Quality of Service (QoS) (real-time performance issues) 11%

Total quality of service points 30 29 19 26
Predictability
 future response of system is predictable from
 past events

6 6 6 3

Speed
 product is responsive

2 2 0 2

Timeliness
 the time between occurrence of an event and
 handling of the event is sufficiently small

4 4 3 3

Throughput
 max no. of jobs/time unit

3 3 2 3

Responsiveness
 worst-case latency not exceeded

3 3 2 3

Capacity
 ability of system to meet all hard deadlines;
 no. synchronous jobs / queue size sufficient

4 3 0 4

Reliability / sustainability
 system keeps important deadlines even in
 overload conditions

4 4 2 4

Safety
 where applicable, account for safety issues

2 2 2 2

Security
 extent to which product is protected against
 misconduct

2 2 2 2

Figure 3.11: First page of the requirements check sheet.

 3-37

Issue Max Section
Total

Category
Weight

P1 P2 … P13

3. QUALITY OF ARTEFACTS 40%
ESAOA Repository 20 20 19 16
All files within project root. 3 3 3 3
Artifact Organization Diagram (AOD) 14 14 14 10
Location of files 3 3 2 3
Code 80 76 74 53
Conformity to ANSI C 5 5 5 5
Use of comments 10 6 9 3
Module interfaces 20 20 18 18
Required modules
 - Main module 3 3 3 3
 - Encoding of welcome / version information 4 4 4 4
 - Configuration settings and command
 parsing 6 6 6 6
 - Menu component 8 8 8 2
 - Service module(s) 12 12 10 0
 - Drivers 12 12 11 12
Compiling and Linking 10 10 10 10
 - No warnings or errors: all 10 points
 - Warnings: 5 points (if many warnings)
 - Minor error: 0 points; Major error: penalties

10

10 10 10

4. QUALITY OF ENCLOSURE 5%
Enclosure 15 5 12 15
A rough enclosure is provided with labels
indicating important controls and displays 15

5 12 15

TOTAL POINTS FOR PROJECT 275 100% 248 226 199
PERCENTAGES 90% 82% … 72%

Guidelines for requirements: refer to these books
 - Douglass, B. Real-Time UML, Reading: Addison Wesley Longman, 2000, pp 55-57
 - Liu, J. Real-Time Systems, Upper Saddle River: Prentice Hall, 2000.

Figure 3.12: Second page of the requirements check sheet.

3.8.7 End-of-project survey

At the end of Experiment 2, each participant completed a two-page questionnaire

regarding the ESAOA KMS they had used (Experiment 1 did not have a survey

because its participants used their own ad hoc methods). The questionnaire included

specifics about how individual members had used aspects of the ESAOA KMS

framework, their views on its general usefulness, the difficulties they encountered in

using it, and suggestions for further improvements. Figures 3.13 and 3.14

respectively show the first and second pages of a completed questionnaire.

 3-38

Figure 3.13: First page of questionnaire completed by a team member.

 3-39

Figure 3.14: Second page of questionnaire completed by a team member.

 3-40

3.8.8 Limitations of the data capture methods

All members of the development team worked in the laboratory for some of the time.

The teams worked in a number of different ways: some teams worked solely in the

laboratory, while others followed more decentralised [Crowston & Howison, 2005]

work practices (i.e., with some developers choosing to work outside the laboratory

while others worked in the laboratory). Some team members followed a pair

programming (or ‘extreme programming’ [Beck, 1999]) approach in which one

developer used a computer while his/her colleague watched and made suggestions.

All teams used the laboratory as an environment to integrate and test their work.

Teams generally held group meetings outside the laboratory in order to avoid

disturbing other teams. Design and review meetings with the researcher were also

held outside the laboratory; but demonstrations were done in the laboratory. Teams

captured their own minutes of group meetings, which they presented to the

researcher; the researcher himself was not present at these meetings, as it would

have biased the operation of the meetings.

Oral conversations between team members were not recorded; doing so was outside

the scope of this research project. Furthermore, recording conversations might have

reduced the number of volunteers willing to participate in the study, and the

development methods of those volunteers willing to participate might have been

effected by the presence of recording devices [Speer & Hutchby, 2003]. For example,

some developers may have spoken less to avoid having their voices recorded.

3.9 Data analysis

The data analysis is influenced by methods used by Cross [1994; 2004] and Cross et

al. [1996] for researching engineering methods. The general approach of these

analysis methods is as follows: first, data are captured from a variety of sources to

represent a broad spectrum of observations from case studies. The data are then

investigated, looking for commonly occurring practices, difficulties, shifts in design

goals, and problem-solving strategies performed by engineers in the case studies.

These investigations include studying features of development such as “problem

spaces” and “solution spaces” [Cross, 2004, pg. 5], which involves determining how

developers ‘frame’ design situations, and how these situations relate to future moves

or adjustments to project objectives and other decisions made during project

activities. Adapted versions of these analysis methods are applied to the study of

ESAOA activities for this thesis; the specific methods are described in this section.

 3-41

3.9.1 Overview of data analysis

The data analysis method depends on the definition of a knowledge event. A

knowledge event is defined as an action that specifically involves knowledge – such

as finding information, applying a process, testing an idea, or solving a problem.

The data analysis method involved the following steps: 1) systematising the data;

2) categorising knowledge events according to knowledge type; 3) mapping

problems/solutions and identifying knowledge event chains; 4) determining whether

knowledge events produced productive knowledge or non-productive knowledge; and

5) finalizing knowledge registers (defined in Section 3.9.2.2) for each project. Trend

analysis, which utilised a custom-developed program and graphing, was done once

the knowledge register was finalized. Figure 3.15 illustrates this analysis method.

Data Knowledge register
Systematised data

records:

• Time
• Proj. ID,
• Event

description
• Notes (e.g.,

artefacts used)

Figure 3.15: The data analysis process.

All the data sources were printed before starting the first step, and then placed in

separate piles corresponding to each data source. The piles of printouts were sorted

chronologically from the earliest to the most recent entry. Three passes through the

printouts were performed in Experiment 1, whereas only two passes were needed in

Experiment 2. Each pass through the printouts followed a breadth-first progression,

moving across the piles, rather than one pile at a time, so that the data entries were

studied in a chronological order. The order of the analysis steps differed between

experiments, due to optimisations noted during the analysis of Experiment 1, and

then applied to Experiment 2 data.

For both experiments, steps 1, 2 and 3 were done together in the first pass of the

data, during which initial knowledge registers and initial listings of knowledge event

chains were constructed (see definition in Section 4.2.10). For both experiments,

step 3 (viz. mapping problems/solutions and listing the event chains) and step 4 (i.e.,

Data source 1:

Project

discussion

forum

Data source 2:

Email archive

Etc…

Categories

AID Num Desc.

Proj

ID

 Event Event

chain

Knowledge

types

Artefacts Tools Comments

Summaries

Proj

ID

Type Qty Finding Comp

 3-42

categorising knowledge as either productive or non-productive) were finalized by

performing a second pass through the data. For both experiments, the completion of

the knowledge registers, step 5, was done during a final pass through the data (this

constituted a third pass for Experiment 1 and the second pass for Experiment 2).

Step 6 involved creating graphs from the knowledge registers. The subsections

below elaborate on these steps of the analysis process.

3.9.2 Systematising the data (step 1)

The process of systematising the data involved identifying a unit of analysis. The

initial unit of analysis was determined based on the results of a preliminary study

(Section 4.2) performed on the data obtained from Experiment 1. The knowledge

event was used as the unit of analysis for Experiment 1. As mentioned earlier, a

knowledge event is defined as an action that specifically involves knowledge (e.g.,

finding or requesting information, applying a process, or solving a problem).

3.9.2.1 Annotating printouts

During this first analysis step, all the data printouts were investigated by the

researcher in order to identify the knowledge events that occurred as part of, or in

response to, ESAOA activities. This was done through a process by which the

researcher annotated the printouts. An item number was assigned to each data

entry; these numbers started from 1 for each data source (i.e., email 1 referred to the

first email message in email archive; log 1 referred to the first developers’ log). The

item number was followed by the project number. Text referring to artefacts, tools,

and issues indicating a problem or solution were identified by underlining or circling

the text on the printout. Lists of important artefacts or tools (e.g., artefacts referred to

in multiple data records) were written down on the printouts. Figure 3.16 shows a

scanned annotated printout, illustrating how printouts were annotated; this particular

printout is a forum posting.

Knowledge events were identified in all data sources. These events were entered

chronologically into the knowledge register, as per the chronological progressing of

investigating the data across printout piles (as apposed to piles at a time).

Developer logs, code reviews, email archives, and group forums were found to be

the most useful sources of data, as they were created close to the time the ESAOA

activities happened, and were found to be ‘knowledge-rich’ [Kitamura et al., 2006].

 3-43

During Experiment 1, the analysis moved towards a process of identifying

knowledge-producing event chains, which was part of problem/solution mapping

process (see Section 3.9.4), in which each event chain was a sequence of linked

knowledge events leading from a problem to a solution or dead-end.

For Experiment 2, the unit of analysis was changed to knowledge event chains (a

sequence of related knowledge events) rather than discrete knowledge events. Each

knowledge event chain in Experiment 2 was classified depending on the predominant

form of knowledge produced during its composite knowledge events. A set of

counters were associated to each event chain to keep track of the number of

knowledge events for each type of knowledge produced (i.e., a counter for the

number of data knowledge events, a counter for the number of process knowledge

events and a third counter for the innovation knowledge events). The counter values

were used to determine the predominant type of knowledge produced in the event

chain, and also for producing knowledge occurrence graphs (see Section 3.9.7.2).

The decision to use event chains as the unit of analysis for Experiment 2 was made

chiefly because it was found that the large accumulation of discrete knowledge

events was both difficult and time-consuming to work with during the analysis phase;

for instance, it gave rise to problems such as needing to refer back to preceding

events, and to look forward to succeeding events, in order to determine the issues

that were relevant for an individual event, such as what problem it was related to, and

whether that problem resulted in a successful solution, or was eventually abandoned.

Changing to a unit of knowledge event chains expedited the analysis of Experiment

2, by dealing with the larger ‘chunks’ of knowledge event chains, instead of smaller

‘bits’ of knowledge events. The analysis of Experiment 1 was repeated using event

chains to establish a basis of comparison between experiments (see Section 4.5.3).

3.9.2.2 Building knowledge registers

In order to facilitate the study of the experimental data, a knowledge register was

developed for each project to capture and systematise all the data related to

knowledge events. The knowledge register was implemented as a spreadsheet

comprising the following columns to maintain information for each knowledge event:

• The number of the event (starting from 1);

• A set of keywords characterising the event;

• Predecessor events (a list of zero or more event numbers);

 3-44

• A more detailed description of the event, describing the issue/problem

encountered or a solution tried (including mention of artefacts used);

• The data source in which the event was found; and

• Time spent (in hours) performing the event.

The event numbers were assigned chronologically, starting at 1. An artificial starting

event was added as the first entry in the knowledge register and assigned event

number 0. In subsequent steps of the analysis process, additional columns were

added to the knowledge registers to record other results, such as knowledge

classifications. Table 3.5 shows an excerpt from the initial knowledge register from

Project P1-2. The columns are as follows: event number; keywords characterising

the event; predecessors; comments and description of the event; the data source;

and the time it took to complete the event. The entries in the ‘Source’ column are

abbreviated as ‘L’ for developer log, and ‘M’ for meetings.

Table 3.5: Except of initial knowledge register from Project P1-2.

Event
No.

Event description Pred. Event comments /
solution description

Source Time
(h)

0 <Root> This is the starting point
of development

1 What components
should be used for
interface board?

0 Searched internet,
requested prices from
supplier

L 2

2 How should the files be
managed?

0 Supervisor says to keep
work files on local
workstation, use samba
to copy to server

M 0.1

3 Problem mounting
samba

2 Had to recompile kernel
on developer PC

L 2

4 How to connect up
CSB337

0 Had to figure out how to
connect up CSB337

L 0.2

3.9.3 Categorising knowledge events by knowledge type (step 2)

The preliminary study (see Section 4.2.7) revealed that knowledge acquired and

applied by the ES development teams could be divided into categories of: 1) data

knowledge (knowledge of information sources), 2) process knowledge (how to carry

out development methods), and 3) innovation knowledge (knowing which design

ideas work). These knowledge categories became a focus of the data analysis.

During the first pass of the data, each knowledge event was categorised according to

which of these knowledge categories were the most predominant type of knowledge

produced during the knowledge event. The classifications were recorded by

 3-45

annotating the data printouts corresponding to knowledge events; events that

produced mainly data knowledge were marked ‘DK’, events that produced process

knowledge were marked ‘PK’, and those that procedure innovation knowledge were

marked ‘IK’. Figure 3.16 demonstrates how printouts were annotated with information

about knowledge categories. An additional column (titled ‘K’ for ‘knowledge type’)

was added to knowledge register to record these classifications.

3.9.4 Mapping problems and solutions (step 3)

During the first pass through the data, development problems and attempted

solutions to these problems were identified. This approach involved determining the

knowledge events related to the same ‘problem-solution cycles’ or their sub-

problems. The concept of problem-solution cycles was identified as part of the

preliminary study (see Section 4.2.3). Each problem-solution cycle was given a

number and a list of the various problems and their solution attempts was

maintained. This step involved reading through the data to determine problems that

the developers attempted to solve, and then searching the various data sources to

determine how each problem was solved (if at all). These sequences of knowledge

events are referred to as event chains. Each event chain related to a non-trivial

solution cycle (see Section 4.2.4) and aggregated a collection of knowledge events.

An optimisation was applied in this step during the analysis of Experiment 2 data, in

which each event chain was associated with a set of knowledge occurrences. Each

set of knowledge occurrences were essentially counters that kept track of the number

of data, process and innovation knowledge-producing events that occurred in the

event chain. This optimisation avoided the need to traverse the knowledge register in

order to calculate the number of knowledge events in an event chain, an undertaking

that would otherwise be necessary during step 6 (the trend analysis step).

3.9.5 Categorising productive vs. non-productive knowledge (step 4)

Following the preliminary study (Section 4.2.9), the concepts of productive time and

non-productive time were identified. Productive time was time spent on learning tasks

in which knowledge was acquired and used in developing the final product; in

contrast, non-productive time was time spent on acquiring knowledge that was not

used in developing the final product4.

4 Note this does not mean that learning knowledge that is not used in for that particular project
is a waste of time; in the bigger scheme of things, knowledge and skills obtained while
learning non-productive knowledge may benefit the developer in other ways.

 3-46

In the case of both experiments, each knowledge entry in the data was investigated

to determine whether or not it was used in the design of the final product. Event

chains leading towards a dead-end were also determined. The ‘P’ and ‘NP’ columns

were added to the knowledge register to maintain this information; the ‘P’ column

demarking acquisition of productive knowledge, and the ‘NP’ column indicating

acquisition of non-productive knowledge. The corresponding data entries in the

printouts were annotated either as productive (labelled ‘pk’ in a box) or as non-

productive (labelled ‘npk’ in a box). Figure 3.16 provides an illustration of how these

annotations were done.

For Experiment 1, the amount of time spent in knowledge events was recorded, or

estimates calculated based on interviews with developers. Based on the results of

the previous procedure of classifying knowledge events according to productive and

non-productive, and from investigation of the data, the time record of each

knowledge event in the knowledge register was separated into two parts: an amount

of productive time, and an amount of non-productive time. Printouts corresponding to

each knowledge event were accordingly annotated by the amount of productive and

non-productive time. For example, a note such as ‘2h pk’ was added to a printout if

the corresponding knowledge event involved two hours of productive time, whereas a

note such as ‘2h npk’ would indicate two hours of non-productive time. Thus, the total

time spent obtaining productive knowledge versus the total time spend obtaining non-

productive knowledge could be determined for Experiment 1.

A concern identified during Experiment 1 was the difficulty of capturing and

maintaining an accurate record of the time spent on individual knowledge events.

Recording the amount of time spent on these activities depended on the developers

accurately logging their activities, as well as deducing the amount of time spent on

productive or non-productive knowledge generation (e.g., during meetings and

interviews). The data capture method for Experiment 2 was therefore simplified,

which restricted the amount of detail required in respect of time spent on knowledge

events. Step 4 of the data analysis method was changed so that a set of knowledge

occurrences were maintained for each event chain (as described in Section 3.9.4).

After this, each knowledge occurrence counter was separated into two counters, one

to keep track of the number of productive events, and the other to track the number

of non-productive events. A productive event (corresponding to productive time) is a

knowledge event within an event chain that led to a final solution used in the final

 3-47

version of the product (i.e., did not result in a dead-end). Whereas, a non-productive

event in a knowledge event not used in developing the final product (i.e., or resulted

in a dead-end). Thus, the revised analysis was based on the number of knowledge

events per knowledge category, whereas the previous version was based on time

used in producing knowledge per category. This analysis method was also applied to

Experiment 1 to establish a basis for comparison between experiments (Section

4.5.3 presents the results for Experiment 1 using the revised method).

Figure 3.16 provides a scanned image of an annotated forum message; dashed lines

and typed labels have been added on top of the scanned image to explain the hand-

written annotations (the project number was determined based on the ‘From’ field of

the posting; names of the participants have been removed).

 xxxxxxx

 3-48

Item
number

Project
number

Event
chain

Knowledge
type

Productive /
non‐productive

Important
artefacts & tools

Artefacts /
tools
Identified
in text

Date used in
sorting the
printouts

Figure 3.16: Sample annotated forum posting taken from Experiment 2.

3.9.6 Finalizing the knowledge register (step 5)

The knowledge register for each project of both experiments was finalized by

checking that each knowledge event identified in the data still had a corresponding

entry in the knowledge register for the project concerned. The knowledge register

was also checked to ensure that no predecessor links erroneously pointed to the

wrong event number (this was a necessary to ensure that the PTHC program, used

in trend analysis, would terminate).

Table 3.6: Except of the knowledge register for Project P2-1.

N
o.

D
at

a
So

ur
ce

 *

Pr
oj

ec
t

nu
m

be
r

Ev
en

t
ch

ai
n

Ph
as

e

D
at

a
kn

ow
le

dg
e

Pr
od

uc
tiv

e
kn

ow
le

dg
e

R
ol

e

Lo
gi

st
ic

In
no

va
tio

n
kn

ow
le

dg
e

Pr
od

uc
tiv

e
kn

ow
le

dg
e

N
on

-
pr

od
uc

tiv
e

kn
ow

le
dg

e

A
rt

ef
a

To
ol

s
ct

s:

A
rt

ef
ac

ts
:

co
m

po
ne

nt
s

R
es

ea
rc

he
r’s

C

om
m

en
ts

1 E 1 1 1 1 1 1 Role
responsibilities

2 E 1 1 1 1 1 1

3 E 1 2 1 1 1 1 EM303

4 E 1 2 1 1 1 1

5 E 1 2 5 1 1

6 E 1 2 3 1 1 1 upset about group member
changing the roles

7 E 1 3 1 1 1 Re: What to access

8 E 1 4 1 1 1 1

… … … … … … … … … … … … … … …

* Legend to Data Sources: E: Email, D: Developers’ log, M: Meeting, F: Forum

 3-49

3.9.7 Analysing trends

Once the knowledge register had been completed, it was used for further trend

analysis, which included producing graphs, tabular summaries, comparisons and

correlations using the knowledge register. Data synthesis followed data analysis by

modelling and generalising the results, which were then applied in the framework

construction phase. Data synthesis is explained in Section 3.10.

Graphs and summary tables were used to identify trends within particular projects,

and across the projects. For Experiment 1, productivity graphs (see Section 4.4)

were produced, which plotted productive time and non-productive time (on the

vertical axis) against knowledge events (ordered chronologically on the horizontal

axis); separate graphs were used to illustrate trends for the data, process on

innovation knowledge categories. The summary tables for Experiment 1 give totals

for the hours of productive and non-productive time spent on knowledge events,

separated between the data, process and innovation knowledge categories.

The data analysis methods were changed after analysis of Experiment 1 data, which

lead to modification of graphing approaches used for Experiment 2. For Experiment

2, knowledge occurrence graphs were produced, which plotted productive and non-

productive knowledge occurrences against knowledge events ordered

chronologically. The summary tables for Experiment 2 provide the total number of

non-productive and productive knowledge occurrences, separated into the data,

process and innovation knowledge categories.

The sections below elaborate on how the graphs and summary tables were created.

The method for comparing results across Experiments 1 and 2 involved repeating the

data analysis phase of Experiment 1 using the methods applied in Experiment 2 (see

Section 3.9.7.4 for the details).

3.9.7.1 Productivity graphs

Productivity graphs were prepared for the Experiment 1 projects. This task involved

using each project’s knowledge register to plot the accumulation of productive and

non-productive time (in hours) spent acquiring knowledge, against the individual

knowledge events ordered chronologically. The accumulation of time is shown on the

vertical axis; the knowledge events are shown on the horizontal axis. Separate

 3-50

graphs were used to show results for the different categories of ESAOA knowledge

(namely the categories of data, process and innovation knowledge identified in

Chapter 4). In addition, a fourth graph was provided for each project that plotted the

total accumulation of productive and non-productive time against knowledge events.

Graph 3.1 shows a productivity graph for data knowledge.

Graph 3.1 Productivity graph for data knowledge in Project P1-1.

This task was facilitated by developing a program, referred to as the Partitioned Time

History Calculator (or PTHC). The initial version of the program is described in

Section 4.4, and was later redesigned to use event chains as a unit of analysis. In

summary, the PTHC takes a knowledge register spreadsheet as input, and outputs

the sequential accumulation of productive and non-productive time (or number of

productive and non-productive events in the later version) separated into the data,

process and innovation knowledge categories.

Knowledge occurrence graphs in Experiment 1 showed knowledge event number

versus time, whereas those of Experiment 2 displayed knowledge chain number

versus number of event occurrences (which was an approximate indication of time,

based on aggregated knowledge events – see definition in Section 4.2.10). These

graphs were used to compare results between projects in the same experiment.

The method for comparing results across the experiments is explained in Section

3.9.7.4. Graphs 3.1 – 3.4 are examples of knowledge occurrence graphs, taken from

the results for Project P2-1.

 3-51

3.9.7.2 Knowledge occurrence graphs

The knowledge registers were used to plot the knowledge events related to the

different categories of ESAOA knowledge produced (namely the categories of data,

process and innovation knowledge identified in Chapter 4) for each of the projects in

the experiment. This involved generating three separate knowledge occurrence

graphs for each project. In addition, a fourth graph was provided for each project that

plotted the occurrences of productive and non-productive knowledge for each type of

knowledge, ordered according to the event chains that occurred in the project. This

task was facilitated by developing a program, referred to as the Partitioned Time

History Calculator (or PTHC). The initial version of the program is detailed in Section

4.4, and was later redesigned to use event chains as a unit of analysis. In summary,

the PTHC takes a knowledge register spreadsheet as input, and outputs the

sequential accumulation of productive and non-productive time (or number of

productive and non-productive events in the later version) separated into the data,

process and innovation knowledge categories.

Knowledge occurrence graphs in Experiment 1 showed knowledge event number

versus time, whereas those of Experiment 2 displayed event chain number versus

number of event occurrences (which was an approximate indication of time, see

Section 5.2). Graph 3.2 is an example of a knowledge occurrence graph (it is the

data knowledge occurrence graph for Project P2-1).

Understanding of the knowledge occurrence depends on the understanding of

knowledge event chains and knowledge occurrences counters. Each knowledge

event chain in the knowledge register is associated to six knowledge occurrence

counters (counters indicating the number of knowledge events that occurred for each

type of knowledge produced; i.e., the number of productive data knowledge events,

the number of non-productive data knowledge events and so on). Knowledge

occurrence graphs essentially plot the accumulation of knowledge occurrences for a

particular knowledge type vs. event chain number. The event chains are numbered

chronologically (based on when their first knowledge event occurred – in the case

that the same knowledge event is shared between two event chains, the ordering is

based on the time of the second event). Figure 3.17 illustrates how the knowledge

occurrence graphs increase in steps as the knowledge occurrences accumulate. The

top half of Figure 3.17 visualizes knowledge events within event chains; the first three

event chains (numbers 1, 2 and 3) had only productive events (signified in the

 3-52

diagram as green tick marks); the last event chain had non-productive events (shown

as the event chain cumulating in a dead-end). The graphs is the lower section of

Figure 3.17 shown knowledge occurrence graphs; clearly, for a productive event

chain, the productive graphs for the corresponding knowledge type steps up by one;

similarly, for a non-productive event chain, the relevant non-productive graph steps

up by one. Consequently, when viewing a knowledge occurrence graph, such as the

one shown in Graph 3.2, the reader should be aware that each step in the productive

trend line (the black line) corresponds to an event chain that was productive, and

each step in the non-productive line (the dotted line) corresponds to an event chain

that was non-productive.

Figure 3.17: How knowledge occurrence graphs relate to event chains.

Data

Process

need need

0 1 2 3 4

Productive
Data

Productive
Process

Productive
Innovation

Event chain

number

need need

Innovation
Solution

Solution

Data

Solution
Dead-end

Data

Process

Non-productive
Data

Non-productive
Process

Non-productive
Innovation

event chain 2 produced
productive data knowledge

event chain 4 produced non-
productive data knowledge

 3-53

Graph 3.2 Data knowledge in Project P2-1.

3.9.7.3 Knowledge occurrence tables

Knowledge occurrences were summarised and tabulated in two ways. The first

summary (see Table 3.6) showed the percentages of productive and non-productive

knowledge within each of the knowledge categories identified in Experiment 1. The

second summary (see Table 3.7) indicated the proportions of data, process and

innovation knowledge produced by the project. The process knowledge, as

discussed in Section 5.7.2, was further separated into role knowledge, logistics

knowledge and knowledge of engineering methods (these sub-categories of process

knowledge are indented in Table 3.7). Tables 3.6 and 3.7 use data from Project P2-1.

The tables were used to analyse and compare knowledge occurrences within and

across projects. Final summary tables were also created for the first and second

experiments, which enabled their overall results to be compared.

Table 3.7: Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-1 PK NPK Tot
Data Knowledge 71% 29% 100%
All Process Knowledge 63% 38% 100%
 Role 25% 4% 29%
 Logistics 8% 8% 17%
 Engineering methods 29% 25% 54%
Innovation Knowledge 82% 18% 100%

 3-54

Table 3.8: Proportions of data, process and innovation knowledge produced.

Knowledge Type: P2-1 PK NPK Total
Data Knowledge 21% 9% 29%
Process Knowledge 26% 16% 41%
Innovation 24% 5% 29%
TOTALS 71% 29% 100%

3.9.7.4 Comparisons across experiments

In order to compare results between the two experiments, a common basis for

comparison was needed. This was done by repeating the data analysis phase of

Experiment 1 using the same methods as applied in Experiment 2. Correspondingly,

the knowledge events were categorised according to productive and non-productive

knowledge production, instead of according to productive time and non-productive

time spend on knowledge events (as detailed in Section 3.9.5). The overall results of

Experiments 1 and 2 could then be compared in a consistent manner.

3.9.8 Analysing other forms of data

The email archive, project discussion (or idea) forum, general group forum and

developer logs were the main sources of data in this study. There were additional

data sources which solicited participants’ feedback, provided opportunities for

participants to clarify issues, and to evaluate the work done during the projects.

3.9.8.1 Code and design reviews: ESAOA activities

The code and design reviews captured documentation regarding code and design

changes, modifications to the ESAOA KMS, and allocation of further tasks and

responsibilities.

3.9.8.2 Project meetings

Data obtained from meetings and design reviews resulted in identifying few additional

learning tasks. In these cases, the developers seldom remembered past learning

tasks accurately and frequently used their logs and code solutions to jog their

memory. For these reasons, minutes from meetings and product demonstrations

were not used as primary data sources (although they were referred to in evaluating

the quality of the knowledge produced in Experiment 2).

 3-55

3.9.8.3 End-of-product questionnaires

Basic statistical analyses were done of the ratings awarded by research participants.

A content analysis was done of the qualitative comments provided.

3.10 Data synthesis

The data were collected from each project and then analysed to determine what

problems were encountered, who produced ESAOA knowledge, which people used

ESAOA knowledge, how artefacts were organised, used and exchanged, and so on.

The data synthesis phase took place after the data had been analysed; it involved

generalising and combining the detailed results from the data analysis to form a more

abstracted view of the KM processes, and to represent the ‘ecology’ (explained

below) of the ESAOA KMS in use. This was a necessary step in order to view the

results from a higher level and thus to determine the generalised findings for the

study. Figure 3.18 illustrates the data synthesis process.

The analysis phase broke down the use of ESAOA knowledge into smaller related

parts (i.e., the ‘knowledge events’), as a means of analysing discrete phenomena of

KM taking place during ESAOA activities. The synthesis phase went somewhat in the

reverse direction, resulting in an abstract, visual representation of the system as a

whole. This phase was needed to describe and explain the linkages between the

different types of the knowledge, and the associated data, roles, and KM processes

used in the projects studied. For this purpose, an ‘ecology’ of the development

process was produced, which draws on the genre ecology framework [Spinuzzi,

2002], and the ecology mapping approach [Spinuzzi, 2003] that involves constructing

a formal model of a genre ecology.

 3-56

Knowledge occurrence
graphs

Synthesis
Process

Knowledge event register

Event
No.

Pred. Dead
end

Description

Statistical analysis
AID Projects Used Comments

Common Problems
ProjID Comments

Ecology Maps / ESAOA Models

Comments /
solution description

Analysis
Process

Data from code &
design reviews

Systematization
of data

Data from email
archive

Data from project
meetings

Other forms of
data

…

Chain K Src PT NT TT T/C Tool
time

Cmp
time

Figure 3.18: Data synthesis process, in which ecology maps were produced.

The genre ecology framework is an “analytical framework for studying how people

use multiple artefacts … to mediate their work activities” [Spinuzzi, 2002, pg.1].

Examples of these ‘artefacts’ include documentation, notes and similar items that are

used during technical work. The genre ecology framework was developed specifically

for technical communication research, its emphasis being on the interpretation of

artefacts amongst developers [Spinuzzi, 2002]. The genre ecology framework

concept has been brought into this research project as a means to represent

knowledge work, with the focus on the interpretation of artefacts used in development

(i.e., the tools and documentation, and the individuals who perform this

interpretation). This relates closely to how knowledge is produced and communicated

and to a lesser extent to the functionality of the artefacts [Spinuzzi, 2003].

The way in which the genre ecology framework has been applied in this project

adopts methods used by Spinuzzi [2003] for constructing a formal model of genre

ecologies. Accordingly, a specialised modelling language, namely the ESAOA

modelling language, has been developed to provide formal models for visualizing and

studying the ‘ecology’ of an ESAOA KMS. Section 3.11 describes the ESAOA

modelling language. The genre ecology mapping technique and the ESAOA

 3-57

modelling language are further explained, and used, in Chapters 4 and 6 in relation

to the design of the ESAOA KMS.

3.11 The ESAOA Conceptual Modelling Language

The ESAOA modelling language is a graphical language that builds on version 2 of

the OMG Unified Modelling Language (UML) standard [OMG, 2005; Rumbaugh et

al., 2005] and provides an implementation of a genre ecology framework, as

discussed in Section 3.10, which is used in the data synthesis phase of the analysis

process for this thesis.

The structure of the ESAOA modelling language described in this section represents

the final version of the language, which was developed incrementally through the

application of two framework construction phases (as per Section 3.5.1).

Consequently, this modelling language is based on results of the research project

itself (i.e., using results from Experiments 1 and 2). The initial version of the ESAOA

modelling language was established during the preliminary study phase of this

project (see Section 4.2), and this initial version was built up and improved during the

subsequent framework construction phases.

The structure of the ESAOA modelling language is based on the requirements for

modelling the roles, artefacts, knowledge and processes involved in ESAOA

activities. The ESAOA modelling language is intended to be simple to use, allowing

rough graphical models to be drawn quickly using pencil on paper. Simple geometric

shapes are used for this reason.

The modelling elements of the ESAOA conceptual modelling language are separated

into atoms, connectors, and spaces. Atoms are textboxes or icons that represent

roles, artefacts, knowledge or processes. A connector represents relations between

atoms (namely, flows and associations), and relations between connectors and

atoms (called connector junctions). The space modelling element indicates

boundaries and it is used to group modelling elements; spaces model workspaces

and workstations. Each type of modelling element has a principal shape, upon which

labels and various kinds of symbols are placed to refine the specific item to which the

shape refers; for example, the principal shape of a role atom is a circle and, in order

to refer to a team leader, the label ‘TL’ is written inside the circle. Figure 3.19

summarises the principal shapes for each type of modelling element.

 3-58

The subsections that follow describe each of the modelling elements: Section 3.11.1

describes atoms; Section 3.11.2 details connectors, and Section 3.11.3 explains the

spaces. Each subsection begins with a table that summarises the principal shapes

for a modelling element, and is followed by a description of the specialised forms in

which the modelling element appears.

3.11.1 ESAOA modelling atoms

There are four principal types of modelling atoms, which are shown in Figure 3.19.

These principal types are: 1) roles, 2) artefacts, 3) processes, and 4) knowledge.

Roles are drawn as circles, artefacts are rectangles, processes are pentagons, and

knowledge atoms are represented as three equal width rectangles one on top of

another. The role, artefact, and process atoms correspond to roles, artefacts, and

processes that form part of the ESAOA KMS. Knowledge atoms are used to

represent a certain knowledge form or body of knowledge managed by the KMS.

Details concerning specialisations of these modelling elements are given below.

Role Artefact /
Resource

Process Knowledge

Figure 3.19: The principal shapes of ESAOA modelling atoms.

3.11.1.1 Role atoms

A role atom (drawn as a circle) represents a person who is responsible for performing

certain KM activities in the ESAOA KMS. Specific roles are indicated by adding text

in the middle of the circle to indicate the acronym for the role concerned. These

specialisations are illustrated in Figure 3.20. The unspecified role can be used to

refer to any role (i.e., it acts like a ‘wildcard’).

 3-59

Unspecified
Role

TL

Team
Leader

TM

Team
Member

CKO

Chief Knowledge
Officer

CKS

Communal Knowledge
Steward

PE

Process Engineer

IE

Innovation Engineer

CR

Component
Researcher

WA

Workspace
Administrator

Figure 3.20: Role modelling atoms of ESAOA KMS version 2.

3.11.1.2 Artefact atoms

Artefacts are represented in the ESAOA modelling language using the atoms shown

in Figure 3.21. Triangular UML inheritance connections are used in the figure to

indicate a selection of the artefact atom refinements available in the ESAOA

modelling language. As the figure shows, artefacts in the ESAOAS KMS are

classified as hard or soft. A square is placed on the top left of an artefact atom to

represent a hard artefact, whereas a triangle is placed on the top left of soft artefacts.

Folders that contain soft artefacts are represented using the UML package icon (note

that, for ease of drawing, a triangle is not placed on the top left of folder atoms).

As per the ESAOA knowledge ontology, an artefact can be further classified

according to the workspace from which it originates and the role responsible for

maintaining the artefact. Further functionality classifications can also be applied; such

classifications are indicated by placing the relevant acronyms on the top left of the

artefact atom. Figure 3.22 provides an example of a soft artefact, named a

‘component list’, which has been given three classifications, namely: data artefact,

boundary artefact and team artefact. Table 3.9 lists acronym classifications that

appear commonly in the models used in this chapter.

 3-60

Hard
artefact

Soft
artefact

Workstation
computer

Code.c
A C code
module

Artefact

Program
Executable
program

Script.c
A Bash ESAOA
script file

Folder that
contains soft
artefacts

Artefacts are
categorized as
either hard or soft

Figure 3.21: Artefacts atoms showing general artefact, hard artefact, soft artefact, and
more specialised artefact atoms.

Component list
DBt

Figure 3.22: A team boundary data artefact.

Table 3.9: Commonly used artefact classification acronyms.
Acronym Description
B Boundary artefact (facilitates knowledge transfer)
c Communal artefact (stored in communal workspace)
D Data artefact (e.g., datasheet)
I Innovation artefact (e.g., concept sketch)
K Knowledge artefact (used to create knowledge or to make

knowledge explicit)
P Process artefact (e.g., script or a how-to guide)
t Team artefact (stored in team workspace)

3.11.1.3 Process atoms

Process atoms relate to KM processes of the ESAOS KMS; the title of these atoms

contains keywords describing the process concerned. Additional classifications can

be assigned to process atoms following a similar approach as used for artefacts; in

other words, a process classification acronym can be added to the top left of process

atoms. Figure 3.23 demonstrates the use of process classification by assigning the

 3-61

classifications of ‘applying knowledge’ and ‘group work’ to a process atom titled

‘Training’. Table 3.10 lists process classifications and their corresponding acronyms.

 Ag
Training

Figure 3.23: A group-work process that involves application of knowledge.

Table 3.10: Process classifications.
Acronym Process classification
A Applying knowledge
D Documenting tasks
F Finding information
g Collaboration / group activity
i Independent activity
P Producing knowledge
R Representing knowledge
S Problem solving / searching for solutions

3.11.1.4 Knowledge atoms

A particular knowledge form produced or applied in ESAOA activities is represented

in the ESAOA modelling language by knowledge atoms. A knowledge atom looks like

an UML class modelling element, comprising three rectangles on top of each other

(see Figure 3.24). The top rectangle indicates the title (or keywords) of the

knowledge form and its classification. The middle has keywords that indicate an

individual’s understanding of this type of knowledge and the competencies related to

producing it. The bottom rectangle lists the capabilities required to apply the

knowledge during development procedures.

Knowledge atoms can be classified by adding knowledge classification acronyms to

the top left of these modelling elements; the classification acronyms are listed in

Table 3.11. These knowledge categories are based on the findings from Experiment

2 (see Chapter 5). Figure 3.24 shows a knowledge atom that has been assigned the

classification of process knowledge by using the acronym ‘P’ on the top left.

 Knowledge title

Knowledge description /
understanding or competencies

Description of capabilities
required

P

Figure 3.24: Knowledge atom classified as process knowledge.

 3-62

Table 3.11: Classification acronyms for knowledge atoms.
Acronym Knowledge classification
D Knowledge of data
I Knowledge of innovation
P Knowledge of process
 Pe Knowledge of engineering methods
 Pl Knowledge of processes relating to logistics
 Pr Knowledge of processes relating to roles
Pk Productive knowledge
npk Non-productive knowledge

3.11.2 Connectors

Connectors of the ESAOA conceptual modelling language are used to represent

relations between modelling elements. There are three principal connector types:

flows, associations and connector junctions. Connector labels can be used to add

keywords that provide additional information about connectors. The subsections that

follow explain the types of connectors and how to use them.

3.11.2.1 Flows and associations

Connectors are used in the ESAOA conceptual modelling language to show

associations and flows between modelling atoms. An association indicates an

important relationship between atoms. A flow represents a transformation processes

that occurred in which one atom is produced, or modified, by another. Twelve types

of connectors are used in the modelling language. Flows are shown as double links,

while associations are shown as single links. The names of the connectors are listed

in Figure 3.25 together with illustrations for each type. Appendix C.2 provides further

descriptions and example models that provide more detail on connectors.

 3-63

Figure 3.25: List of ESAOA modelling language connector types.

3.11.2.2 Connector junctions

A connector on its own provides limited information about the relation it represents.

Connector junctions indicate which additional modelling atoms are involved in a

relationship, such as artefacts (e.g., email, development tools and laboratory

Connector name

Knowledge use/produce
association

Artefact use association

Role perform
association

Role support
association

Role interaction
association

Knowledge capture flow

Artefact adaptation /
maintenance flow

Artefact conversion flow

Process maintenance
flow

Process capture flow

Dependency
association

Containment
association

Arrangement

Alternate

N/A

Knowledge

Artefact

Artefact Role

 Role
helped Role

helping

Role
Artefact

Role Knowledge

Soft artefact

Role
Role

Role
Process

Process

Process
Role

Reformed
artefact

Original
artefact

A depends
on this one

Artefact
A

This one is
inside A

Artefact
A

N/A

N/A

N/A

N/A

Knowledge

Process
Artefact

Role Role

A depends
on this one

Process
A

This one is a
sub-process

of A

Process
A

Process Artefact

Maintained
Process

Maintenance
Process

Relation label Relation label

Mentoring flow N/A
 Mentor Learner

Process

 3-64

equipment), which are involved in the relationship. A connector junction is modelled

as a small circle in the middle of a connector, and has dotted lines that join to

additional atoms that are involved in a relationship. There are two main types of

connector junctions: a) tacit junctions, and b) explicit junctions. Tacit junctions are

represented as an unfilled circle (i.e., a ring) on a connection – these junctions link

atoms that relate predominantly to tacit knowledge and KM activities that are difficult

to document. Explicit junctions are drawn as solid circles on a connection; such

junctions link atoms that relate more to explicit knowledge or artefacts (e.g.,

knowledge that can be easily documented, information resources and software).

Figure 3.26 illustrates the difference between explicit and tacit junctions; Figure 3.26

(a) uses an explicit junction, whereas Figure 3.26 (b) uses a tacit junction.

Figure 3.26: Examples of (a) explicit junction, and (b) tacit junction.

3.11.2.3 Connector labels and multiplicity

Two types of annotations can be added to a connector, namely: a connector label

and multiplicity. A connector label is a set of keywords placed mid-way on the

connector that provides additional information describing the relation concerned.

Multiplicity can also be indicated on one or both ends of a connector, and is shown

using the same approach as used in the UML, which is thoroughly described by

authors such as Arlow [2005] and Douglass [2000]. Figure 3.27 provides an example

of connector labels and multiplicity, showing a role interaction that involves

correspondence between one person performing role R and one to three people

Soft artefact (e.g.,
code file)

Process providing
guidelines to the PE for
maintaining the soft
artefact.

(a)

PE
Explicit junction. Here the
junction connects a
maintenance flow to a p
guiding the way that
maintenance is carried out.

rocess

Device driver
implementation

Code artefacts to
adapt

Correctly configured
compiler to use

Tacit junction. In this example, the
type of tacit information involved in
a mentoring flow between a PE and
IE is indicated (here the PE is
mentoring the IE).

(b)

PE

IE

 3-65

each performing role S. One or more multiplicity (i.e., ‘1..*’) is implied for connectors

that do not explicitly indicate multiplicity.

Figure 3.27: Model demonstrating connector labels and multiplicity.

3.11.3 Spaces

The space modelling element is used to demarcate boundaries in order to partition

modelling elements in a model into groups. Spaces are used in the ESAOA

modelling language to indicate elements that belong to certain workspaces, or to

particular workstations. Spaces are drawn as rectangles with dotted lines for sides,

and they have a title shown in bold capital text that is placed next to one of the sides

of the boundary (usually at the top, if space permits). Figure 3.28 shows a model in

which two space workspace modelling elements are used; the top one models part of

a communal workspace, and the bottom models part of a team workspace; using

these spaces, it is easy to see to which spaces certain items belong. Connectors can

intersect boundaries of spaces if relations exist between modelling elements in

different workspaces (as is the case between the CKS and WA in Figure 3.28).

3.11.4 Comments and constrains

ESAOA models use the standard UML method for adding notes and constraints.

Comments related to a modelling element are added using a UML note anchored to

the modelling element by a dotted line (as shown in Figures 3.21), or by using a

dotted line and note bar (as illustrated in Figure 3.28). Connector constrains are

specified using comments anchored to the relevant connectors.

Soft
artefact

PE role accesses multiple
artefacts classified as
‘team data artefacts’.

CR
1

1..2
Dt

1 CR can correspond with
up to two individuals
filling the PE role.

*
PE

 3-66

Figure 3.28: Model showing space modeling elements.

3.11.5 External processes and artefacts

An artefact or process atom drawn using dashed lines (instead of solid lines) means

that the atom is an external item, and is neither related to KM activities of the ESAOA

KMS, nor is it stored or maintained within an ESAOA workspace. Figure 3.29 shows

a model in which an artefact named ‘development tool’ is an external artefact, and a

process named ‘Process P’ is an external process. Both the external artefact and the

external process shown in the figure are used by the PE, but neither of them is

maintained as part of the KMS (i.e., their adaptation and maintenance are entirely ad-

hoc and undefined within the KMS).

Procedure P

PE

A process not maintained
within the ESAOA KMS
framework

Development tool T

An external artefact that is not
maintained within the ESAOA
KMS framework

Figure 3.29: Model showing an external process and external artefact.

Communal

Artefact

COMMUNAL WORKSPACE

Space
boundary

Name of space

 CKS

Team

TEAM WORKSPACE

Artefact
 WA

 3-67

3.12 Comparing artefact and prototype quality with KMS
analysis results

As inculcated in Section 3.5.1, assessment of product artefacts and the quality of

product prototypes were performed at the end of Experiment 2. This was done in

order to obtain data related to final prototype (rather than the KM methods) in order

to compare KMS analysis results of a project to the overall quality of prototype

produced from the project. This was done in order to gain insights into potential ways

to predict the quality of the final product produced by a project based on KM trends

observed during the project.

The product demonstrations were performed at the end of the second experiment

and were evaluated by the review panel (described in Section 3.6.5). The review

panel completed a demonstration check sheet (described in Section 3.8.6) for each

team. After the demonstrations, the final version of the project artefacts (e.g.,

schematics, design documents and code modules) produced by each team were

evaluated by the review panel using the requirements check sheet. Section 3.8.6

describes the requirements check sheet, which has a section devoted to rating the

quality of artefacts stored in ESAOA team workspaces.

The methodology to compare results obtained form the experiment, such as

comparing the quality of project artefacts to proportions of productive knowledge for

each project, were done using correlations. The correlations using the standard linear

Pearson's correlation formula [Graham, 2008; Wikipedia, 2008] shown below:

])(][)([

))((
2222 ∑ ∑∑∑

∑∑∑
−−

−
=

yyNxxN

yxxyN
r

The value r, which is the correlation result, will be between -1.0 and +1.0. The closer

r is to +1.0 or -1.0, the more closely the variables are related; if r is closer to 0, then

the variables are not related. If r is positive, it means that as the one variable

increases, so does the other variable. If r is negative, it means as one variable

increases, the other variable decreases, which is referred to as an ‘inverse

correlation’ [Underhill & Bradfield, 1998]. Both positive and negative correlations will

be looked at to determine relations that may be positive, or negative, influences.

Chapter 5 details correlations performed for Experiment 2.

 3-68

3.13 Conclusion

The subsequent chapters present the results of applying the research methodology

described in this chapter. Chapter 4 presents the findings from Experiment 1, which

comprises the first application of the KMS analysis phase, together with the design of

the initial ESAOA KMS (ESAOA KMS version 1), which resulted from the first

application of the framework creation phase. Chapter 5 discusses the findings from

Experiment 2, which constitutes the results of the second application of the KMS

analysis phase. Chapter 6 describes the design of ESAOA KMS version 2, which

resulted from the second application of the framework creation phase. Lastly,

Chapter 7 summarises the results and presents the conclusions, reflecting back on

the research question, and making recommendations for future work.

 3-69

 3-70

Chapter 4:

First experiment findings and ESAOA KMS version 1

This chapter presents the results of the first stage of the research design described in

Chapter 3 (see Section 3.5). During this first stage, Experiment 1 was performed; in

this experiment, data were captured from a set of development teams, who used

their own ad hoc KM methods to develop ES products. A preliminary study of the

Experiment 1 data was done during the establishment of initial data analysis methods

for this thesis. This process of establishing data analysis methods built on the KM

literature; the preliminary study was used to determine how theories from the

literature could be applied in the specific context of ES development. Experiment 1

was followed by the first application of the KMS Analysis (the ‘A phase’), which

involved analysing data from Experiment 1. Next, Framework Construction (the ‘C

phase’) was performed to design and construct the initial ESAOA KMS. The

objectives of this first stage of the research process were twofold: 1) experimentally

develop a strategy to investigate ESAOA knowledge produced during ESAOA

activities and to evaluate the effectiveness of the KM methods used, and 2) construct

an initial version of the ESAOA KMS, which would be used in the second stage of the

research design.

Section 4.1 starts with a brief overview of the first experiment. Section 4.2 goes on to

describe the preliminary study of the data, which was used to construct a context for

studying KM of ESAOA activities, and culminated in the initial version of the data

analysis method for this thesis (described in Section 3.9). The data analysis method

was then applied to the original data of Experiment 1 (i.e., the preliminary study was

used as a means of developing the analysis method); the results are summarised in

Section 4.3. The results of trend analysis, the last step in the analysis process, are

presented and discussed in Section 4.4. The high-level design of the ESAOS KMS

version 1, which was based directly on the results of Experiment 1, and the strategies

used to represent the KMS, are the focus of Section 4.5. The implementation of

ESAOA KMS version 1 is described in Section 4.6. Lastly, Section 4.7 concludes this

chapter and leads into the next chapter.

 4-1

4.1 The First Experiment

The first experiment comprised two ES product development projects: P1-1, the

development of a Software Signal Generator (or SoSiG), and P1-2, an Antenna

Controller (or ANTCON). Each project team comprised two members (Section 3.6.4

detailed how the participants were selected), and the projects are briefly described in

Table 4.1.

Table 4.1: Description of projects for the first experiment.
Project
Number

Project Title Project Description Motivation

P1-1 Software Signal
Generator (SoSiG)

Programmable signal generator, able to
communicate and program using a
standard ASCII terminal over a serial
interface.

Similar to products
used by commercial
developers.

P1-2 Antenna Controller
(ANTCON)

Control system to control and monitor
the azimuth and elevation of an antenna
pedestal. Connects to parent RADAR
control computer over TCP/IP using
Ethernet.

Based on an existing
RADAR control
system used in
military applications.

The objective of project P1-1 (SoSiG) was to develop a portable code library for a

digital signal generator that controlled an actuator circuit connected to the CSB337

via an I2C hardware interface [NXP Semiconductors, 2007]. The code library had to

include a state machine to drive the actuator and a simple command-based user

interface that could be integrated into application code through a generic input/output

byte-stream wrapper.

The aim of project P1-2 (ANTCON) was to use the CSB337 evaluation board to

control the azimuth and elevation of a radar antenna pedestal. In this project, a

proprietary interface was used to connect the pedestal electronics to the CSB337,

which was linked to the programmable input/output pins of the AT91RM9200

microcontroller. A simple command-based user interface had to be provided via an

RS232 port.

Chapter 3 (Section 3.8) described the data collection methods used in this

experiment. Data was captured from code and design reviews, email archives,

demonstrations and various other sources.

 4-2

4.2 Preliminary study to establish the data analysis method

This section discusses the establishment of the initial data analysis method used in

this thesis, which was based on a preliminary study of Experiment 1 data. In the

experiment, all the ES engineers used their own ad hoc KMS. This preliminary study

investigated the KM methods used by the developers, and the results of the study

were used thereafter to develop the experiment data analysis processes for this

thesis (see Section 4.2.12). The results of this preliminary study, in conjunction with

the later application of the data analysis method, were then used to guide

development of the initial ESAOA KMS (see Section 4.6).

4.2.1 Denoting artefacts and ESAOA activities in the data

At the beginning of the preliminary analysis all the data, arranged chronologically,

was printed out. The data printouts were then worked through from the first entry,

underlining artefacts that were mentioned, identifying activities, and annotating

records related to adapting or managing the artefacts (annotations are shown as text

in square brackets in the excerpts from the data). The third column in Table 4.2

shows excerpts from the data, illustrating how this was done.

At this stage, simple pencil on paper drawings (which later became the more

formalised ESAOA conceptual modelling language) were utilised as a visual aid to

keep track of artefacts and processes, and the relations between them. These rough

diagrams were used during discussions with participants of the study to gain further

insights into ESAOA activities and artefacts, and to confirm that the researcher had

modelled processes accurately. Figure 4.1 provides an example of such a diagram.

The model in the example was used to visualize the relations between the artefacts

and processes used by team members, which existed during development of a

device driver for a peripheral (namely, the PCF8591 digital-to-analogue converter).

4.2.2 Verification of KM models

The first step taken in the preliminary study was to verify that the data obtained from

the first experiment did actually represent KM methods (as based on the literature in

Chapter 2). To this end, the data were investigated in relation to the ‘knowledge

process’ [Radding, 1998] and ‘knowledge flows’ [Milton, 2005], which set out general

models of KM (see Chapter 2).

 4-3

Figure 4.1: An initial version of the ESAOA modelling language used to describe
relations between ESAOA artefacts and activities in Project P1-1

The data from Experiment 1 verified existence of the four phases of the ‘knowledge

process’ [Radding, 1998]. Table 4.2 gives an excerpt from the data, using the

following columns: column 1 is the record number that refers to records shown in the

specific table (for each project, these numbers start from 1 and run sequentially);

column 2 indicates the data source; column 3 is an excerpt from the data; and

column 4 describes how the record confirms the KM models.

Table 4.2 contains evidence pertaining to all four phases of the ‘knowledge process’

[Radding, 1998], specifically that knowledge is: 1) captured (see entry 3 in Table 4.2);

2) stored (see entry 3); 3) processed (see entry 4), and 4) communicated (see entry

1). This is clearly evidence that ‘knowledge flows’ [Milton, 2005] are occurring. For

example, entries 1 and 2 in Table 4.2 show that the supervisor at times acted as a

‘knowledge supplier’ and the developers as ‘knowledge consumers’.

 4-4

Table 4.2: Excerpt from Project P1-1 used to verify existence of ‘knowledge processes’
and ‘knowledge flows’.

Record
No.

Data
source

Excerpt from data Narration

The data records pick up from minutes of project meeting 1, held 10 June 2004
1 Project

Meeting
1

What computers are we
to use?

The developers asked the supervisor if lab
computers could be reserved. This except
demonstrates the communications phase of
Radding’s [1998] ‘knowledge process’.

2 Project
Meeting
1

Windows lab computers The supervisor tells the developers that
‘Windows lab computers’ can be reserved.
Here, the supervisor is acting as a
knowledge producer, and the developers as
knowledge consumers in terms of Milton’s
[2005] ‘knowledge flow’ model.

The data records continue with the developers’ log
3 Dev.

Log
Various free and
shareware options are
available [comms
software]. Must run on
Windows. HyperTerm
may provide all the
needed features.

The log shows that the developers
performed a variety of internet searches for
communications software. In this case, the
developers were involved in capturing ‘raw’
knowledge through downloading
documents and jotting down relevant points
observed in a log; this demonstrates
instances of the ‘capturing’ and ‘storage’
phases of Radding’s [1998] ‘knowledge
process’.

… A variety of other issues was recorded in the log concerning other issues…
4 Dev.

Log
Look through manual for
protocol settings [found
settings]. 38400bps, 8
data bits, no parity, one
stop bit, no flow control…

The developers looked for information in a
manual regarding protocol settings, tested
various settings using ‘HyperTerm’ and
then saved working settings. Here the
process and storage phases of Radding’s
[1998] ‘knowledge process’ is shown: the
developers processed ‘raw’ knowledge of
protocol settings and configuration
techniques by adapting and testing possible
choices using specific tools; the developers
also stored their knowledge by saving
working settings and by entering
information into their log.

4.2.3 Problem-solution cycles

The data were scrutinized with the aim of identifying commonly occurring techniques

and activities relating to KM performed during ESAOA activities. The first and most

noticeable observation involved finding the same high-level strategy used by both

Project P1-1 and P1-2 teams to solve problems in order to accomplish ESAOA

activities. It emerged that both teams had followed a form of problem-solution cycle,

which tended to comprise the following three parts: 1) encountering a new problem;

2) working on (and testing) a solution; and 3) searching for information or resources.

A new problem-solution cycle was started, or a previous one resumed, when the

developer changed focus from one problem to another. Almost all the activities

 4-5

observed in the data from the email archives, the minutes of meetings and the

developer logs, could be allocated to one of the stages of these problem-solution

cycles. However, the data from the product demonstrations did not exhibit this cycle

(probably because activities performed in demonstrations were pre-rehearsed).

Instances of the problem-solution cycle are demonstrated in Table 4.3. The table

shows data samples taken (in chronological sequence) from Project P1-1; these are

accompanied by a narration explaining how each data sample fits into a problem-

solution cycle. The table further shows how the developers moved from encountering

new problems, via seeking information, to working on solutions. The first column of

Table 4.3 gives the problem number (these are numbered from the first problem

observed in the minutes of project meeting 1)1. The second column indicates the

data source in which the problem was first observed. The narration in the third

column describes how the observation from the data fits into the cycle (ESAOA

artefacts are underlined in this column). The last column indicates whether th

particular observation resulted in a solution (i.e., a solution to the problem whose

number is in the first column). Annotations by the researcher concerning recorded

data are in square

at

 brackets.

Table 4.3: Demonstration of problem-solution cycles observed in Experiment 1.

Prob.
No.

Data
source

Excerpt from data Narration Solved
?

The data records picks up from the minutes of the project meeting 1, held 10 June 2004
1 Project

Meeting
1

What computers are we
to use?

The first new problem identified in the
project meeting was that the
developers wanted to know if they
could reserve lab computers.

N

1 Project
Meeting
1

Windows lab computers The supervisor indicated that the
‘Windows lab computers’ could be
reserved. The problem 1 was thus
solved quickly, and did not involve
searching for information.

Y

… A variety of other issues were recorded in the minutes …
8 Project

Meeting
1

Connect CSB337 to PC Further on in the minutes, a more
complex problem was found: the
developers wanted to know how to
connect to (and communicate with)
the embedded platform from a PC.

N

8 Project
Meeting
1

Use either a RS232C …
connection. Alternatively
use an Ethernet cross-
over cable …

The supervisor suggested a variety of
possible solutions to problem 8,
essentially providing information.

N

1 The numbering used here runs sequentially from 1 up to the last entry for a particular
project; e.g., the first meeting minutes may be number 1, the first email assigned number 5.

 4-6

9 Project
Meeting
1

Where can we get
cables?

The suggestions (above) for problem
8 led to a new problem (no. 9):
knowing where to get resources
needed to implement the suggested
solutions.

N

… the minutes continue …
The data records picks up from the developer log, from 10 June 2004

14 Dev.
Log

PC software to talk to
CSB337 over RS232C?

Later, a developer records a new
problem: communications software is
needed. This problem is related to
the earlier problem (no. 8).

N

14 Dev.
Log

Various free and
shareware options
[software options]
available. Must run on
Windows. HyperTerm
may provide all the
needed features.

The log shows that a variety of
internet searches for communications
software was done (finding various
options) – this was an instance of
information-seeking related to
problem 14. The log also suggests a
tentative solution (i.e., HyperTerm)
but does not confirm it is a solution
yet.

N

 … A variety of other issues was recorded in the log concerning other issues…
17 Dev.

Log
RS232C protocol
settings

After deciding which communications
software to use (i.e., having solved
problem 14), the developers returned
to problem 8 and soon encountered a
new problem: what protocol settings
to use.

N

17, 8 Dev.
Log

Look through manual for
protocol settings [found
settings]. 38400bps, 8
data bits, no parity, one
stop bit, no flow
control…

To solve problem 17, the developers
looked for information in a manual.
They found the settings needed for
problem 17; after correcting and
saving the HyperTerm settings, the
developers solved problem 8.

Y

It is further evident from Table 4.3 above that some solutions were arrived at more

quickly than others were. There could moreover be long delays between identifying a

problem and attempting to solve that problem (e.g., the data showed there was a

delay between the identification of problem 8 in the meeting, and the entry in the

developer’s log that noted when a solution to the problem was worked on).

It was found that the problem-solution cycles observed in the data occurred at a

different level to those of the ‘knowledge process’ [Radding, 1998] and ‘knowledge

flows’ [Milton, 2005] discussed in Section 4.2.2. The knowledge process provides a

different perspective to abstracting the progression of activities that took place in the

projects, in comparison to the perspective used in this document, which will be

described next.

 4-7

4.2.4 Trivial and non-trivial solution cycles

The complexity of solutions performed to complete ESAOA varied (i.e., some of the

problems were easier to solve than others were). Two categories of solutions were

devised to identify solutions that could not be solved quickly. These solution

categories are trivial solutions and non-trivial solutions. Problem 1 in Table 4.3 is an

example of a trivial solution: a developer essentially asked a question and the

problem was quickly solved a few minutes later by the supervisor2. Problem 8, in

contrast, is an example of a non-trivial solution: this problem required more work in

arriving at a solution than Problem 1, in terms of both the number of activities

recorded and the amount of effort involved in each of these activities. While the

solution to Problem 1 concerned only two data entries (one recording a question and

the other a response), the solution to Problem 8 consisted of seven entries. Problem

8 led to a set of sub-problems (problems number 9, 14 and 17), and each of these

sub-problems in turn took a certain amount of time to solve. Consequently, a solution

that has sub-problems, or involves looking up information, and takes in total more

than a few minutes to solve, is classified as a non-trivial solution.

Further investigation of the data showed that the three-part problem-solution cycle

described in Section 4.2.3 was an oversimplification for non-trivial solutions. Non-

trivial solutions tended to be more complex, in that the parts ‘working on a solution’

and ‘searching for information’ involved many commonly recurring activities. While

trivial solutions often had ‘working on a solution’ or ‘searching for information’ as part

of the cycle, these steps were generally accomplished easily (e.g., when a simple

working solution was provided and when it worked on the first try). The problem-

solution cycle proposed earlier was thus restructured as two different models: the

trivial solution cycle (see Figure 4.2) and the non-trivial solution cycle (see Figure

4.3).

The trivial solution cycle shown in Figure 4.2 was made up of three steps, which were

usually in the sequence indicated, namely: when a new problem is encountered, a

potential solution is discovered with little effort (e.g., as happened for problem 1 in

Table 4.2), leading to a working form of the solution which allows the necessary

ESAOA activities to be accomplished quickly.

2 In other cases, delays may happen between the initial identification of a problem, and the
moment when the problem is observed or recorded in the data. The developers tended to log
actions they tried, rather than journaling about problems they might examine.

 4-8

3. Adapt development
processes and product
artefacts accordingly

1. New Problem

2. Discover /
be given potential
solution

Figure 4.2: The 'trivial solution cycle'

In the case of non-trivial solutions, the problem-solution cycle was expanded into

eight related actions, as shown in Figure 4.3. The cycle starts with the decision to

solve a new problem (step 1 in Figure 4.3). Typically, the second step involves

searching for the information and resources needed to learn more about the problem

and to find information that will assist in formulating a solution. In the third step, the

developers made sense of the found information and resources; this step often took

time, sometimes many hours, to achieve (this step has many similarities to the

processing phase of Radding’s [1998] KM model). Much of the information obtained

in the third step was frequently discarded (as can be observed in Table 4.3 in terms

of communications software being found, and investigated, but not used further in the

project). The difficulty of completing the third step was most likely exacerbated

because the teams comprised only novice engineers (i.e., had there been more than

two team members, who were better experienced, the third step would probably have

been completed more efficiently). In the fourth step, a working solution started to take

shape once the developers understood the relevant information. The attempts in the

fourth step to find a working solution culminate in an extensive and decisive

experiment in the fifth step to determine the overall effectiveness of the chosen

solution. The sixth step involved considering the results of the test (e.g., in respect of

the communications problem, which was problem 17 in Table 4.3, the success of the

solution was tested by verifying that data sent from the embedded platform was

reliably received by the PC). Based on the results obtained in the sixth step, the

solution was regarded as either successful (step 7.1) or unsuccessful (step 7.2).

Typically, if the test was successful, then the solution was incorporated into the

team’s overall development process; otherwise, it was discarded and the team

learned from their mistakes. If the solution was successful, the team could continue

carrying out the ESAOA activities according to the implementation tasks they wanted

 4-9

to accomplish (step 8 in Figure 4.3). Furthermore, even if the solution was

unsuccessful, team members might still be able to perform the necessary ESAOA

activities due to knowledge gleaned from the process of developing a solution. For

example, the Project P1-1 developers spent hours trying to solve a problem

concerning interrupt code, but their solution was unsuccessful in the end.

Nonetheless, because of the knowledge they acquired in the unsuccessful attempt to

find a solution, the developers were inspired to improve their poll code. This example

is based on events 66 and 67 in the data given in Appendix A1.

7.1 Use results
and learn from
the successes

4. Develop a
potential solution

5. Perform test /
experiment

8. Adapt development
processes and product
artefacts accordingly

1. New Problem

2. Find / be given
Information
and/or resources

3. Understand
information
and resources

success

6. Obtain results

7.2 Discard
results and
learn from
the mistakes

failure

Figure 4.3: Illustration of the ‘non-trivial solution’ cycle

The steps for non-trivial solutions did not always follow the precise sequence shown

in Figure 4.3. For example, a developer might decide to start immediately with a

potential solution without having to search for information. Furthermore, the steps

might be repeated multiple times: for instance, while developing a potential solution,

the developer might search for additional information to help with a solution.

 4-10

4.2.5 Knowledge events

The data recorded ESAOA activities in addition to other types of activities. Many of

these other activities were closely related to managing the ESAOA knowledge

needed to carry out particular ESAOA activities. These activities were often part of

trivial or non-trivial solutions cycles. The term knowledge event refers to an activity,

performed as part of a solution cycle, which is closely related to the management

(i.e., finding, creating, storing or sharing) of ESAOA knowledge. A knowledge event

can be considered an instance of applying a KM technique to manage the particular

knowledge needed to accomplish ESAOA activities (Figure 4.4 illustrates this

relationship). As defined in Section 1.1.7, ESAOA activities involve classification and

adaptation of ES artefacts. Based on these definitions, some ESAOA activities may

also be knowledge events (e.g., instances of artefact adaptation can be knowledge

events that store knowledge).

Knowledge Event:
Determine the
communication protocol
settings to use

ESAOA Activity:
Adjust communication
protocol settings of
software tool

ESAOA
Knowledge

Figure 4.4: Relationship between ESAOA activities and knowledge events

In order to clarify the distinction between ESAOA activities and knowledge events,

consider problems number 8 and 17 in Table 4.3. The data show that developers first

obtained communications software (a collection of artefacts), and thereafter obtained

knowledge about protocol settings in order to use this software. In this case, the

knowledge of protocol settings is a form of ESAOA knowledge that was acquired by

means of various knowledge events (i.e., reading manuals) in order to complete

ESAOA activities (i.e., adapting the settings for the communications software).

4.2.6 Knowledge event types (KETs)

Six main types of knowledge events were identified from the investigation of non-

trivial solution cycles discussed in Section 4.2.4. These six knowledge event types

(or KETs) are referred to as KET-1 to KET-6. Each KET is elaborated in Table 4.4.

 4-11

Table 4.4: Types of knowledge events.

ID Knowledge event type Description
KET-1 Finding information and

resources
Obtaining knowledge about where to find information
and resources (corresponds to step 2 in Figure 4.3).

KET-2 Understanding information
and resources

Obtaining knowledge from information and resources,
such as reading and discussing the information found
(step 3 in Figure 4.3).

KET-3 Constructing or theorising
a potential solution

Obtaining knowledge to plan and construct a solution
(step 4 in Figure 4.3).

KET-4 Performing tests Obtaining knowledge about the planned solution, and
determining how to apply the solution (step 5 in Figure
4.3).

KET-5 Interpreting results Obtaining knowledge concerning the success and
limitations of the solution, through a process of
acquiring and interpreting the results of testing the
solution (steps 6 and 7 in Figure 4.3).

KET-6 Refining development
processes and adapting
development artefacts

Obtaining knowledge of how to change existing
development processes and artefacts to enable use of
the solution (step 8 in Figure 4.3).

4.2.7 Data, process and innovation knowledge categories

A common approach used in analysing KM is the identification of different forms of

knowledge that exist in the context of the knowledge work studied, as is discussed in

Chapter 2 (Section 2.4.5). This approach was followed in the preliminary study in

order to identify commonly occurring ‘top-level’ categories of ESAOA knowledge in

Experiment 1. The term ‘top-level categories of knowledge’ is defined in this study as

knowledge forms that are largely distinct from one another in terms of information

used and activities performed in order to produce knowledge.

Three top-level knowledge categories were observed in Experiment 1, namely: 1)

data knowledge; 2) process knowledge; and 3) innovation knowledge. These

categories are inspired in part by Allee’s [1997] ‘learning and performance

framework’, and in part by Bloom’s taxonomy [Bloom et al., 1964]. The knowledge

categories are defined below:

• Data knowledge relates to information that predominantly answers “What?”

questions, such as: “What are the product requirements and what

development tools are available for the selected microprocessor?”

• Process knowledge relates to the “How?” questions, for example: “How is

the work to be done, and how are the tools used?”

• Innovation knowledge is more product-specific, and involves knowledge

about which design ideas work. This form of knowledge is used to create

parts of the product.

 4-12

These knowledge categories can be viewed as a hierarchy in which innovation

knowledge is produced through the application of process knowledge, and process

knowledge is in turn acquired by finding and analysing data. These knowledge

categories, and the ways in which they relate to one another as a hierarchy are

portrayed in the scenario given in Table 4.5 (the scenario is from Project P1-1).

Table 4.5: Scenario for hierarchy of data, process and innovation knowledge.

Hierarchy
level

Description of knowledge event How this knowledge event is
categorised

1: Level of
data
knowledge

Developer searches through
manuals and web pages in order to
find toolchains that support a given
microprocessor.

An example of acquiring data knowledge.
This knowledge is obtained by interpreting
documentation, through actions such as
reading web pages, manuals and
datasheets.

2: Level of
process
knowledge

The developer evaluates the
toolchains to determine how they
are used, and which is best for the
application concerned.

An example of acquiring process
knowledge. Process knowledge is
knowledge about how to do development
tasks, and is obtained through activities of
manipulating design artefacts, testing
development techniques, and looking at
results.

3: Level of
innovation
knowledge

Once a development tool is
selected and its operation
understood, the developer starts to
implement embedded software for
the microprocessor to test aspects
of the software design.

An example of acquiring innovation
knowledge. Innovation knowledge is
acquired through the application of
development processes to change design
artefacts in attempts to achieve product
requirements.

Table 4.6 elaborates on each knowledge category, showing typical learning tasks

involved, how the knowledge acquired in these tasks is represented, and the KM

tools or systems that are commonly used to manage each knowledge form. The

three categories of knowledge are separated for the sake of clarity. In practice,

though, development does not follow a simple linear process that begins with the

assimilation of data, continues with the perfection of a perfect development process,

and ends with innovation. Instead, the knowledge being produced tends to cycle

through these categories in an incremental and iterative fashion [Schach, 2005].

Other types of knowledge also relate to development projects, such as contextual

knowledge, interpersonal knowledge, strategic knowledge, and others [Allee, 1997].

For the purposes of this study, the focus is on the three knowledge forms listed in

Table 4.6, because these were found to be the main types of knowledge used by the

developers during knowledge events and ESAOA activities [Winberg, 2005a].

 4-13

Table 4.6: Taxonomy of knowledge for embedded system KM.

Knowledge Type Type of Learning KET Knowledge
Produced

KM
Tools/Systems

Data: What needs to be
done? (Reading
datasheets, manuals,
and ‘how-tos’)

Descriptive, comparative,
summarising

KET-1,
KET-2

Text Search
techniques, files,
data bases

Process: How to do the
work? (Configuring and
using tools)

Analytical, defining,
categorising, sorting

KET-3,
KET-4,
KET-5

Procedures Compilers,
assemblers

Innovation: Which
design concepts work?

Synthesising, evaluating KET-5,
KET-6

Creative problem
solving

Designs,
implementations,
decision making

Based on the knowledge types above, knowledge events can be classified according

to the principal type of knowledge produced or managed during the event [Winberg &

Schach, 2007]. Accordingly, a knowledge event can be referred to as a data

knowledge event, a process knowledge event, or an innovation knowledge event.

Examples of these types of knowledge event are given below:

1. Data knowledge event: e.g., an engineer looks for and then reads a

datasheet;

2. Process knowledge event: e.g., an engineer constructs and tests a new

development method;

3. Innovation knowledge event: e.g., an engineer uses process and data

knowledge to implement and experiment with a design concept.

4.2.8 Productive and non-productive knowledge categories

Not all the time spent acquiring knowledge necessarily results in knowledge that will

be useful to the development of a product [Richter & Abowd, 2004]. This was

frequently observed in the context of the activities studied in Experiment 1. For

example, although the developers spent a significant proportion of their time

performing knowledge events to obtain ESAOA knowledge, there were many

situations in which only a small proportion of the knowledge produced in these events

was actually used to construct the final product prototype. Similarly, knowledge

produced at one point in the project could not always be guaranteed to remain useful

for the entire duration of the project. The following scenario, drawn from the Project

P1-2 data, substantiates these observations regarding the temporary usefulness of

ESAOA knowledge produced:

 4-14

Scenario from Project P1-2
In Project P1-2 (see event 27 in Appendix A.2), the developers spent

several days learning how to use a particular set of development tools

(or ‘toolchain’), namely the emDebian [emDebian, 2007] operating

system and its toolchain. However, later in the project (event 38 in

Appendix A.2), it emerged that much of the time and effort expended in

learning emDebian had been wasted because the developers decided

to change to the Snapgear [SnapGear, 2007] toolchain.

In the above scenario, the knowledge acquired while learning to use the toolchain

that was later rejected could be considered as ‘non-productive knowledge’, whereas

the knowledge acquired while learning how to use the toolchain that was ultimately

used to develop the final project (i.e. Snapgear) could be considered as ‘productive

knowledge’. Accordingly, the concepts of ‘non-productive knowledge’ and ‘productive

knowledge’ categories were applied in the KMS analysis method as a means of

distinguishing between activities that resulted in knowledge that was, or was not,

used to build the product. These terms are defined further below.

4.2.8.1 Definition of non-productive and productive knowledge

The term ‘non-productive knowledge’ refers to the acquisition of knowledge that is

not useful to development, whereas ‘productive knowledge’ refers to the acquisition

of knowledge that is useful, in that it is built on and ultimately leads to the

construction of the final product.

Definition: productive knowledge

Productive knowledge refers to knowledge, which is obtained from

knowledge events in the project of study, and which is used in the

construction of the final product for the same project studied.

Definition: non-productive knowledge

Non-productive knowledge refers to knowledge, which is obtained from

knowledge events in the project of study, and which is not used in the

construction of the final product for the same project studied.

Nonetheless, it could be argued that knowing what not to do could be as valuable as

knowing what to do, and that establishing what not to do is sometimes only

determined through a failed experiment. Consequently, distinguishing between

 4-15

productive and non-productive knowledge should be considered as a tool for

abstracting and analysing KM techniques within the context of individual projects in

relation to the final product constructed. It should not be considered a means of

evaluating the general usefulness of resources or abilities of developers.

4.2.8.2 Using dead-ends to determine non-productive knowledge

The term ‘dead-end’ refers to a solution cycle that ended unsuccessfully, in that the

developer either could not find useful knowledge to solve a problem, or decided not

to use the knowledge or solution developed. For example, in the scenario from P1-2

presented earlier, a dead-end occurred when the developers decided to give up on

the first toolchain.

Each of the three knowledge categories described previously were divided into

subcategories of productive and non-productive knowledge. Consequently, terms

such as ‘productive innovation knowledge’ (which refers to innovation knowledge that

was used to build the final product) are used in this thesis.

4.2.8.3 Backwards tracing to classify knowledge events as productive or non-
productive

As described above, a dead-end that terminates an event chain can lead to its

predecessor events resulting in non-productive knowledge (i.e., knowledge that is not

used in constructing the final product). However, at the time when a developer is

working on one of these predecessor events, he or she did not know that the event

would lead to a dead-end. For the purposes of this study, knowledge events in an

event chain are considered productive unless they result in a dead-end (i.e., the

events are always classified retroactively as productive and non-productive).

In order to gain more information on the progression of knowledge events and

knowledge production, knowledge events are categorised as either productive or

non-productive in relation to the time when a particular knowledge event occurred.

Following this approach, the classification of productive and non-productive

knowledge classifications changes as more events are performed (i.e., the

classification of previous events may change from productive to non-productive).

Figure 4.5 illustrates how this history is produced. The figure is divided into five

sections, numbered from 1 to 5 starting from the top left. Each section has a label at

the top indicating which knowledge event is added. Two running totals are shown at

 4-16

the bottom of each section, viz. one for productive events and another for non-

productive events.

Figure 4.5: Determining non-productive and productive knowledge acquisition.

Each section shows what takes place when a new event is added (this is done in

chronological order from the knowledge register); essentially, one of the two

operations below is performed:

• If the added event caused a dead-end for the event chain, then all the

predecessors of the dead-end event (though not necessarily the event that

was added) are checked to see which of its predecessors led directly to the

dead-end; for each such predecessor that has not been already changed to a

non-productive event, the following is done:

o The predecessor is marked as a non-productive event (in Figure 4.5

this is shown by setting its label to ‘NP’);

o The tally of productive events is decremented, and

o The tally of non-productive events is incremented;

• Otherwise, if the added event did not cause a dead-end, it is marked as a

productive event (labelled ‘P’ in Figure 4.5) and the productive event tally is

incremented.

 4-17

4.2.9 Productive time and non-productive time

The terms productive time and non-productive time refer respectively to time spent

acquiring productive knowledge and time spent acquiring non-productive knowledge.

These categorisations are defined only within the context of knowledge events (as

defined in Section 4.2.5), and not for general development tasks.

4.2.10 Knowledge event chains

As defined in Section 4.2.5, a knowledge event is an activity that is closely related to

obtaining or managing the ESAOA knowledge needed to complete ESAOA activities.

A knowledge event is a step in a solution cycle; that is to say, a series of knowledge

events that are performed by one or more members of the team in order to obtain a

solution, which is then used to carry out ESAOA activities. The solution cycle (see

Sections 4.2.3 and 4.2.4) describes a high-level generalisation that represents, firstly,

the way in which knowledge events are typically performed and, secondly, the

common categories of knowledge events observed (e.g., ‘finding information’,

‘understanding resources’, and so on). The term event chain is used to refer to a

sequence of related knowledge events that were physically carried out in a project by

one or more of the project team members. An event chain can be viewed as an

implementation of a solution cycle that took place during a project.

An event chain is defined as a sequence of knowledge events, which has a particular

start event, and one or more end events. The start event concerns the identification

of a problem that needs to be solved in order to carry out certain ESAOA activities.

Each knowledge event in the event chain has one or more predecessors.

Predecessor of a knowledge event may be in the same event chain or in a different

event chain. Knowledge events within the same event chain are associated relative

to one another; for example, if event A is the predecessor of event B, then it implies

that B was performed some time after event A. Each knowledge event can result in

zero or more successor events. An end event has no successors in the same event

chain, although it may have a successor in a different event chain. For an event A,

each successor event (referred to as A.1, A.2, etc.) relates to activities carried out to

solve the same high-level problem that led to event A. Each successor event in an

event chain has one of these two characteristics: (1) the identification of another

issue, difficulty or sub-problem related to the same higher-level problem that the

event chain concerns; or (2) a solution to a previous issues/difficulty, or a solution to

the high-level problem that initiated the event chain.

 4-18

In summary, an event chain can be considered a sequence of ESAOA KM activities,

where each knowledge event in the event chain results in one of the following:

• Multiple connected knowledge events (i.e., continuation of the event chain);

• Another issue or sub-problem that needs to be overcome to obtain a solution;

• A solution to either a previous issue or sub-problem observed earlier in the

event chain, or a final solution to the higher-level problem that began the

event chain;

• A dead-end (i.e., a knowledge event in which it is determined that the

developer decided to abandon a potential solution).

Event chains can be traced in communications between engineers and captured in

log book entries, email archives, and in other separate communication events related

to the common problem [Winberg, et. al, 2008]. Knowledge events are evident in the

extract from the data provided in Table 4.3. For example, the problem 1 in Table 4.3

had two knowledge events associated with it; the first involved asking a question,

while the second involved determining the solution. This straightforward sequence of

events can be viewed as an event chain, which resulted in a final solution. A final

solution is a knowledge event that resolved the higher-level problem that began the

event chain.

However, problems can have sub-problems (e.g., problem 17 in Table 4.3 is a sub-

problem of problem 8). Accordingly, a new event chain can be started for a sub-

problem, if there are many knowledge events related to solving specifically that sub-

problem; otherwise, knowledge events related to a sub-problem can be added to the

same event chain. The latter approach was used to avoid having many short event

chains (e.g., chains of two events in which the problem was found and soon fixed).

The following section describes how event chains are visualized using event chain

graphs.

4.2.11 Visualizing event chains using event chain graphs

Event chains graphs were used in the preliminary study (and in the subsequent data

analysis methods) as a means of visualizing event chains (for a particular sequence

of activities that may have been performed by one or more members of the team

investigated). This visualization strategy was used to model, construct and

understand event chains. These graphs were also use during meetings with

participants to clarify sequences of knowledge events, and relations between them.

 4-19

A sample event chains graph, based on Project P1-1 data (see Appendix A), is

illustrated in Figure 4.6; a key describing the elements of the graph is provided at the

bottom of the figure. As the key shows, the circle on the top left points to the first

knowledge event in the project. The arrows indicate successor events. Each

knowledge event (the boxes) has two numbers: the event number (on the left),

followed by the event chain number (that starts with the letter ‘c’).

What computers
are we to use?

1 c1
Network problem:
can't access the
central server

3 c2

Use the Windows
machines

1 c1 Supervisor reset
password; able to
access all needed
computer resources

4 c2

What ES platforms
should we use?

2 c1

Network card works;
is password valid?

4 c2

Use the Cogent
CSB337 boards

2 c1
Trying to connect
CSB337 to PC

5 c3
Either use RS232C
NL modem ...

5 c3
Info to test the
CSB337 board?

10 c3
...

Found info in
Ed Sutter's book,
source code, ...

10 c3
Investigate MicroMonitor
source code to see how
to test the board

11 c4
Decided the source code
was not useful for learning
how to test the board

13 c4

Description of activity
/ issue / problem

1 c1

The artificial starting event
number 0 (i.e., start of project)

KEY

An event concerning a new
issue or problem.

Description of
the solution

2 c1

Event number
Event chain no.

An event in which a solution
was obtained.

Description of
the solution

4 c2 An event that resulted in successful
solution of the event chain (i.e.,
solution event 4 solved the main
problem that caused event chain c2).

Issue / problem
13 c4 An event that caused a new

problem or issue, which resulted in
a dead-end for the event chain.

Dashed line points to
event that caused the
dead-end

Solid arrows indicate
successor events

Figure 4.6: Event chains graph.

The arrows show the genealogy of the knowledge events; for example, event 1 is the

predecessor of events 2 and 3 (i.e., event 1 occurred before events 2 and 3, and

furthermore led to the occurrence of those events).

A knowledge event drawn with a double border indicates a solution, whereas a

knowledge event with a single border indicates that another sub-problem or other

issue was encountered at that point in the event chain. Knowledge events with the

same number may have an associated problem (drawn with a single border) and an

associated solution, referred to as a solution event (and drawn with a double border);

event 1 in Figure 4.6 gives an example of this situation.

A solution marked by a tick symbol (e.g., solution event 4) indicates that a final

solution was found for an event chain. A knowledge event marked by a cross (e.g.,

event 13) indicates a dead-end (i.e., the solution attempt described by the event

 4-20

chain was abandoned); the dashed line indicates which event caused the particular

dead-end. An event chain does not have to end with a final solution event or a dead-

end; it may simply be a composition of several events that together constitute a

workable solution (as is the case for event chain c1 in Figure 4.6).

4.2.12 Development of the KMS analysis strategy

The objective of the preliminary study was to develop a data analysis method that

could be applied to data captured in experiments. The produced data analysis

method integrates the techniques presented in the preceding sections (Sections

4.2.1 to 4.2.11). The data analysis method is described in Section 3.9, together with

an explanation of how the method was optimised for application to Experiment 2

data. The optimised version of the data analysis method was also applied to

Experiment 1 data in order to establish a consistent basis for comparison between

the experiments.

4.3 Results

This section presents the results of applying the first version of the data analysis

method to the data gathered in Experiment 1. As mentioned in Section 4.1,

Experiment 1 involved two projects, namely Project P1-1, the Software Signal

Generator (or SoSiG), and Project P1-2, the Antenna Controller (or ANTCON).

The following subsections are structured according to the steps of the data analysis

method described in Section 3.9.

4.3.1 Results of data synthesis (step 1): Initial knowledge registers

The captured data were synthesised to produce a knowledge register for each

project, as described in Section 3.9.2. Appendices A.1 and A.2 provide the final

knowledge registers for projects P1-1 and P1-2 respectively. Note that, as explained

in Section 3.9.2.2, additional columns were added to the knowledge register in

subsequent steps of the analysis process (to avoid redundancy, however, the

appendices include only the final knowledge registers).

For Project P1-1, 74 knowledge events in total were identified, separated into 28

event chains. For Project P1-2, a total of 78 knowledge events were found, separated

into 45 event chains. The construction of the initial knowledge register for Experiment

1 took approximately 32 hours, and this includes the time involved in annotating the

 4-21

printouts of the data sources, as per the analysis process described in Section 3.9.2.

Annotating the printouts accounted for the bulk of this time (around 27 hours).

4.3.2 Results of categorising knowledge events (step 2)

The knowledge events listed in the knowledge register were first categorised,

according to the predominant form of knowledge produced, into one of the three

categories of data knowledge, process knowledge or innovation knowledge, as

explained in Section 3.9.3. An additional column was added to the knowledge

register created in step 1 to record the predominant form of knowledge for each

event. Table 4.7 summarises these results, indicating the total number of knowledge

events for each category (see Appendix A for the complete knowledge registers).

This process of classifying the knowledge events of Experiment 1 was accomplished

in approximately ten hours.

Table 4.7: Number of knowledge events in each of the data, process and innovation
knowledge categories.

Knowledge Category Project P1-1 no. of
events per category

Project P1-2 no. of
events per category

Data knowledge 23 35
Process knowledge 31 32
Innovation knowledge 20 10
TOTAL 74 77

As shown in Table 4.7, Project P1-2 involved twelve more knowledge events than

Project P1-1 with regard to the acquisition of data knowledge (e.g., reading manuals

and websites). The two projects had almost the same number of events with regard

to process knowledge (e.g., how to use tools). Project P1-1 had twice the number of

knowledge events related to innovation knowledge than Project P1-2.

4.3.3 Results of problem/solution mapping (step 3): Event chains and
event chain tables

For each project, the knowledge events in its knowledge register were traversed to

establish problem/solution mappings; these were done based on the description of

the knowledge events and the recorded predecessors. From these findings, event

chains for the project were determined. The event chains for each project were

maintained by assigning to each event chain a number (chronologically starting at 1),

and a brief description stored in an event chain table (note the event chain table

incorporates event chains from all members of the team). The event chain number

was placed in the corresponding knowledge event entries in the knowledge register.

The column titled ‘Evnt Chn’ in the knowledge registers, in Appendices A.1 and A.2,

 4-22

shows event chain numbers for the knowledge events for Experiment 1. The event

chain tables for Projects P1-1 and P1-2 are shown in Tables 4.8 and 4.9 respectively.

Project P1-1 had 28 event chains, whereas Project P1-2 had 45 event chains.

Table 4.8: The event chains for Project P1-1 (SoSiG).
Event
Chain

Starting
Event No.

Event chain summary

1 1 Identifying embedded platform and lab computers to use
2 3 Connecting to network
3 5 Connecting CSB337 to PC
4 11 Investigating umon source
5 14 Deciding which software tools to use for CSB337
6 18 Using Toolchain: arm-linux
7 21 Identifying method to develop software
8 22 Writing example C program for CSB337
9 24 Learning how to use a Makefile
10 28 Installing program on CSB337
11 32 Assessing why program crashes
12 36 Running program
13 37 Reading user interface spec
14 38 Designing user interface
15 39 Learning how to send bytes
16 40 Learning how to read bytes
17 41 Implementing command processor
18 43 Developing start-up module
19 47 Optimising jump table
20 48 Looking at LED control
21 51 Converting strings to integers
22 54 Designing I2C Interface for actuator board containing DAC
23 58 Connecting up actuator board
24 59 Powering actuator board
25 61 Designing I2C software interface
26 68 Improving timing
27 69 Improving communications
28 73 Preparing final prototype for demo

Table 4.9: The event chains for Project P1-2 (ANTCON).
Event
Chain

Starting
Event No.

Event chain summary

1 1 Identifying components to use for interface board
2 2 Deciding how to manage files
3 3 Mounting samba
4 4 Connecting up CSB337
5 6 Solving power supply problems
6 8 Identifying suitable software for CSB337
7 9 Learning about MicroMonitor
8 10 Assessing software development options

 4-23

9 11 Looking at Linux options
10 12 Assessing whether to use RTEMS as the O/S
11 15 Studying MicroMonitor training guide
12 16 Reading documentation supplied with MicroMonitor source
13 17 Solving problem of communicating with CSB337 over Ethernet
14 21 Identifying program to use for diagrams
15 22 Constructing interface board
16 23 Learning how to use Arm-Linux
17 27 Selecting operating system and its toolchain
18 30 Acquiring parts parts for interface board
19 32 Fixing network
20 35 Configuring ATFTP
21 36 Executing example application on MicroMonitor
22 37 Fixing linker options
23 38 Compiling Snapgear
24 39 Installing uCliux rpms
25 46 Finding Arm-linux new option
26 47 Compiling arm-linux
27 50 Installing arm-linux
28 51 Booting arm-linux
29 52 Deciding how to use the Ramdisk
30 53 Installing ramdisk
31 54 Testing and optimising ramdisk
32 55 Tackling problems with DC motor interface
33 56 Designing AC-DC circuit
34 58 Examining Busybox
35 60 Using CSB 337 Linux networking
36 62 Using new snapgear toolchain
37 63 Implementing envelope detector method
38 64 Researching ADCs
39 67 Configuring Busybox
40 68 Implementing device drivers
41 72 Programming LED driver
42 73 Determining AT91RM9200 interrupt techniques
43 74 Implementing I2C driver
44 76 Coding antenna control module
45 77 Creating user interface

It is clear from Tables 4.8 and 4.9 that there were commonalities between the two

projects with regard to their event chains. For example, event chain 4 in Project P1-1

involved learning how to use MicroMonitor, which was similar to event chain 7 in

Project P1-2. However, there were also differences between the two sets of event

chains. For instance, Project P1-2 developers had more knowledge events relating to

the use of embedded Linux than the developers working on Project P1-1 did. The

construction of the event chains for Experiment 1 took approximately 16 hours.

 4-24

4.3.4 Categorising knowledge events according to productive and non-
productive knowledge (step 4)

The many event chains that linked knowledge events to dead-ends or to solutions

had to be followed in order to determine which events were ultimately non-productive

(ending in a dead-end) or productive (contributing towards a solution used in building

the final product). This allowed for the isolation of ‘success paths’, that is, paths that

connected the root event to events that did not terminate in a dead-end but in one

that was used in developing the final product. In order to determine these ‘success

paths’, and the corresponding productive or non-productive knowledge events in the

knowledge register, all dead-ends in the knowledge register had to be found. The

predecessors of each of these dead-end events then had to be traced backwards to

establish which of its predecessors had resulted in productive or non-productive

knowledge, as detailed in Section 4.2.8.3. During this process of ‘backwards tracing’,

the entries in the knowledge register were marked as producing productive or non-

productive knowledge. Thereafter, the time spent on each task was separated into

productive and non-productive time. The subsections below further describe these

processes and the results obtained.

4.3.4.1 Classifying knowledge events as productive or non-productive

During the ‘backwards tracing’ process, entries in the knowledge register were

marked as having resulted in productive or non-productive knowledge. The ‘P’ and

‘NP’ columns were added to the knowledge register for this purpose; the ‘P’ column

denoted the acquisition of productive knowledge, whereas the ‘NP’ column indicated

the acquisition of non-productive knowledge.

The categorisation of data, process, and innovation knowledge (as per Section 4.3.3)

was maintained. Each knowledge event was thus effectively classified into one of six

categories (i.e., productive data knowledge, non-productive data knowledge,

productive process knowledge, non-productive process knowledge, and so on).

Tables 4.10 and 4.11 show the total number of productive and non-productive

knowledge events for the projects, separated into the aforementioned categories of

data, process and innovation knowledge.

 4-25

Table 4.10: Number of knowledge events per knowledge category for P1-1.
Knowledge Type: P1-1 Productive

knowledge events
Non-productive
knowledge events

Total
knowledge events

Data Knowledge 5 18 23
Process Knowledge 10 20 30
Innovation Knowledge 8 12 20
Combined 23 50 73

Table 4.11: Number of knowledge events per knowledge category for P1-2.
Knowledge Type: P1-1 Productive

knowledge events
Non-productive
knowledge events

Total
knowledge events

Data Knowledge 12 23 35
Process Knowledge 15 17 32
Innovation Knowledge 6 4 10
Combined 33 44 77

For Project P1-1, 23 knowledge events resulted in productive knowledge, whereas

50 events resulted in non-productive knowledge. In comparison, Project P1-2 had 33

productive and 44 non-productive knowledge events. Although Project P1-2 had

three more knowledge events than Project P1-1, Project P1-2 had a higher

percentage of events from which productive knowledge was acquired: Project P1-1

had 31% productive events, whereas Project P1-2 had 43%.

It took approximately 12 hours to classify all the Experiment 1 knowledge events as

generating either productive or non-productive knowledge.

4.3.4.2 Calculation of non-productive and productive time

The ‘time’ column in the knowledge registers that was used to record the amount of

time spent on each knowledge event, was replaced by two columns: the ‘PT’ column

to record productive time, and the ‘NT’ column to record non-productive time. Initially,

the ‘PT’ column was assigned to the values in the previous ‘time’ column.

While performing the ‘backwards tracing’ process for classifying events as either

productive or non-productive, the ‘PT’ and ‘NT’ columns were respectively used to

record hours spent acquiring productive and non-productive knowledge. It was not

always a simple matter of assigning the ‘NT’ entry to the ‘PT’ value (and setting ‘PT’

to zero) for events found to be non-productive. Instead, the data sources were

revisited to establish a closer approximation of how time was divided between

productive and non-productive time.

 4-26

Tables 4.12 and 4.13 show the total number of productive and non-productive hours

spent on knowledge events. The ‘time’ column sets out the total time spent on

knowledge events per knowledge category, and the ‘% of total time’ column gives

this time as a percentage of the total time spent on knowledge events (e.g., in P1-1,

17 hours was spent acquiring data knowledge, which was 29% of the total time spent

on all categories of knowledge events).

Table 4.12: Breakdown of knowledge acquisition times for P1-1 (SoSiG).

Knowledge
Acquired

Time
(h)

% of total
time

Productive
time (h)

Non-productive
time (h)

Data knowledge 17 29% 3 14
Process knowledge 14 24% 4 10
Innovation knowledge 27 47% 14 13
TOTAL 58 100% 21 37

Table 4.13: Breakdown of knowledge acquisition times for P1-2 (ANTCON).

Knowledge Acquired Total Time
(h)

% of total
time

Productive
time (h)

Non-productive
time (h)

Data knowledge 36 40% 13 23
Process knowledge 28 31% 11 17
Innovation knowledge 26 29% 15 11
TOTAL 90 100% 39 51

The results shown in Tables 4.12 and 4.13 indicate that 32 more hours were spent

on knowledge events in Project P1-2 than in Project P1-1. Furthermore, there was

no correspondence between the percentages of time spent on knowledge events

between knowledge categories. However, almost the same amount of time was

spent on acquiring innovation knowledge in both projects: 27 hours for Project P1-1

and 26 hours for Project P1-2.

4.3.5 Finalizing the knowledge registers (step 5)

This step involved a final comparison of the data sources and the knowledge register

to ensure that there were no omissions or knowledge events lost during the

preceding steps. In addition, the predecessors of each knowledge event were

checked to ensure that no predecessor links were connecting to an event with a

higher number (i.e. one that occurred later), as such mistakes would have

represented the data incorrectly and caused the PTHC program to hand during trend

analysis.

 4-27

4.4 Trend analysis and graphing

The first version of the data analysis method involved determining the amount of

productive time and non-productive time spent on each knowledge event, as per the

procedure described in Section 3.9.5. The results of applying this procedure are

given in Section 4.3.4 (the results in that section are based on all knowledge events

being categorised in relation to the final product).

In order to visualize trends in knowledge acquisition during the development process,

the analysis process of classifying events as either productive or non-productive was

applied incrementally, starting with event 0 and adding one event entry at a time,

while maintaining a history of the changes in total non-productive and productive time

as described in 4.2.8.3. The results presented in Section 4.3.4 show only the final

totals for these times, whereas the graphs for trend analysis show the fluctuations in

these times after each knowledge event has been completed. A program, referred to

as the Partitioned Time History Calculator (or PTHC), was developed to perform this

analysis procedure automatically.

The PTHC program loads the spreadsheet that represents a knowledge register, and

converts it into an internal graph representation, where each node of the graph refers

to a knowledge event, and each edge to a predecessor link. No pre-processing is

performed on the input prior to constructing the graph.

Each node N[i] of the graph contains the following fields: k_type, p_time, np_time and

marker. These fields respectively maintain the following: 1) the predominant type of

knowledge produced in the knowledge event (i.e., data, process or innovation); 2) the

productive time in hours, 3) the non-productive time in hours, and 4) a marker value.

Initially, all marker fields of the nodes are marked ‘excluded’ and an output file is

created. Each node N[i] of the graph is then traversed in order from the start node,

with the following four steps being performed for each node:

1. If node N[i] is a dead-end, its marker is set to ‘non-productive’, and the

following recursive method is carried out:

o Each predecessor node P[j] of node N[i] not marked as ‘excluded’ and

having no predecessors in the graph marked ‘productive’ or

‘excluded’, is marked as ‘non-productive’ and its np_time field is set to

the sum p_time + np_time, where p_time is set to 0. This same

 4-28

2. If node N[i] is not a dead-end, then:

o If p_time field of N[i] is greater than 0, it is marked as ‘productive’,

otherwise it is marked ‘non-productive’.

3. The following computation is done:

o Six accumulator variables are set to 0; these are named: sum_pd,

sum_pp, sum_pi, sum_npd, sum_npp, and sum_npi. These

accumulators respectively track time spent acquiring: productive data,

productive process, productive innovation, non-productive data, non-

productive process and non-productive innovation knowledge.

o The entire graph is traversed from the start node. For each node X[i] in

the graph that is not marked ‘excluded’, the following is done:

 If field k_type of X[i] is set to ‘data knowledge’, then the value

of field p_time is added to sum_pd, and the value of field

np_time is added to sum_npd.

 If field k_type of X[i] is set to ‘process knowledge’, then the

value of field p_time is added to sum_pp, and the value of field

np_time is added to sum_npp.

 If field k_type of X[i] is set to ‘innovation knowledge’, then the

value of field p_time is added to sum_pi, and the value of field

np_time is added to sum_npi.

4. The values of the accumulators are added to the output file.

If the knowledge register input to the program has n knowledge events, then the

output file of the program comprises n rows, with each row comprising six values that

indicate the totals for productive time and non-productive time divided according to

the categories of data, process and innovation knowledge. The time complexity of

this algorithm is O(n3), considering that, in the worst case, each iteration of the first

step could involve O(n2) operations.

Output from the PTHC was used to produce productivity graphs, which are graphs

that represent changes in productive versus non-productive time over the sequence

of knowledge events for the project. The output provided by the program allowed the

results to be separated into the data, process and innovation knowledge categories,

which enabled separate graphs to be plotted for each knowledge category.

 4-29

The sections that follow provide results for the trend analysis process. The results

are divided according to the two projects of Experiment 1: Project P1-1 results are

reviewed in Section 4.4.1, and Project P1-2 results are presented in Section 4.4.2.

Section 4.4.3 discusses commonalities of the results, which leads into a revision of

the data analysis methods for Experiment 2 and the construction of ESAOA KMS

version 1.

4.4.1 Results of P1-1 (SoSiG)

The productivity graphs and summary tables for Project P1-1 are separated into the

two subsections that follow.

4.4.1.1 Productivity graphs

The productivity graphs for P1-1 (SoSiG) are shown in Graph 4.1. The x-axis for

each graph shows a progression of knowledge acquisition events in chronological

order. The x-axis labels are the knowledge event numbers. The y-axis shows the

accumulating sum of hours spent on these knowledge production tasks, from event 1

to the nth event (corresponding to the last event on the x-axis). Note that the graph is

essentially showing the integral of time with respect to the learning event, which

means that the last events are not necessarily taking considerably longer than earlier

events.

 4-30

0
5

10
15
20
25
30
35
40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73
(b) Data

Ti
m

e
(h

)

0
5

10
15
20
25
30
35
40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

(c) Process

Ti
m

e
(h

)

0
5

10
15
20
25
30
35
40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73
(d) Innovation

Ti
m

e
(h

)

Productive time Non-productive time Total Time

0
10
20
30
40
50
60
70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

(a) Combind

Ti
m

e
(h

)

Knowledge event number

Knowledge event number

Knowledge event number

Knowledge event number (a) Combined

Graph 4.1: Productivity graphs for Project P1-1 (SoSiG) showing accumulation of
productive and non-productive times.

 4-31

Graph 4.1(a) shows the sum of productive time versus non-productive time for all

knowledge categories combined. Graphs 4.1(b), 4.1(c), and 4.1(d) respectively

separate out productive and non-productive time for data, process, and innovation

knowledge categories.

Dips in the trend lines for productive time and non-productive time can occur

because time that was originally classified as productive in one event can become

reclassified as non-productive time because of a later event, which is accounted for

by the algorithm of the PTHC program (see Section 4.4). Similarly, the reverse can

occur: non-productive time can become productive time when a previously

determined dead-end is revisited (see Section 4.2.8 for more detail on the productive

and non-productive knowledge categories).

Graph 4.1(a) shows the total time (TT) trend line ending at the value 58,

corresponding to the total of 58 hours spent in knowledge events for the acquisition

of ESAOA knowledge. These 58 hours of work reflect only the time spent in

knowledge acquisition tasks; the remaining effort involved in the development project

itself, such as design and documentation, is not factored into this total of 58 hours.

The TT trend shows that few of these tasks took more than 1 hour. Event number 66

took the most time, and involved learning to implement an interrupt routine; this event

was part of event chain 25, which involved solving an ‘I2C software interface’

problem (see Table 4.8, which describes the event chains for Project P1-1).

Graph 4.1(b) shows time spent acquiring data knowledge. Little acquisition of data

knowledge occurred in the first 6 events; the first acquisition of data knowledge was

in event 7. In these first events concerning data knowledge, the developers read

about particular Linux-based tools, which they needed for testing the embedded

evaluation board. Between events 10 and 26, the knowledge produced in the events

shifted between the productive and non-productive categories. During these events,

the developers learned about the hardware platform, chose development tools, and

learned to use tools; these activities primarily involved finding and assimilating data

knowledge. Much of the data knowledge obtained in these early stages was not

used, or led to dead-ends, which accounts for the shifts of time between the

productive and non-productive categories. For example, the developers spent time

reading about certain tools (events 11 and 13) only to disregard them later.

 4-32

Graph 4.1(c) shows time spent acquiring process knowledge. Productive time spent

formulating process knowledge increased gradually throughout the project. These

events involved testing development steps (e.g., changes in command-line

parameters in event 50). Acquiring knowledge of new development processes (i.e.,

revising steps used in development) was accomplished speedily, as reflected by the

average event duration of 10 minutes in the TT trend. However, many of the changes

were reversed shortly afterwards, either in favour of a better approach, or because

the new method interfered with an existing constraint. This accounts for the

comparatively large increases in non-productive knowledge associated with

comparatively small increases in productive knowledge. The most noticeable case,

comprising events 31 to 36, involved determining how to compile and upload an

experimental program to the embedded platform. Multiple attempts were made to

solve this problem (an average of 1.3 hours for each event), but only one of the

attempts was deemed successful.

Graph 4.1(d) shows time spent acquiring innovation knowledge, which only started at

event 30. This first event involved writing an experimental program to test the design

of a communications protocol. The TT trend line for innovation is flat until it reaches

this point, indicating that the developer first had to learn about the hardware platform

and tools before being in a position to write experimental code that could be

executed on the platform. Of the four graphs in Graph 4.1, only the innovation graph

shows the non-productive time trend line below the productive time trend line for

most of the project. The productive time for this category increases in larger jumps

than the other categories. These characteristics are likely due to the developers

having formulated an effective development process with which design ideas could

be efficiently tested and then refined. Many of these tests were deemed successful;

therefore, the time spent performing these experiments remained classified as

productive time.

4.4.1.2 Productive and non-productive time summary tables

Table 4.14 is a summary table for Project P1-1. The table shows that the developers

spent a total of 17 hours (29 percent of the total 58 hours) acquiring data knowledge,

14 hours (24 percent) acquiring process knowledge, and 27 hours (47 percent)

acquiring innovation knowledge. Significantly more time was involved in acquiring

innovation knowledge than either data or process knowledge. Of the total 58 hours

spent on knowledge acquisition, there were 14 hours of non-productive data time, 10

hours of non-productive process time, and 13 hours of non-productive innovation

 4-33

time, amounting to 37 non-productive hours in total (64 percent of 58 hours). In total,

there were 21 productive hours (36 percent of 58 hours), showing that more time was

spent obtaining non-productive knowledge than productive knowledge.

Table 4.14: Breakdown of knowledge acquisition times for P1-1 (SoSiG).

Knowledge Acquired Total
Time (h)

% Project
Time

Productive
Time (h)

Non-productive
Time (h)

Data knowledge 17 29% 3 14
Process knowledge 14 24% 4 10
Innovation knowledge 27 47% 14 13
TOTAL 58 100% 21 37

4.4.2 Results of P1-2 (ANTCON)

The productivity graphs and summary tables for Project P1-2 are separated into the

two subsections that follow.

4.4.2.1 Productivity graphs

The productivity graphs for Project P1-2 are shown in Graph 4.2. As in the

corresponding graphs for SoSiG, Graph 4.2(a) shows changes in productive time

versus non-productive time for all knowledge types combined, and Graphs 4.2(b), (c),

and (d) respectively separate out productive and non-productive time for the data,

process, and innovation knowledge categories.

The TT trend in Graph 4.2(a), the combined graph for P1-2, has a different shape to

the one for P1-1. In the P1-1 graph, there is one significant step around event 65; but

for the P1-2 graph, there are multiple steps, in particular around events 32, 53, and

75. This is due to the P1-2 developers taking a longer time to complete some of

these tasks. In the P1-1 graph, the PT trend remained below the NT trend from event

four; but in the P1-2 (ANTCON) graph, the PT trend remained above the NT trend

from event 38 – showing that the total amount of productive time for P1-2 outweighed

the total non-productive time for almost the entire first half of the project. The graph

of Graph 4.2(a) also shows that a total of 90 hours were spent on knowledge events,

which is 32 hours more than P1-1.

 4-34

0
5

10
15
20
25
30
35
40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79
(b) Data

Ti
m

e
(h

)

0
5

10
15
20
25
30
35
40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

(c) Process

Ti
m

e
(h

)

0
5

10
15
20
25
30
35
40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79
(d) Innovation

Ti
m

e
(h

)

Productive time Non-productive time Total Time

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

(a) Combind

Ti
m

e
(h

)

Knowledge event number

Knowledge event number

Knowledge event number

Knowledge event number (a) Combined

Graph 4.2: Productivity graphs for Project P1-2 (ANTCON) showing accumulation of
productive and non-productive times.

 4-35

Graph 4.2(b) illustrates the trends for acquiring data knowledge. The productive time

trend line of this graph shows a focused effort spent between events 23 and 32,

where an increase of 8 productive time hours occurred. For these events, the

developer was focused primarily on learning about an embedded Linux operating

system and searching for solutions to TFTP networking problems. At event 38, the

developer decided to reject the first embedded operating system, resulting in

productive time spent on the first operating system becoming non-productive time

(the dip in the productive time trend line at event 38 reflects this decision).

Graph 4.2(c) illustrates the trends in acquiring process knowledge. Based on the

graph, it appears that process knowledge was acquired in two parts: the first part

going from event 1 to 44, while the second part continued from event 45 to 78. In

event 45, the developers decided to reject the second embedded operating system

together with its associated cross-compiling toolchain, which had been installed and

configured earlier – as a result, both the time spent learning the toolchain and the

time devoted to learning the embedded operating system became non-productive

time. Event 38, in which the developers rejected the first operating system, caused a

transformation of productive time to non-productive time only in terms of data

knowledge, because process knowledge was not acquired for the first embedded

operating system.

Most of the time spent acquiring innovation knowledge, shown in Graph 4.2(d), was

accumulated over the last quarter of the project, with the exception of event 22 during

which the developer tested code for controlling a prototype interface board. The

second instance of innovation only happened later, at event 56.

4.4.2.2 Productive and non-productive time summary tables

Table 4.15 indicates that the P1-2 developers spent a total of 36 hours (40 percent of

the total 90 hours) acquiring data knowledge, 28 hours (31 percent) acquiring

process knowledge, and 26 hours (29 percent) acquiring innovation knowledge.

Thus, in P1-2, acquiring data knowledge took the greatest proportion of time of all

three knowledge categories. The project also involved 23 hours of acquiring non-

productive data knowledge, 17 hours of acquiring non-productive process

knowledge, and 11 hours of acquiring non-productive innovation knowledge.

Accordingly, the knowledge events collectively consumed 39 productive hours (43

percent of the total 90 hours), compared to the total of 51 non-productive hours (57

percent of the total time).

 4-36

Table 4.15: Breakdown of knowledge acquisition times for P1-2 (ANTCON).

Knowledge Acquired Total
Time (h)

% Project
Time

Productive
Time (h)

Non-productive
Time (h)

Data knowledge 36 40% 13 23
Process knowledge 28 31% 11 17
Innovation knowledge 26 29% 15 11
TOTAL 90 100% 39 51

4.4.3 Synopsis of Experiment 1 results

The overall results for the Experiment 1 projects show that, for both projects:

1) Productive time accounted for less than half the total time spent in learning tasks

for each case study;

2) Each hour of productive time was generally achieved after multiple hours of non-

productive time; and

3) The ratios between productive and non-productive time were neither consistent

between knowledge categories, nor stable over time. The ratios of time spent on

the different learning tasks for the three categories of productive time, viz. data,

process, and innovation, were 3:4:14 for Project P1-1, and 13:11:17 for Project

P1-2.

4) Production of innovation knowledge tended to start only after an initial

accumulation of data and process knowledge; in Project P1-1 innovation started

about halfway through the project, while in Project P1-2 innovation started only in

the last quarter of the project.

Acquisition of innovation knowledge was fundamental to the completion of both

projects, but the acquisition of this knowledge started at a late stage in both projects.

Time spent acquiring productive innovation knowledge accounted for a relatively

small part of the time spent in learning tasks, viz. less than a quarter of the time in

both cases: 14 of 58 hours for Project P1-1, and 17 of 90 hours for Project P1-2.

The amount of time spent acquiring data and innovation knowledge differed between

projects. However, almost the same amount of time was spent acquiring innovation

knowledge in both projects; 27 hours in Project P1-1 and 28 hours in Project P1-2. Of

the time spent obtaining process knowledge, 24% of the Project P1-1 time was

productive, whereas 31% the Project P1-2 time was productive. This result suggests

that a team of two novices needs to spend a certain minimum time acquiring process

 4-37

knowledge to achieve effective development strategies for the hardware platform

prescribed.

In both projects, the acquisition of data knowledge was often followed by the

acquisition of either process knowledge or innovation knowledge, or by a dead-end.

For example, in event chain 6 there were three knowledge events concerning data

knowledge followed by one more event in which process knowledge was acquired. In

Project P1-1, there were relatively few event chains in which only data knowledge

was acquired (these were event chains 8, 13, 15 and 16). Project P1-2 had a larger

number of event chains (a total of 13) in which only data knowledge was obtained;

but, unlike Project P1-1, most of these event chains comprised few (one or two)

knowledge events, many of which resulted in non-productive knowledge. This finding

suggests that P1-2 developers may have lost their focus more often than P1-1

developers did (e.g., reading up on information that was of little use to the project or

not of immediate use to solving the problems they encountered).

These results of analysing the data obtained from Experiment 1, and the artefacts

produced by the developers working on the projects, were used in constructing

ESAOA KMS version 1. The next section (Section 4.5) describes the modifications

that were made to the framework analysis strategy, and it is followed (in Section 4.6)

by a description of ESAOA KMS version 1 that was later tested in Experiment 2.

4.5 Design of the second iteration of framework analysis

Modifications were made to the initial data capture, data analysis, and trend analysis

methods that had been established during the preliminary study and applied to the

Experiment 1 data. These modifications are a response to insights gained while

obtaining the initial Experiment 1 results. More specifically, the modified analysis

methods were applied to the Experiment 1 data, whereas the modified data capture

and analysis methods were applied to Experiment 2. Section 4.5.1 details the

changes made to the data capture procedures, while Section 4.5.2 describes the

changes made to the data analysis methods.

 4-38

4.5.1 Refinements to data capture methods for Experiment 2

The main difficulties encountered in data capture for the first experiment were:

(1) Much of the data were not useful in identifying ESAOA KM activities;

(2) The large amount of time demanded from both researcher and ES developers in

terms of capturing data; and

(3) Duplication (the same information was represented multiple times in the data).

Each point above is elaborated on in the subsections below.

4.5.1.1 Focusing on the knowledge-rich data sources

Developer logs, code reviews and email archives were found to be the most useful

(and ‘information rich’ [Kitamura et al., 2006]) data sources because these data were

created close to the time at which the ESAOA activities occurred. Email was

particularly useful, as it automatically recorded time and thread information (i.e.,

replies to questions). Consequently, a group forum was planned for Experiment 2 as

similar features are available with forums postings.

Analysing logs and email archives was easier and faster than analysing the minutes

of meetings. Minutes were in many cases handwritten, some (generally those

recoded by the novice engineers) containing cryptic short-hand, all of which took time

to decipher. Data obtained from both meeting minutes and design and code review

meetings resulted in identifying few additional knowledge events from those identified

in the other data sources. Code reviews, which entailed looking through code

produced by the developers, were beneficial to tracking solutions (or confirming

which solutions were not applied to the final product, thus establishing dead-ends).

However, looking at the designs (e.g., schematics and block diagrams) generally

provided no insight into ESAOA activities.

During meetings, the developers seldom remembered past learning tasks accurately

and frequently used their logs and project artefacts to jog their memory. For these

reasons, minutes from meetings and product demonstrations were not used as

primary data sources for Experiment 2.

Although product demonstrations in Experiment 1 were found to be of little benefit to

data collection, demonstrations were retained in Experiment 2 as they were used to

evaluating final products and the quality of the knowledge produced by the teams.

 4-39

Interviews with the developers were necessary to refine the interdependency

between ESAOA activities, thus providing insights not easily obtained from the other

data sources.

4.5.1.2 Changing the unit of analysis to event chains

The developers found it faster and more beneficial to their work, to log keywords

describing a problem, and to give brief descriptions of solution attempts, related to

ESAOA activities and associated knowledge-seeking tasks. They found it too

laborious to capture detailed descriptions of their activities as originally requested of

them. Thus, a log tended to become a map of problems and corresponding solution

attempts. This structure was similar to that of email conversations. A similar structure

was observed in event chains (which were used to determine dead-ends and non-

productive knowledge events). For this reason, a coarser level of ‘granularity’

[Nyerges et al., 2002] was used for the data analysis phase, by making use of event

chains as a unit of analysis instead of independent knowledge events. This change

was expected to speed-up the data analysis method without significantly changing

the overall results of the analysis process (Section 4.5.3 compares results of the old

and new analysis methods).

Experiment 1 contained two projects, while 13 projects were planned for Experiment

2. In addition, with regard to the duration of projects, the first experiment projects

took approximately three months to complete, while those of the second experiment

were planned for the duration of eight months. This caused additional concern with

regard to the large amount of data that would be generated across the thirteen

projects over the longer period. For Experiment 1, the developers were requested to

record how long each of the knowledge-seeking tasks took. However, the developers

frequently neglected to complete these time entries, and often did not review

previous entries to record whether they had been completed – the developers

complained that this need to track their time and review entries took too long and

tended to diverted them from their main priority of completing their project. This

resulted in significant amounts of time spent filling in missing details, which, if the

same problem occurred in Experiment 2, would have made the analysis procedure

excessively lengthy. Consequently, the decision to maintain timing records for each

knowledge events was abandoned in Experiment 2. Event chains used in the revised

analysis method were thus associated with a count of knowledge events, instead of

with hours of productive or non-productive time.

 4-40

4.5.1.3 Data capture supporting event chains

These changes led to the coarser, but less time-consuming, strategy for analysing

knowledge events in terms of event chains and knowledge occurrences (see Section

4.5.2.1) per event chain. Based on the changes discussed above, the data capture

method for use in Experiment 2 focussed on:

(1) Developer logs that followed the problem/solution mapping schema;

(2) Email and online forum correspondence archives; and

(3) Code reviews

These changes supported representation of the process of ESAOA knowledge

acquisition and production in terms of event chains. This necessitated a change to

the data analysis method.

4.5.2 Changes to the analysis methods

4.5.2.1 Refinements of data synthesis methods – using knowledge occurrence

The data from Experiment 1 included the number of hours spent in each knowledge

event. As argued in Section 4.5.1, gathering data on the time spent for each

knowledge event involved a significant effort, and the data capture method was

consequently streamlined for Experiment 2, focusing on problem/solution mapping

and maintaining the number of knowledge events per event chain.

The knowledge register was modified to systematise data according to knowledge

occurrences and event chains. The term knowledge occurrence is defined as the

existence of a knowledge event; a knowledge occurrence is thus a further abstraction

of a knowledge event, indicating the existence of an event without providing specific

details about what the event involved. Knowledge occurrences provided a

quantitative technique to associate each event chain with the number of knowledge

events it comprised per knowledge category – event chains were thus measured

according to knowledge occurrences instead of hours.

The classification of knowledge occurrences into the categories of productive and

non-productive knowledge were all done in respect to the final product, in other

words, once the last entry had been added to the knowledge register. This eliminated

the laborious back tracing process done for the earlier version of the trend analysis

method (in the earlier version of trend analysis, each time a knowledge events was

 4-41

added to the graph, all previous knowledge events were back traced to determine if

they had become non-productive in respect to the version of the product at that time).

In the revised data analysis method, a brief description of each event chain was

entered into an event chain table for the project concerned. The rows of the

knowledge register maintained information for each knowledge occurrence, the event

chain of which it was a part, and the main category of knowledge that was produced

during the event. Each knowledge occurrence entry was added into the knowledge

record chronologically in the order of the event chain (i.e., the knowledge register

grouped events into event chains, and sorting these by event chain number, and then

by event number). Keywords indicating artefacts and tools used during the

association knowledge events were also added to the knowledge register, as this

information was expected to be potentially useful when refining the KMS.

Table 4.16 shows how the event chain table (see Table 4.8) and knowledge register

(Appendix A.1) for Project P1-1, produced by the earlier analysis method, was

converted into the new version of the knowledge register according to the refined

data analysis method. The table has twelve columns. The first four columns display:

the event number (where 1 corresponds to the first knowledge occurrence for the first

event chain); the data source type (e.g., ‘M’ for meeting, ‘L’ for log); the project

number; and the event chain number. The ‘KD’, ‘KP’, ‘KI’, ‘PK’ and ‘NPK’ columns

are used to represent the category of knowledge produced, respectively: data

knowledge, process knowledge, innovation knowledge, productive knowledge or non-

productive knowledge. Each of these columns either has the value ‘1’, indicating that

most of the knowledge produced in the event was in that knowledge category, or it is

blank, to indicate that little knowledge produced in the event fell into that category.

The last three columns were used to record: names of tools, names of artefacts or

components, and other comments relating to the knowledge event.

Table 4.16: Excerpt from knowledge register for Project P1-1 (SoSiG).
Event
No.

Type Project Event
Chain

KD KP KI PK NPK Artefacts:
Tools

Artefacts:
components

Comments

1 M 1 1 1 1
2 M 1 1
… … … … … … … … … … … …

11 L 1 4 1 1
umon source,
umon manual

Download umon
source, too much
reading to get
through.

 4-42

4.5.2.2 Refinements to graphing methods – knowledge occurrence graphs

As explained above, knowledge registers were changed to maintain knowledge

occurrences per event chain. Trend analysis was consequently changed to perform

graphing of knowledge occurrences instead of productive and non-productive time.

For each of the 13 projects in Experiment 2, the knowledge register was used to plot

knowledge occurrence graphs, which show trends of productive or non-productive

knowledge production, for event chains, separated into the data, process and

innovation knowledge categories.

In Section 4.5.3, the list of events and event chains produced in this experiment are

used to produce knowledge occurrence graphs for the Experiment 1 projects; these

graphs are then used to compare and contrast the results of the initial data analysis

method with those using the revised method.

4.5.3 Establishing a basis for comparison between experiments using
knowledge occurrences

The original graphs for Projects P1-1 and P1-2 represented time as either productive

or non-productive relative to the state of the prototype at that particular event. As

detailed above, this data analysis method was revised to use knowledge occurrences

(explained in Section 4.5.2.1). The knowledge occurrences were now classified as

productive and non-productive knowledge in reference to the final prototype (instead

of in reference to the state of the product at the time the knowledge event occurred).

The strategy described in Section 4.5.2 was applied to the data captured for projects

P1-1 and P1-2 to produce a list of knowledge occurrences and then knowledge

occurrence graphs for the projects. Sections 4.5.3.1 and 4.3.5.2 present the results

and compare them with those obtained using the earlier analysis method. These

results provide an accurate basis for comparing the results of the two experiments.

4.5.3.1 Knowledge occurrence tables and graphs for P1-1 (SoSiG)

For Project P1-1, there were 74 knowledge occurrences, i.e., one knowledge

occurrence for each knowledge event (as per the analysis of data performed in

Section 4.3.1). This total was divided into 23 data knowledge occurrences, 31

process knowledge occurrences and 20 innovation knowledge occurrences (see

Table 4.17). A percentage breakdown in respect of data, process and innovation

knowledge is shown in Table 4.18 (calculated from the statistics in Table 4.17).

 4-43

Table 4.17: Knowledge occurrences per knowledge type for P1-1.

Knowledge Type: P1-1 PK NPK Tot
Data knowledge 5 18 23
Process knowledge 10 20 30
Innovation knowledge 8 12 20
Combined 23 50 73

Table 4.18: Productive and non-productive knowledge within knowledge types for P1-1.

Knowledge Type: P1-1 PK NPK Tot
Data knowledge 22% 78% 100%
Process knowledge 33% 67% 100%
Innovation knowledge 40% 60% 100%
Combined 32% 68% 100%

Based on the results shown in Table 4.10 (which used the earlier analysis method),

percentages for productive and non-productive knowledge were determined based

respectively on the amount of time spent on productive and non-productive tasks.

This percentage breakdown is reproduced in Table 4.19.

Table 4.19: Productive and non-productive time percentages for P1-1.
Knowledge Type:
P1-1

Productive
Time (h)

Non-productive
Time (h)

% Productive
Time

% Non-productive
Time

Total

Data knowledge 3 14 17 % 82 % 100 %
Process knowledge 4 10 29 % 71 % 100 %
Innovation knowledge 14 13 52 % 48 % 100 %
TOTAL 21 37 36 % 64 % 100 %

In order to compare the knowledge occurrence strategy with the productive and non-

productive time method, absolute differences between the percentage breakdowns

for the knowledge categories were calculated. Table 4.20 shows the differences

between the percentage breakdown results of applying the two strategies.

Table 4.20: Differences of results between analysis methods for Project P1-1.

 Knowledge Type: P1-1 ∆PK ∆NPK
Data knowledge 5% 4%
Process knowledge 4% 4%
Innovation knowledge 12% 12%
 Average of above 7.0% 6.7%
Combined 4% 4%

The average change in the percentage breakdown for the categories was 7%.

Despite the change in the vertical and horizontal axes, and the associated disparity

between knowledge occurrences and productive / non-productive time, there are

similarities in the percentage breakdowns for productive and non-productive

knowledge. The differences in percentages for productive and non-productive data

 4-44

and process knowledge were between 4% and 5%. In terms of innovation, the

difference was 12% for both productive and non-productive knowledge. Since the two

methods produced very similar results, it was decided that the knowledge occurrence

strategy (and its significant savings in terms of effort for analysing data) would be

applied in Experiment 2.

The percentage breakdown of productive and non-productive knowledge

occurrences in relation to the total number of knowledge occurrences is shown in

Table 4.21. These statistics are used in Chapter 5 to determine the effect that the

ESAOA KMS has on projects in Experiment 2 in terms of the proportions of

knowledge produced in each category in comparison to the Experiment 1 results.

Table 4.21: Proportions of data, process and innovation knowledge for P1-1.

Knowledge Type: P1-1 PK/Total NPK/Total Total
Data knowledge 7% 25% 32%
Process knowledge 14% 27% 41%
Innovation knowledge 11% 16% 27%
TOTALS 32% 68% 100%

The knowledge occurrence graph for Project P1-1 is illustrated in Graph 4.3. The

vertical axis of the graph refers to knowledge occurrences. Unlike Graph 4.1 (the

productivity graph for Project P1-1, which had its vertical axis as time), Graph 4.3

shows only increases and plateaus. It does not show downward movement.

Downwards movement was seen in Graph 4.1 and was caused by an event that

resulted in a dead-end, thereby causing terminated predecessor events in the event

chain (i.e., events which had only non-productive successors) to be reclassified as

non-productive. This difference between the two graphs is a result of knowledge

occurrences in the revised data analysis method being classified only once the

project had been completed; moreover, the knowledge occurrences were classified in

relation to the final prototype.

The horizontal axis for Graph 4.3 is the event chain (whereas the horizontal axis for

Graph 4.1 is the event number). Graph 4.3 is therefore organised by event chains

rather than chronologically or by knowledge events. For example, event chain 1

typically has to do with role allocation (according to the Experiment 2 results). If the

team members continue to generate productive or non-productive knowledge with

regard to roles half-way (related to issues in event chain 1) through the project, this is

still added as a knowledge occurrence in event chain 1. This method results in

 4-45

stepped increases, as is visible in Graph 4.3. Generally, however, event chains are in

chronological order because they are numbered according to their occurrence in the

course of the project. For example, if event chain 1 starts at event 1, event chain 2

starts at event 6, and event chain 3 at event 10, then events 7 to 9 would be part of

either event chain 1 or 2).

Despite the differences in vertical and horizontal axes and despite the difference

between knowledge occurrences and productive / non-productive time, there are

similarities in the trends show in the two types of graphs.

 4-46

0
2
4
6
8

10
12
14
16

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

(b) Data

K
no

w
le

dg
e

O
cc

ur
an

ce
s

0

5

10

15

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

(c) Process

K
no

w
le

dg
e

O
cc

ur
an

ce
s

0

2

4

6

8

10

12

14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

(d) Innovation

Kn
ow

le
dg

e
O

cc
ur

an
ce

s

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

(a) Combind

K
no

w
le

dg
e

O
cc

ur
an

ce
s

Graph 4.3: Productive and non-productive knowledge occurrences for P1-1 (SoSiG).

 4-47

4.5.3.2 Knowledge occurrence tables and graphs for P1-2 (ANTCON)

For Project P1-2, there were 77 knowledge occurrences; one knowledge occurrence

for each event was determined from the analysis of data performed in Section 4.3.2.

This total was split into 35 data knowledge occurrences, 32 process knowledge

occurrences and 10 innovation knowledge occurrences (see Table 4.22).

As in the case of Project P1-1, a percentage breakdown for data, process and

innovation knowledge was calculated (see Table 4.23) from the statistics provided in

Table 4.22. Using the results in Table 4.11, percentages for productive and non-

productive knowledge were determined, using the amount of time spent on

productive and non-productive tasks (see Table 4.24). Absolute differences between

percentage breakdowns for the knowledge categories are shown in Table 4.25.

Table 4.22: Knowledge occurrences per knowledge type for P1-2.

 Knowledge Type: P1-2 PK NPK Tot
Data knowledge 12 23 35
Process knowledge 15 17 32
Innovation knowledge 6 4 10
Combined 33 44 77

Table 4.23: Productive and non-productive knowledge within knowledge types for P1-2.

 Knowledge Type: P1-2 PK NPK Tot
Data knowledge 34% 66% 100%
Process knowledge 47% 53% 100%
Innovation knowledge 60% 40% 100%
Combined 43% 57% 100%

Table 4.24: Breakdown of knowledge acquisition times for P1-2.

Knowledge Type:
P1-2

Productive
Time (h)

Non-productive
Time (h)

% Productive
Time

% Non-productive
Time

Total

Data knowledge 13 23 36 % 64 % 100 %
Process knowledge 11 17 39 % 61 % 100 %
Innovation knowledge 15 11 58 % 42 % 100 %
TOTAL 39 51 36 % 64 % 100 %

Table 4.25: Differences of results between analysis methods for Project P1-2.

 Knowledge Type: P1-2 ∆PK ∆NPK
Data knowledge 2% 2%
Process knowledge 8% 8%
Innovation knowledge 2% 2%
 Average of above 4.0% 4.0%
Combined knowledge 7% 7%

For this project, the percentage breakdowns for productive and non-productive

knowledge using the knowledge occurrence method and the productive / non-

 4-48

productive time method were very similar; there was an average difference of 4%.

The difference in productive knowledge was slightly higher in Project P1-2 than in

Project P1-1.

The percentage breakdown of productive and non-productive knowledge

occurrences in relation to the total number of knowledge occurrences is shown in

Table 4.26. These statistics are used in Chapter 5 to see the effect the ESAOA KMS

has on Experiment 2 in comparison to it not being used in Experiment 1.

Table 4.26: Proportions of data, process and innovation knowledge for P2-2.

Knowledge Type: P1-2 PK/Total NPK/Total Total
Data knowledge 16% 30% 45%
Process knowledge 19% 22% 42%
Innovation knowledge 8% 5% 13%
TOTALS 43% 57% 100%

The knowledge occurrence graph for Project P1-2 is shown by Graph 4.4 (the

productivity graph for this project is shown by Graph 4.2). As was seen in Graph 4.2,

the trends in Graph 4.4 also suggest that data knowledge tends to be acquired earlier

in the project, with a focused effort on acquiring process knowledge in the middle

quarter of the project. The dip in the productive time trend line at event 38 that was

seen in Graph 4.2 is now represented as earlier steps in non-productive time (at

events 28 and 37).

 4-49

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

(b) Data

K
no

w
le

dg
e

O
cc

ur
an

ce
s

0

5

10

15

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

(c) Process

K
no

w
le

dg
e

O
cc

ur
an

ce
s

0

1

2

3

4

5

6

7

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

(d) Innovation

Kn
ow

le
dg

e
O

cc
ur

an
ce

s

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

(a) Combind

K
no

w
le

dg
e

O
cc

ur
an

ce
s

Graph 4.4: Productive and non-productive knowledge occurrences for P1-2 (ANTCON).

 4-50

4.5.4 Overall results of Experiment 1 in knowledge occurrences

The differences in the percentage breakdowns shown in Table 4.20 and Table 4.25

show that the results produced by the two different data analysis methods were very

similar. Since the two methods produced similar results, it was decided that the

knowledge occurrence strategy (and its significant savings in terms of effort for

analysing data) would be applied in Experiment 2. Combined averages for Project

P1-1 and P1-2 are given in this section in terms of knowledge occurrences, which will

later be used to compare the averaged results for Experiment 2.

Overall, the average percentage of productive knowledge occurrences was 36% for

Experiment 1, and non-productive knowledge occurrences amounted to 64%. The

percentage breakdowns of averaged knowledge occurrences separated into the

knowledge categories are summarised in Table 4.27. Table 4.28 shows the

percentage of productive and non-productive knowledge occurrences per project.

Table 4.27: Average of productive and non-productive knowledge for knowledge
categories for Experiment 1.

Knowledge Type
% Productive
knowledge

% Non-productive
knowledge Total

Data knowledge 11% 29% 40%
Process knowledge 16% 25% 41%
Innovation knowledge 10% 11% 20%
TOTALS 36% 64% 100%

Table 4.28: Total productive and non-productive knowledge for Experiment 1.

Project
% Productive

knowledge
% Non-productive
knowledge Total

P1-1 32% 68% 100%
P1-2 40% 60% 100%
Average 36% 64% 100%

4.6 First application of framework construction: ESAOA KMS
version 1

The ESAOA KMS was designed around the generic structure of a KMS as presented

in Section 2.6.4; this structure comprises the six parts of: roles, groups, desires,

work, workflows, and artefacts [Van der Spek & Spijkervet, 1997]. The choice of

roles, desires, and other design aspects of the ESAOA KMS version 1 are based on

Experiment 1, and builds on the literature (see Chapter 2).

 4-51

An overview of the design and operation of ESAOA KMS version 1 is provided in

Section 4.6.1. Section 4.6.2 explains the concept of ESAOA workspaces and ESAOA

workstations, which were used to integrate aspects of the KMS as a unified system.

The ESAOA knowledge ontology is described in Section 4.6.3. The roles, groups and

their desires are detailed in Section 4.6.4. Artefacts and artefact classification

mechanisms of the ESAOA KMS are explained in Section 4.6.5. The workflows and

processes of the KMS are documented in Section 4.6.6, and they are arranged

according to the roles that perform them. Section 4.6.7 presents the software design

of the KM tools that form part of the ESAOA workspaces. Section 4.6.8 explains how

the ESAOA workspaces were implemented, packaged and distributed using ESAOA

workspace distributions.

4.6.1 Overview of ESAOA KMS version 1

The high-level design of ESAOA KMS version 1 comprises interlocking systems

called ESAOA workspaces (or just workspaces) for managing data, process and

innovation knowledge. These workspaces are designed to operate together in order

to drive an ES development team towards sharing information and producing

innovation knowledge early on in the project. An ESAOA workspace is a computer-

based work area that comprises a shell environment and a collection of soft artefacts

(i.e., digital, computer-based files) organised into a directory structure, which follows

a specific layout and classification schema, and has an integrated knowledge base,

ESAOA support tools, and a related collection of externally stored and maintained

development tools. An ESAOA workspace is accessed via an ESAOA workstation.

The soft artefacts of the workspace are accessed, organised, modified and

supplemented by the roles guided by processes of the ESAOA KMS. The above

mentioned aspects of the ESAOA KMS are summarised as follows:

• ESAOA workspace: digital work area, which integrates software tools and

digital artefacts, that developers work on;

• ESAOA workstation: the combination of a computer system, the physical

work area in which an ES is worked on, and the software tools (such as SSH

client programs) that provides the human/computer interface to an ESAOA

workspace;

• ESAOA roles: a description of responsibilities and characteristics that

individuals take on at certain times during development;

• ESAOA processes: provide KM guidelines for commonly occurring activities

carried out by one or more roles.

 4-52

The ESAOA procedures for the first version of the KMS (Section 4.6.6) are based on

Experiment 1, and chosen in accordance with the work that developers are likely to

perform in a project. These procedures are expressed in the form of models using

the ESAOA conceptual modelling language (defined in Section 3.11). Each ESAOA

process generally involves one or more roles using, modifying, or constructing

artefacts in ESAOA workspaces.

The ESAOA conceptual modelling language was developed as a means of modelling

aspects of the ESAOA KMS and their interrelations (Section 4.2.1 describes how the

modelling language came about). The modelling language applies techniques used

in the Unified Modelling Language (UML) [Rumbaugh et al., 2005]. The ESAOA

conceptual modelling language comprises modelling atoms and connectors. Atoms

relate to KM aspects (i.e., glyphs for roles, artefacts and so on) and other parts of the

KMS. Connectors represent defined associations between atoms. Section 3.11

defines the ESAOA conceptual modelling language for ESAOA KMS version 2, which

includes a visual reference table for all the atoms and connectors (note that the

second version of the modelling language is a refined version of the first version, and

as such only has a few added atoms and connectors that were not found in the first

version of the modelling language).

Figure 4.7 provides a UML class diagram that illustrates the design of the KMS as

described above. The ESAOA workspace and ESAOA workstation blocks in the

diagram are highlighted as they are high level components of the KMS design in

which the other items reside.

 4-53

 Integrated
Knowledge
base adapt & maintain

Compiler Word
processor

ESAOA tools

ESAOA KB
support tools
(e.g., fclass)

ad
ap

t &
 m

ai
nt

ai
n

Soft artefact

ESAOA directory
layout schema

ESAOA
workspace

ICE
debugging
tools

Externally
maintained and
stored tools

PC/host GUI
for embedded
system

RS232C
ASCII
Terminal

ESAOA
Workstation

Workstation
development tools

Workstation
applications

access

Workspace
access tools

Secure Shell
(SSH)

X-windows
client

Figure 4.7: ESAOA workspace and ESAOA workstation.

As Figure 4.7 shows, soft artefacts that developers work on reside within an ESAOA

workspace. The ESAOA workstation is a collective of both soft artefacts, such as

workstation applications (i.e., software programs) and physical tools (i.e., hard

artefacts) that exist outside the computer. The diagram shows that workspace access

tools are a form of workspace application that are used specifically to access

software tools and other soft artefacts that reside within an ESAOA workspace – an

SSH client program (e.g., Putty [Tatham, 2009]) is an example of such a tool. Note

that workspace access tools reside on the ESAOA workstation (the computer used to

access the central server on which the ESAOA support tools, cross-compilers and

similar tools are stored). Software tools such as cross-compilers, IDEs and word

processing programs (which often take large amounts of disk space, are installed,

and not themselves adapted) are termed externally maintained and stored tools – as

Figure 4.7 shows, these tools are used to adapt soft artefacts within an ESAOA

workspace. The integrated knowledge base is a combination of the directory

structure, classifications applied to artefacts, developer logs, and documentation

stored in the workspace. The integrated knowledge base, and its operation, is further

described in Section 6.3.3.

 4-54

4.6.2 ESAOA workspaces and workstations

In order to construct the ESAOA KMS and to make it usable, a strategy was needed

to unify the roles, processes and artefacts of the KMS and to present these to

knowledge workers as a functional system, specifically a system providing a human

interface aspect and a defined internal interrelated structure and functionality

[Weinberg, 1975; Brown, 1999]. This objective was achieved using the combination

of ESAOA workspaces and ESAOA workstations.

4.6.2.1 ESAOA workspaces

An ESAOA workspace is a digital, computer-based work area that comprises the

following parts:

1) A shell environment (an extended version of the Bash shell3);

2) Soft artefacts (i.e., computer files) organised into an ESAOA directory

structure (following a specific layout and classification schema);

3) ESAOA support tools; and

4) A related collection of externally stored and maintained development tools

(e.g., compilers and CAD software).

Soft artefacts for the ESAOA version 1 workspaces (see Section 4.6.5) were taken

from project repositories produced by Experiment 1 teams, and these artefacts were

improved and supplemented in the course of creating the workspaces. Figure 4.8

provides a screenshot illustrating the ESAOA environment, accessed via an X-

terminal. Section 4.6.2 provides more detail concerning the composition and

organisation of ESAOA workspaces and their artefacts.

The development teams start from a baseline ESAOA workspace, which incorporates

a pre-selected set of soft artefacts (i.e., artefacts in digital form, such as software and

other artefacts needed by the ESAOA KMS). These artefacts are then extended or

supplemented by a role in the course of using the KMS. The work and workflow

aspects of the KMS describe methods by which one or more roles acquire ESAOA

knowledge (i.e., how they learn to use, modify and construct ESAOA artefacts).

3 The Bourne-Again Shell (Bash)

 4-55

Figure 4.8: Screenshot of the Bash shell environment of an ESAOA workspace.

ESAOA KMS version 1 had three ESAOA workspaces: 1) a communal workspace, 2)

a team workspace, and 3) a personal workspace. Workspaces were accessed using

workstations. The communal workspace was shared between all projects. The team

workspace was used to maintain master versions of soft artefacts for a team, and to

share artefacts among the team members. Each team member worked on their own

personal workspace, which was synchronized with the team workspace (for version 1

of the ESAOA KMS, this synchronization process was left as a manually operation,

but some Experiment 2 teams used version control tools to facilitate this task). The

second version of the KMS has the same three workspaces, but they are extended

version of those developed for the first version of the KMS (see Section 6.1.1).

4.6.2.2 ESAOA workstations

The term ESAOA workstation refers to the combination of a computer system

(termed the workstation computer), which provides the human/computer interface to

an ESAOA workspace, together with the surrounding physical artefacts that

developers use during the development of an ES (such as printouts of datasheets,

books, testing equipment and the ES hardware worked on). Essentially, an ESAOA

workstation is much the same as any normal work area with a computer that is used

during ES development. The term ESAOA workstation is used in relation to the

 4-56

ESAOA KMS simply as a means to emphasise that a particular workstation is

intended for use with an ESAOA workspace.

In addition to software tools needed to access ESAOA workspaces, the ESAOA

workstation computer is likely to need a variety of other tools in order to enable

developers to complete development activities. Such tools include text editors, web

browsers and communication programs to interact with the ES products. Figure 4.9

shows an annotated screenshot of a typical ESAOA workstation, showing the

standard software applications (e.g., Microsoft Excel, Explorer and HyperTerminal)

that are commonly used on ESAOA workstations.

SSH client used to access
ESAOA environment in an
ESAOA workspace

Serial communications terminal

Figure 4.9: Annotated screenshot of an ESAOA workstation.

The workstation setup is expected to vary from one team member to another

depending on the needs of the team concerned. Each workstation is expected to

include at least the following software allocations:

• A SSH client program for accessing remote computer (or computers) that

store the team and communal workspaces;

Other tools installed on the
workstation to work on files
stored in an ESAOA workspace

File browser used to access files
in the ESAOA workspace

 4-57

• A serial communications terminal (e.g., Windows HyperTerm); and

• Standard networking software (e.g., web browsers).

A personal workspace, which is a working copy of the team’s workspace, also needs

to be accessible from an ESAOA workstation. The personal workspace can be kept

on a remote computer (e.g., the same central server that hosts the team workspace),

or the personal workspace can be stored on the local computer workstation. In the

case that personal workstations is stored locally, then the ESAOA workspace

environment, together with software it depends on (i.e., the Bash shell and its

dependencies) also need to be installed on the workstation computer.

As mentioned above, the concept of an ESAOA workstation is intended to refer to the

broader space in which artefacts relating to development are located. The screenshot

shown in Figure 4.9 only illustrates soft artefacts (e.g, software tools) related to an

ESAOA workstation. ESAOA workstations include a variety of hard artefacts that are

also used during development, such as books and hardware computers; Figure 4.10

provides a photograph illustrating the broader aspects of an ESAOA workstation.

ESAOA workspaces used with the second version of the ESAOA KMS are

essentially the same as those used in the first version, except that additional tools

are available in the second version of the ESAOA workspaces (Section 6.1.1 gives

details about version 2 of the ESAOA workspaces and ESAOA workstations).

 4-58

Figure 4.10: Photograph illustrating the broader concept of an ESAOA workstation.

4.6.3 The ESAOA knowledge ontology

A KMS typically incorporates a knowledge ontology in addition to other aspects (such

as roles and processes, which are described later). The ontology is likely to be

started early in the establishment of a new KMS [Staab et al., 2001] in order to

establish and share a specialised vocabulary needed to describe the KMS itself.

Consequently, the ESAOA knowledge ontology is introduced before more detail is

given on the other aspects of the ESAOA KMS.

In the information sciences and computer science fields, the term ontology generally

refers to “a specification of a representational vocabulary for a shared domain of

discourse” [Gruber, 1993, pg. 199]. The term ESAOA knowledge ontology in this

thesis is based on the preceding definition of ontology, and accordingly refers to a

specialised terminology structure used to specify the ESAOA KMS (i.e., a specific

‘domain of discourse’). The ESAOA conceptual modelling language should not be

confused with the ESAOA knowledge ontology: the former describes the notation for

visual models that aids textual explications using the ESAOA knowledge ontology.

 4-59

4.6.3.1 Levels of the ESAOA knowledge ontology

While the ontology is interpreted abstractly as an interrelated whole, the

representation of the ESAOA knowledge ontology is in two parts: a higher-level part

and a lower-level part.

The higher-level part is essentially a dictionary of terms (i.e., a set of terms and

corresponding definitions); except that the individual terms are represented and

handled following an object-oriented approach whereby terms can be specialisations

of another term. Accordingly, this higher-level part is displayed and browsed in a tree

structure (making it easy to determine which terms are specialisations of other

terms). This higher-level part is intended only for use by human users of the KMS,

and is not intended to be interpreted in some way by programs.

The lower-level part of the ontology is maintained within the knowledge base that is

integrated into an ESAOA workspace (this data is in the form of CSV files within

project directories). This part of the ontology predominantly relates to the

classification of artefact, relations between artefacts, and relations between artefacts

and which roles are responsible for maintaining them. The ESAOA KMS ontology is

intended to change from one project to another, as different projects will not

necessarily need the same set of terms and artefact classifications; this is a reason

for the lower-level part of the ontology being managed in a different manner.

4.6.3.2 Top-level terms of the ESAOA knowledge ontology

The starting point of the ESAOA knowledge ontology has five top-level terms,

namely: role, activity, process, artefact and space. Top-level are not a specialised

form of any other term in the ontology. All the other terms in the ontology are

specialisations of these five top-level terms or specialisations of terms lower in the

hierarchy. Additional top-level terms can be added as needed when the KMS is in

use. Figure 4.11 shows a UML class diagram that visualizes these terms (and a

selection of commonly used specialised terms). The terms shown in Figure 4.11 are

explained in Table 4.29.

 4-60

Artefact Space*

Hard Artefact Workspace

*
Workstation

computer

Soft Artefact

Role Processguides
performs

Activity

adaption or
organisation

Workstation

uses

interfaces with
Code
file

Figure 4.11: UML diagram visualizing part of higher-level ESAOA knowledge ontology.

Table 4.29: Roles of ESAOA version 1.
Term Specialisation of Description
Role - Describes the behaviour, responsibilities, characteristics

and needs a developer takes on while performing certain
types of development operations.

Activity - One or more related actions, carried out by a role (or
roles), related to development of an embedded system.

Artefact - A physical resource (e.g., lab equipment) or digital
resource (e.g., software tools and data files) used in
activities.

Space - A location (digital or physical) in which artefacts reside.
Process - A description of related activities provided as a guideline

to help roles carry out a development objective.
Soft artefact Artefact A digital artefact stored in a computer file system (e.g., a

code file or application program).
Hard artefact Artefact A physical artefact that resides outside a computer file

system (e.g., books and laboratory equipment).
Workspace Space A soft space where development activities that involve

changes to soft artefacts take place, comprising tools
and other artefacts used to carry out these activities.

ESAOA workspace Workspace A computer-based work area comprising a shell
environment, soft artefacts, a knowledge base and
support tools. An ESAOA workspace also depends on a
selection of externally stored software applications.

Workstation (or
ESAOA workstation)

Space Combination of a computer system, the physical work
area where an ES is worked on (including printouts and
the product being worked on), and other software tools
(such as SSH client programs) that provides the
human/computer interface to an ESAOA workspace.

Workstation computer Space;
Hard artefact

This term refers specifically to the computer in a
workstation.

Code file Soft artefact A file that contains code.

 4-61

4.6.3.3 Knowledge artefacts and boundary artefacts

The terms knowledge artefact and boundary artefact have specific meaning in the

ESAOA ontology, and although they are not defined as top-level terms, they are

commonly used in reference to aspects of the KMS. Both of these terms are artefact

specialisations.

The transfer and production of knowledge generally involves digital or physical

artefacts referred to as knowledge artefacts [Knorr-Cetina, 2001]. These artefacts are

used both for creating knowledge and for transferring knowledge. The term boundary

artefact [Arias & Fischer, 2000] refers to an object used as part of a discussion point,

or something that is manipulated in some way to help the transfer of knowledge in a

context of discourse (e.g., a meeting between engineers). Within an ESAOA

workspace, soft artefacts can be demarcated as knowledge artefacts, in order to

emphasise that they are used in building knowledge. Similarly, artefacts can be

marked as boundary artefacts to highlight that viewing and manipulation of these

artefacts may facilitate knowledge sharing during demonstrations and meetings. The

demarkation of soft artefacts as boundary or knowledge artefacts is accomplished

using the fclass tool (discussed in the next section).

4.6.3.4 Evolving the ESAOA knowledge ontology

The ESAOA knowledge ontology is adapted and grown as needed while the ESAOA

KMS is in use; this is done by changes to the functionality, workspace, and

maintainer classifications of artefacts in a project (explained in Section 4.6.4; form

classifications cannot be changed), or by editing a copy of the original ESAOA

knowledge ontology document (shown in Appendix C.1) that is shared between team

members. The artefact classifications are altered by using the fclass ESAOA support

tool (for modifying functionality or maintainer classifications), or by moving or copying

files between workspaces (to alter workspace classifications).

The artefact classifications can be considered as being at a lower level within the

ESAOA knowledge ontology, and are consequently not recoded in the ontology

document because they are maintained by the fclass tool within the knowledge base

integrated into an ESAOA workspace. Thusly, the ESAOA knowledge ontology

effectively changes from one ESAOA workspace to the next. For ESAOA KMS

version 1, individual team members make changes to the artefact classifications, and

the rest of the team is automatically updated when that individual synchronizes his or

her personal workspace with the team workspace). A team member makes higher

 4-62

level ontological changes, such as the addition of new terms that are not used in

classifying development artefacts, by changing his or her own copy of the ESAOA

knowledge ontology, and needs to manually propagate these changes to the team.

The ESAOA knowledge ontology document produced for ESAOA KMS version 1 was

extended in the second version. In order to save space, only version 2 of the full

ESAOA ontology is provided in this thesis (see Appendix C.1).

4.6.4 Roles

As defined in the ESAOA ontology, a role describes the characteristics, behaviour

and needs that individuals take on for certain types of development operations. The

roles of the ESAOA KMS are provided as starting points for team member

responsibilities and as a means to partition knowledge work amount team members.

As a particular development project progresses, the responsibilities of particular roles

are likely to change and adapt to the specific needs and behaviour of the teams.

Observations of Experiment 1 indicate that innovation happens through the

availability of effective process knowledge needed to experiment with ideas, and, in a

similar way, process knowledge is dependent on data knowledge (see Section 4.4.3).

The design of ESAOA KMS version 1 and its roles is based on this flow of

knowledge. Accordingly, three of the knowledge worker roles for the KMS are based

on these dependencies between data, process and innovation knowledge observed

in Experiment 1. An additional three roles are included for facilitation of teams and

maintenance of the KMS. The role names, and their corresponding acronyms, are as

follows: chief knowledge officer (CKO), communal knowledge steward (CKS), team

leader (TL), data steward (DS), process engineer (PE), and innovation engineer (IE).

The roles are described in Table 4.30. The team member (TM) role (entry seven in

the table) is an abstraction used to refer collectively to all types of team members.

The CKO, CKS and DS roles are all inspired by the generic KM roles reviewed in

Section 2.7. The CKO of an ESAOA KMS essentially has the same responsibility as

those described for a generic CKO [Holsapple, 2003] (see Section 2.7.2). The DS

has responsibilities similar to those of a ‘knowledge steward’ [Tsui, 2002], and the

CKS role has elements of a ‘knowledge engineer’ [Borghoff & Pareschi, 1998],

‘change agent’ [Groff & Jones, 2003] and ‘knowledge steward’.

 4-63

Table 4.30: Roles of ESAOA version 1.
Role name Acronym Description
Chief knowledge officer CKO The individual responsible for guiding users of the ESAOA

KMS, implementing or preparing new communal ESAOA
artefacts and procedures for distribution, and maintaining
the communal ESAOA workspace.

Communal knowledge
steward

CKS The CKS assists the CKO in assisting users of the ESAOA
KMS, explaining procedures, organising new communal
artefacts, and maintaining the communal ESAOA
workspace.

Team leader TL The team leader is responsible for managerial aspects of
the team, such as ensuring that team members are
performing.

Data steward DS The DS obtains and produces data artefacts (such as
datasheets and meeting minutes), comprehends them, and
places them in the ESAOA team workspace. The DS is
responsible for maintaining the organisational structure of
the ESAOA team workspace and for supporting the PE.

Process engineer PE The PE experiments with processes using data knowledge
and support provided by DS. The PE is responsible for
creating process artefacts and for supporting the IE.

Innovation engineer IE The IE applies processes to test ideas and to produce
innovations. The IE is supported by the PE.

Team member TM An abstract aggregation role name, used to refer to all
team members collectively, i.e. the TL, DS, PE and IE.

4.6.4.1 Representation of roles in the ESAOA modelling language

Roles are represented by the ESAOA conceptual modelling language as circles

containing the acronym for the role name. The model presented in Figure 4.12 shows

the six ESAOA KMS roles, in addition to the abstract TM role. The connectors (i.e.,

the arrows in Figure 4.12) are referred to as role interaction associations; these

connectors represent an association between two roles, the label providing keywords

describing the association. The inheritance association is represented as in standard

UML, with lines leading from an element through a triangle to an inherited element.

4.6.4.2 General relations between the roles

People involved with the KMS can perform one or more roles; one person can also

take on different roles at different times. For example, a particular team member

might start performing a DS role, and later change to an IE role. Furthermore, a

particular team might have multiple team members filling the same roles (e.g., three

DS roles, a PE role, and an IE role).

ESAOA KMS version 1 has five distinct knowledge worker roles (modelled in Figure

4.12). These roles are largely non-hierarchical, with the exception of the chief

knowledge officer (CKO), who is in charge of the KMS. In the case of Experiment 2

(where ESAOA KMS version 1 was applied), the researcher played the part of the

 4-64

CKO, and a separate CKS was hired. Each development team had a team leader,

who was responsible or managing the rest of the team members (as illustrated in

Figure 4.12) and also performed development, taking on other roles while doing so.

DS PE IE

TL

TM assists

observes

assists
CKS

CKO

Figure 4.12: Roles of ESAOA KMS version 1.

4.6.4.3 Maximising support for the IE using a feed-forward approach

The roles of the ESAOA KMS version 1 are structured to maximise support for the IE.

Ideally, the IE will be able to focus on testing design ideas, without the need to read

the detail of particular components and determine how they are controlled and

connected. The TL is in charge of managing the members of a team and for liaising

with the CKO to ensure that the ESAOA KMS is supporting the team. The individual

who has been assigned the team leader role also performs at least one of the DS,

PE or IE roles. At a high level, this version of the KMS is designed around providing

support to the IE, essentially establishing a strategy by which the project teams are

guided towards producing innovation knowledge early on in the project. The KMS

thus follows a feed-forward flow of knowledge production, around which the roles and

processes are structured.

Figure 4.13 models the interrelation of the roles defined for the KMS (the modelling

atoms and connectors shown in the figure are defined in Section 3.11). The model

indicates that the CKO and CKS chiefly operate in the communal workspace. The IE,

PE, and DS chiefly operate in their individual personal workspaces, or their shared

team workspace, although they also use the communal workspace. The IE, PE and

DS are supported by the CKO and CKS, as implied by the role support connector line

(shown as a line ending in a dot that links the two workspaces). The model also

indicates that, in terms of supervising KM strategies, the DS, PE and IE roles all

report to the TL and that the TL consults the CKO regarding KM strategies.

 4-65

The CKS assists the CKO, performing tasks such as maintaining communal

knowledge artefacts. The team member roles were supported by individuals filling the

CKO and CKS roles. The CKO was responsible for administering the KMS and

training knowledge workers to use the system. KM responsibilities of the TL were not

defined for this version of the KMS because Experiment 1 findings did not show a

need for this role to be involved in managing ESAOA knowledge. Section 4.6.4

describes the roles of this KMS, which implement this design strategy.

Producing and managing
innovation knowledge for
ESAOA activities

Producing and managing
process knowledge for
ESAOA activities

Producing and managing
data knowledge for ESAOA
activities

Communal
artefacts

COMMUNAL WORKSPACE

TEAM WORKSPACE

Managing the team
members, ensuring each
role is suitably supported
by the ESAOA framework

<<reports to>>

PE

DS

IE

<<consults>>

TL

Communal
processes

CKO

CKS

Figure 4.13: Role support structure for ESAOA version 1.

DS

Innovation

Process
knowledge
needs

IE

PE

Data knowledge
needs

Process

Data

Figure 4.14: The feed-forward flow from the DS, to the PE, ending at the IE.

 4-66

The feed-forward flow of ESAOA KMS version 1 is shown by the way in which the IE

draws on the PE to provide methods to test innovations, and the PE in turn

depending on the DS to provide data knowledge needed to develop process

knowledge. Figure 4.14 models this interdependence between the IE, PE and DS.

4.6.5 ESAOA artefacts for knowledge representation and transfer

While knowledge exists in the mind of a person, the transfer and production of

knowledge typically involves physical artefacts, often referred to as knowledge

artefacts or “knowledge objects” [Knorr-Cetina, 1997, pg. 1]4. These artefacts are

used both to create knowledge and to transfer knowledge. In the case of transferring

knowledge, particularly in a discourse context (e.g., in a meeting or “extreme

programming” situation [Wake, 2002, pg. 1]), the term “boundary object” [Arias &

Fischer, 2000, pg. 2] refers to an object used as part of a discussion point, or to

something that is manipulated in some way to help the transfer of knowledge.

These concepts of knowledge objects and boundary objects apply to knowledge in

general, and they are refined in the design of the ESAOA KMS. In the ESAOA KMS,

the terms knowledge artefact and boundary artefact are used instead of ‘knowledge

object’ and ‘bounding object’ to avoid confusion with the more common definitions of

these concepts.

In Experiment 1, different types of knowledge artefacts and boundary artefacts were

used for producing, capturing and expressing the different forms of ESAOA

knowledge. The artefacts and artefact classifications for ESAOA KMS version 1 are

based on artefacts producing by developers in Experiment 1.

In ESAOA KMS version 1, each artefact has four classifications, namely

classifications of: form, functionality, workspace, and maintainer. These

classifications are described below:

• Form classification is based on whether the artefact is in a digital or non-

digital form, and whether represents explicit knowledge, among other

4 Knorr-Cetina defines a knowledge object as a document or collection of documents in which
knowledge is maintained.

 4-67

properties. The terms soft, hard, boundary and knowledge characterise the

form of an artefact.

• Functionality classification is based on what the artefact provides or is

used for during the project (e.g., documentation or code) – the functionality

classification essentially indicates what the actual artefact is.

• Workspace classification indicates where the particular artefact resides,

and where it comes from (e.g., the artefact is in a communal workspace and

comes from the web).

• Maintainer classification indicates the role that is responsible for

maintaining the artefact (this classification is partly implied by the workspace

classification; for example, artefacts in the communal workspace are

maintained by the CKS).

The workspace and maintainer classifications are more abstract than the functionality

classifications, since they do not indicate what an artefact is, but rather where it was

obtained and located, and who maintains it. However, workspace and maintenance

classifications provide an effective means of referring to collections of artefacts (e.g.,

communal artefacts refer to all artefacts residing in the communal workspace).

The artefact classifications are used in Section 4.6.6, in which the ESAOA KMS

workflows are presented; that section also highlights the particular knowledge

artefacts that are used to capture various forms of ESAOA knowledge, and the use of

boundary artefacts in situations of knowledge transfer.

The ESAOA KMS artefacts are presented in the subsections that follow. The form

classifications for artefacts are described in Section 4.6.5.1. The functionality

classifications are presented thereafter in Section 4.6.5.2, which serves the purpose

of indicating the specific artefacts of the KMS and related KM tools. The workspace

and maintenance classifications are presented together in Section 4.6.5.3 as

workspace classifications often lead to particular maintenance classifications. Section

4.6.5.4 involves organisation of artefacts in ESAOA workspaces, and Section 4.6.5.5

concerns specialised KM artefacts (used by teams in Experiment 1), and included in

the ESAOA knowledge ontology.

4.6.5.1 Artefact form classifications: hard and soft artefacts

The form classifications are implicit, being based on the nature of the artefact, in

other words, whether it is digital or not, whether it contains information or whether it is

 4-68

a physical item (e.g., a piece of equipment). Each artefact has one of two

fundamental, top-level form classifications; each artefact is either a hard artefact or a

soft artefact. Additional form classifications of boundary artefact and knowledge

artefact can be overlaid on the top-level classification. For example, an oscilloscope

could be classified as a ‘hard boundary artefact’. The definition of the form

classifications are elaborated upon below:

• Soft artefacts are digital files stored on a memory device and accessible by a

computer. Examples include: a Microsoft Word document, an executable

program, a code module, or any other digital file. A paper document (i.e., a

hardcopy of a digital document or notes on a piece of paper) is also

considered a soft artefact.

• Hard artefacts refer to physical items, excluding digital files, paper notes or

hardcopies of digital documents. Some examples of hard artefacts are

microprocessor chips, wires and multi-meters.

• Knowledge artefacts are a type of soft artefact that contains explicit

knowledge relating to another soft artefact or hard artefact. An example is a

microprocessor datasheet.

• Boundary artefacts are used in a ‘discourse’ [Arias & Fischer, 2000] in which

two or more engineers are involved in knowledge exchange (in which

engineers either discuss or adapt the boundary artefact to facilitate the

transfer of knowledge). A boundary artefact is usually a knowledge artefact,

but not always. An example of a soft boundary artefact could be a printout of

a schematic. An example of a hard boundary artefact is a multimeter, which is

used by engineers to view and discuss a character of an ES product. Hard

boundary artefacts typically do not contain easily extractable information

about other artefacts, but may be valuable in knowledge transfer.

4.6.5.2 Artefact functionality classifications and functionality hierarchy

Artefact functionality classifications are directly based on what artefacts are used for.

Functionality classifications are applied to an artefact by designating the artefact as

being in one or more functionality classes. These functionality classes are generally

in the form of keywords describing functionality characteristics of an artefact;

examples include: ‘code module’, ‘datasheet’ and ‘drawing’.

The functionality classes used in functionality classification are based on a

functionality hierarchy. This functionality hierarchy is a KM tool of the ESAOA KMS.

 4-69

The functionality hierarchy is similar to that of a ‘class hierarchy’ used in the object-

oriented software engineering paradigm [Kroll & Kruchten, 2003]. However, instead

of providing a software models, the functionality hierarchy of the ESAOA KMS

provides guidelines to assist developers in keeping track of functionality classes and

in deciding which functionality classification to apply to artefacts. Each person using

the ESAOA KMS is provided with a soft and hardcopy form of the functionality

hierarchy (an except of which is given in Table 4.31). The master version is

maintained by the CKO and resides in the communal workspace. Additional

functionality classifications are added by the CKO and team members as needed. An

automatic functionality hierarchy, in the form of a functionality index file, is maintained

by the fclass program (an ESAOA support tool). The remainder of this section details

the initial functionality classes of the ESAOA KMS and the fclass program.

The functionality hierarchy includes five top-level classes, namely: documentation,

software, tools, templates and misc (for miscellaneous). Table 4.31 indicates how

additional classes are added to the hierarchy below these top-level classes. Sub-

categories (e.g., ‘concept sketch’) are indented. Entries marked with an asterisk

indicate that files of that classification are collected into a folder of that classification

name (e.g., all design documents are placed in folder ‘Documentation/Design’). The

table also indicates whether particular artefacts of a functionality class tend to occur

in the form of: boundary artefacts (indicated by the label ‘(B)’) or knowledge artefacts

(identified by the label ‘(K)’). These boundary or knowledge artefact classifications

are indicated because boundary artefacts are often accessed by multiple roles

possibly at the same time or close to the same time to aid knowledge sharing;

knowledge artefacts, in contrast, are generally involved in sharing knowledge, but

usually not worked on jointly.

Table 4.31: Excerpt of artefact functional classes.

Artefact type Description
Documentation
Datasheet (K) * A datasheet for an electronic component
Manual (K) * A manual for a product
Design (B) * A design document, such as a schematic for the hardware.
Diagram (B) * A diagram used for capturing information (does not described the

design)
Artefact organisation
diagram (AOD) (B)

A diagram used to represent the organisation of an ESAOA
workspace.

Concept sketch (B) A visual explanation of an idea, used by the IE to communicate
ideas graphically. The name given to this drawing type is adapted
from Healey, et al. [2002].

Concept drawing (B) A formal, more detailed and professionally drawn version of a
concept sketch. Used by the IE to capture an important concept.

 4-70

Report (K) * A report (e.g., team status report)
Log (K) * A log file
Software
Code (B) A code module or code-related file
Application * Files related to the implementation of a software application.

Application modules use only CCW or Utility modules (or standard
C library calls).

Executable An executable file (such as a binary image)
PDM (B) * Platform deployment module (PDM) – these are platform

dependent modules used to glue application code to lower level
code (e.g., an operating system or underlying hardware).

CCW (B) * Common component wrapper (CCW) module. A platform-
independent software interface to a component available on
multiple embedded platforms.

Utility (B) * A platform-independent utility module (uses basic C library calls,
CCWs or other Utility modules).

Test case A file or collection of files representing test case(s), e.g. for use in
regression testing.

Tools
Script (K) * A script that automates part of an ESAOA process
Program (K) * An executable C++ program that automates part of an ESAOA

process
Templates
Code Template Code template
Diagram Template Diagram template
Misc
Data A data file, e.g., sampled input
* Entries marked with an asterisk have a separate subfolder in an ESAOA workspace.

Digital artefacts (i.e., files) within ESAOA workspaces are classified using the

ESAOA fclass program. The fclass program maintains classifications within a

functionality classification index file (named ‘.fci’), which is a comma separated

values (CSV) file that resides in the root directory of a workspace, and functionality

classification lookup files (named ‘.fcl’) which reside in folders within the ESAOA

directory hierarchy. The fclass program is detailed in Section 6.4.1. Figure 4.15

provides an annotated screenshot showing how a user can assign a functionality

classification to a file.

 4-71

+================== NOTICE ===================+
| This framework has additional tools. |
| * Type 'help' to view the list of tools. |
| * Type 'todo' to view process information. |
+===+

Added to path: /opt/gcc-arm9tdmi/bin
AOA:$P/> cd Software/
AOA:$P/Software> cd Applications/
AOA:$APPS> cd Basic/
AOA:$APPS/Basic> ls
Basic.c Basic.cm.elf Basic.cm.o config.make
Basic.cm.bin Basic.cm.map burn.txt defs.make
AOA:$APPS/Basic> fclass Basic.c application code module –isa code
ESAOA function classification

User changes into an application directory and then lists
available files in that directory.

Figure 4.15: Screenshot showing use of the fclass program.

4.6.5.3 Artefact role and workspace classifications

Artefacts in an ESAOS team workspace or personal workstation are assigned role

classifications according to the roles responsible for maintaining them (see Figure

4.16). For example, DS artefacts are usually maintained by the DS, PE artefacts are

adapted by the PE, and so on. Table 4.32 lists examples of artefacts and their role

classifications (the list of artefacts are largely based on artefacts found in Experiment

1 project repositories). Generally, the plan is that most downloaded documentation

and data files used for experiments will be maintained by the DS. Code samples and

initial code or design solutions will be maintained by the PE (as per the description of

this role). Many of the artefacts (such as code files) may start of as being maintained

by the PE (i.e., while attempting to establish effective development procedures), and

these working files will then be handed over to the IE to take further. The CKO and

the CKS will jointly be responsible for managing communal artefacts (thus Figure

4.16 does not show any artefacts exclusive to the CKO or the CKS).

Workspace classifications are assigned according to where the artefacts are stored.

The three workspace classifications are: 1) communal workspace artefacts, 2) team

workspace artefacts, and 3) workstation artefacts. These classifications are implicit,

based on the workspace in which a particular artefact resides.

FILE: Basic.c
CLASSIFICATION CODE ADDED: ACM
 INHERIT C
AOA:$APPS/Basic> cat .fcl
“Filename”,”Function”
"Basic.c","ACM"
"Basic.cm.elf","BE"
"Basic.cm.map","CMF"
AOA:$APPS/Basic> cat ~/aoa/.fci
"Code","Description","Inherit"

User issues an fclass command to describe the
file Basic.c as an “application code module”. The
fclass program checks the functionality
classification directory for the workspace (in
~/aoa/.fci)

An .fcl file is created or added to store this
classification (i.e., .fcl contains metadata for files).

"ACM","Application code module","C"
The .fcl is displayed here to show its contents.

"BE","Binary executable","S" The .fci file, which is used to maintain the
functionality classifications, is displayed here.

"C","Code","S"
"CMF","Code map file","S"
"CD","Concept drawing","D"

 4-72

Table 4.32: List of commonly applied role classifications.

Artefact Description Role classification
Component datasheets, e.g. datasheet for a
microcontroller or analogue to digital converter device.

DS artefact

Manuals for a development tools (e.g., GCC user manual) PE artefact
Working design document for the prototype being built IE artefact.
Concept diagrams or concept sketches of the prototype IE artefact
Status reports TL artefact
Logs DS or TL artefact, usually shared
Sample code, experimental code files used for testing
components and interconnections

PE artefact

Platform deployment modules (PDMs), such as drivers
modules, used to connect embedded software application
code to devices on the hardware platform.

PE artefact

Final version of embedded software binary executable IE artefact
Common component wrapper (CCW) interface files and
stub code modules (SCMs).

IE artefact

Utility modules (platform-independent utility modules, e.g.
C string processing routines)

PE artefact

Test case documentation or testing files PE artefact or IE artefact
Scripts and programs (i.e., to supplement the ESAOA
tools and automate manual tasks)

PE artefact

Template files (e.g., C code file templates, readme file
templates, etc.)

DS artefact

Data files (e.g., images, captured signals used for testing
the system)

DS artefact

Artefacts in the communal workspace are referred to as communal artefacts, and

they are organised and updated by the CKS and the CKO. Team workspace

artefacts are located in a team workspace, and are maintained or adapted by

members of a development team (i.e., the DS, PE and IE). Workstation artefacts

include all artefacts in the personal workspace of the workstation, in addition to the

tools, such as software programs (e.g., secure shell clients, X-Windows clients and

OpenOffice), installed on the computers; these artefacts are maintained by the user

of the particular workstation.

 4-73

 COMMUNAL WORKSPACE

TEAM / INDIVIDUAL WORKSPACE

DS artefact

PE artefact

IE artefact

CKO

CKS

DS

PE

IE

Team

Communal folder

Communal
artefact

Communal
AOA root

Team artefact

Computer
workstation

Workstation
artefact

<<accesses>>

<<accesses>>

WORKSTATION

Workstation
Program

e.g. SSH client

Work-in-
progress (WIP)
artefact

Figure 4.16: Model describing the classification of ESAOA artefacts.

In ESAOA version 1, all roles started with the same set of workstation artefacts, and

then proceeded to modify and add to those initial artefacts. Section 3.11 explains the

meaning of the various types of artefact atoms shown in Figure 4.16.

4.6.5.4 Artefact organisation

Artefacts are located within an ESAOA workspace according to their functionality

classification, having been placed in directories or subdirectories named according to

higher-level artefact functionality classifications (see hierarchy excerpt in Table 4.31).

Artefacts within the ‘Misc’ top-level classification are not collected into subfolders.

The ESAOA directory structured provided by the ESAOA team distribution (see

Section 4.6.8) provides a starting point for soft artefacts used by a team, and they are

arranged according to the described approach. Similarly, the ESAOA communal

distribution provides an initial structure for a communal workspace, which can be

further extended by the CKO and CKS. The ESAOA workstation distribution includes

programs and URL links to download sites, to assist in setting up workstations; each

personal workspace starts as a copy of a team workspace.

The ESAOA directory structure for soft artefact in the communal workspace is shown

in Figure 4.17, and the structure for the team workspace is given in Figure 4.18.

 4-74

The ESAOA team workspace starting point is a subset of the ESAOA communal

workspace. It is intended to install the team workspaces and the communal

workspace on the same central server computer, both being accessible from a

workstation via network file sharing.

+-/usr/local/ESAOA-1.0/ (ESAOA communal artefacts) project root
 +-Software/ root for software artefacts
 | +-Templates/ communal templates directory
 | +-Applications/ application code modules
 | | +-Test/ first application code directory
 | | +-HelloCPP/ second application code directory
 | +-Utils/ directory pool for utility code modules
 | +-CCW/ directory pool for “common component wrappers” (CCWs)
 | +-PDM/ directory “platform deployment modules” (PDMs)
 | | +-Platform/ template PDM directory for “Platform” platform
 | | +-Variant/ template PDM directory for a variant of “Platform”
 | | +-CSB337/ directory containing PDMs for CSB337 platform
 | | +-MicroMonitor/ PDMs for MicroMonitor variant of CSB337 platform
 | | +-uCLinux/ PDMs for uCLinux variant of CSB337 platform
 | +-Documentation/ Software documentation
 | +-MicroMonitor/ Documentation for the MicroMonitor O/S
 | +-gnu-assembler/ and related tools / drivers
 | +-uCLinux/ Documentation for the uCLinux O/S
 | +-MemDevInfo/ and related tools / drivers
 +-Tools/ Communal ESAOA tools (not toolchains for compilers, etc)
 | +-Scripts/ Communal ESAOA Bash scripts (e.g., dt script)
 | +-Programs/ Communal ESAOA C++ programs (e.g., mm program)
 +-Hardware/ root for artefacts most strongly related to hardware
 | +-Documentation Communal Hardware documentation
 | +-Datasheets/ Component datasheets
 | | +-CSB337/ Directory for specific component uses the component’s ID
 | | +-AT91RM9200/
 | | +-Peripherals/ Directory for various peripherals (subdirectories not shown)
 | | +-ARM_920/
 | +-Overview/ Product overview sheets / brochures
 | +-QuickRef/ Quick reference manuals (including ESAOA quick reference)
 +-Copyright/ Copyright / licensing information for communal artefacts
 +-Documentation/ Other communal documentation
 +-Forum/ Documentation about using the forum
 +-Templates/ Other templates

Figure 4.17: ESAOA version 1 communal distribution directory structure.

The team workspace contains directory links (or shortcuts in Microsoft Windows™)

named ‘Communal’ that are used to incorporate read-only communal artefacts into

the team directory structure. For example, the documentation directory contains a

directory link called ‘Communal’ (see Figure 4.18) that adds communal

documentation to the team’s documentation directory. ESAOA support tools, such as

the find and classification tools (e.g., fclass), work across these soft links for more

rapid traversal of shared files (these tools are described in Section 6.4).

 4-75

+-ProjectX/ (ProjectX initial team workspace) project root
 +-Software/ root for software artefacts
 | +-Templates/ templates directory
 | +-Communal/ soft link to communal templates
 | +-Team/ templates produced by team
 | +-Applications/ application code modules
 | | +-SimpleApp/ application code directory including sample application
 | +-Utils/ directory for utility code modules
 | +-CCW/ directory “common component wrappers” (CCWs)
 | +-PDM/ directory “platform deployment modules” (PDMs)
 | | +-CSB337/ directory containing PDMs for CSB337 platform
 | | +-MicroMonitor/ PDMs for MicroMonitor variant of CSB337 platform
 | | +-uCLinux/ PDMs for uCLinux variant of CSB337 platform
 | +-Documentation/ Software documentation
 | +-Communal/ Soft link to communal software documentation
 | +-MicroMonitor/ Documentation for the MicroMonitor O/S
 | +-gnu-assembler/ and related tools / drivers
 | +-uCLinux/ Documentation for the uCLinux O/S
 | | +-MemDevInfo/ and related tools / drivers
 | +-Team/ Supplementary documentation obtained by team
 +-Tools/ Supplementary tools developed by team
 | +-Scripts/ Supplementary ESAOA Bash scripts
 | +-Programs/ Supplementary ESAOA C++ programs
 +-Hardware/ root for artefacts most strongly related to hardware
 | +-Documentation Hardware documentation
 | +-Communal/ Communal hardware documentation
 | +-Datasheets/ Component datasheets
 | | +-CSB337/ Directory for specific component uses the component’s ID
 | | +-AT91RM9200/
 | | +-Peripherals/ Directory for various peripherals (subdirectories not shown)
 | | +-ARM_920/
 | +-Overview/ Product overview sheets / brochures
 | +-QuickRef/ Quick reference manuals (including ESAOA quick reference)
 | +-Team/ Team hardware documentation
 +-Copyright/ Copyright / licensing information for the project
 +-Documentation/ Product / other documentation
 +-Communal Communal documentation
 +-Forum/ Documentation about using the forum
 +-Templates/ Other templates

Figure 4.18: ESAOA version 1 team distribution directory structure.

4.6.5.5 Specialised KM artefacts

Three types of drawings that provided graphical means of communicating and

capturing ESAOA knowledge were observed in Experiment 1 and added to the KMS;

these drawings are named: 1) artefact organisation diagram (AOD), 2) concept

sketch, and 3) concept drawing. The developers did not originally use these specific

names for their diagrams. The names ‘concept sketch’ and ‘concept drawing’ are

based on the literature (specifically on work by Healey et al. [2002] related to

 4-76

graphical communications techniques). The name ‘AOD’ was assigned by the

researcher. Functionality classifications of the same names were added to the

ESAOA KMS as a means of keeping track of these boundary artefacts.

Concept sketches are intended to be drawn quickly, and are thus generally pen or

pencil on paper. The concept drawing captures one or multiple concept sketches

including additional details. The concept sketches were informal, and used in an

impromptu manner by the developers; the concept drawings were used mainly during

meetings, and were thus more formal and professionally prepared. Both drawings

were primarily used to exchange and capture ideas. The concept sketches in

particular were used much like a whiteboard, and were modified and annotated to

reflect ideas and decisions made during discussions. Figures 4.19 and 4.20

respectively illustrate a concept sketch and a concept drawing, both from Project P1-

2. Figure 4.20 is based on the concept sketch shown in Figure 4.19 that was used to

explain the pedestal control motor.

In ESAOA KMS version 1, concept sketches and drawings are given a title and dated

(an item the P1-2 engineers neglected to do). The ESAOA team workspace

distribution includes an OpenOffice Drawing template for concept diagrams.

Figure 4.19: Concept sketch created in a project P1-2 meeting (event chain 44).

 4-77

Figure 4.20: Concept drawing produced in project P1-2 (part of event chain 44).

An AOD was used in project P1-1 to express the directory structure of the software

framework constructed by the engineers. The AOD built on the UML packet diagram

[Arlow, 2005]. The AOD structure produced in P1-1 was extended and adapted for

use in ESAOA workspaces to describe the following: 1) the starting point (or starting

artefact) in an ESAOA workspace, 2) the organisation of directories and

subdirectories, 3) important artefacts (e.g., executable program images), and 4)

important interrelations between artefacts (e.g., datasheets used while writing certain

code modules). Figure 4.21 demonstrates an AOD based on the Project P1-2

directory structure. The team workspace distribution contains an AOD that describes

its directory structure.

 4-78

ANTCON
(project root)

Controller
device: /dev/resv/0

Resolver

Drivers
contains uCLinux driver
code modules.

positioner.cpp
Change position
of pedestal

 goertzel.h
Impl of DSP technique to find
frequency components of a signal
-- needed for controlling the
pedastal
see procedure:
ProcessSample(x,y)

main.cpp
Implements app entry
code / main() function

adc.c
Setup or sample
value from one
of the ADCs

Application
Application level code.

lib_pio.h
Setup/control
programmable
I/O pins

Readme.txt START

resolver.c
Get current
resolver
readings

Figure 4.21: AOD for project P1-2 (see Section 3.11 for modelling language).

The Project P1-2 developers also constructed a simple embedded software

simulation environment, essentially a ‘virtual platform’ [Wikipedia, 2009], which they

used to test C code. This simulation environment composed a C code modules that

were linked with the application code produced. This simulation environment was

later overhauled by the research, integrated into the workspace of ESAOA KMS

version 1, and was termed the PC Box platform. This PC Box platform was used in

Experiment 2 to train participants on the use of ESAOA tools and workspaces.

4.6.6 ESAOA KM workflows and processes

This section is separated into subsections that describe the major processes

performed by each role. Many of these processes relate to artefacts described in

Section 4.6.5 and utilise ESAOA tools (provided in the ESAOA communal distribution

and listed in Section 4.6.7). In some cases, different roles performed the same

processes; these processes are described in the ‘common processes’ sections.

4.6.6.1 Processes of the chief knowledge officer (CKO)

The CKO is in charge of the ESAOA KMS. The CKO requires an understanding of

KM, should be a skilled computer engineer, a good trainer, have experience in

software engineering, and be excellent at programming ANSI C, C++ and Bash

scripts. The CKO provides two fundamental influences: 1) guiding engineers in

effective KM strategies within the specialised area of embedded system

development, and 2) maintaining the overall structure of the ESAOA KMS, ensuring

that the processes are applied consistently and that the support structures (i.e., the

 4-79

CKS, ESAOA workspaces and associated computing infrastructure) are operating

effectively. Figure 4.22 models the processes performed by the CKO and the roles

related to these processes. The figure shows that the CKS can act as a CKO proxy,

handling some of the requests submitted by team members. Generally, the CKS

supports the CKO in maintaining ESAOA workspaces once team members have

been trained.

The CKO should be involved in the code and design reviews performed by teams in

order to provide expert advice relating to KM strategies. A principal duty of the CKO

is to ensure that users of the ESAOA KMS understand the roles and associated

processes they are designated to perform (an issue that can be checked effectively

during code and design review meetings).

CKS workspace
maintenance

TM
TL

Minutes
Code & design
review meeting

CKO

- Knowledge management

- Computer engineering
- Software engineering
- ANSI C, C++ programming
- Bash scripting

Data knowledge
management

Innovation knowledge
management

CKS
training

CKO / Team
liaison

Components used,
remembering procedures,
where to find tutorials, howto
guides, etc.

Specifying components, writing
code, capturing routine chores
as scripts, understating sample
code. Describeing complex
development problems,
willingness to post & answer
forum questions.

Process knowledge
management

Artefacts containing innovations; ideas
tested, concepts that worked and did
not work, further design issues that
need to be investigated.

Requesting process knowledge.
Keeping track of innovation knowledge
produced. Prioritizing ideas to test.

Which artefacts are DS
artefacts, records/minutes
relating to decisions,
knowledge production
tasks assignments

Logging useful search
results, tracking
component ids, reading
and organizing data
artefacts (datasheets,
sample code, etc).

CKO
B

Figure 4.22: Processes performed by the CKO.

The CKO is responsible for training the CKS. This training ensures that the CKS is in

turn able to train team members in performing the roles of DS, PE and IE. In

Experiment 2, there was one CKS, and he was trained by observing how the CKO

assisted the first couple of teams in learning their roles. Refinements to the duties of

the CKO in version 2 of the KMS are explained in Section 6.6.1.

 4-80

4.6.6.2 Processes of the communal knowledge steward (CKS)

The CKS acts as a proxy and assistant to the CKO. The CKS facilitates sharing of

knowledge produced in one team with other teams, and is tasked with maintaining

the communal workspace. The main responsibilities of the CKS are: 1) checking that

team members are utilising the ESAOA KMS, and 2) adding or modifying communal

artefacts. In some cases, and with the permission of the team concerned, the CKS

will copy artefacts (and new functionality classification index entries) from a team

workspace to the communal workspace, while maintaining the appropriate artefact

classification structure. The CKS also suggests corrections to mistakes made in

classifying artefacts. Figure 4.23 modelled the main processes performed by the

CKS. Once the team members have been trained in their roles, the CKS focuses on

supporting the CKO and team leaders in maintaining the communal workspace and

team workspaces respectively.

Communal
artefact

DS training

CKS
training

PE training IE training

Team
workspace
maintenance

TM

Team
artefact

CKO

CKS

Team to communal
artefact conversion

Figure 4.23: Major processes performed and maintained by the CKS.

4.6.6.3 Processes of the team leader (TL)

One of the members of each development team is assigned the role of team leader.

This individual performs the team leader role in addition to roles of DS, PE, or IE as

needed during the development. In ESAOA KMS version 1, only one process is

defined for the team leader, specifically: the team leader reports to the CKO and CKS

on the successes or problems encountered in using the ESAOA KMS (the CKO or

CKS respond by providing support in terms of recommending KM strategies). Figure

4.24 models this process of the team leader. Other processes of the team leader are

not defined in the ESAOA KMS; rather, the team leader decides on his or her own

methods to manage the team, such as scheduling progress meetings, reminding

team members of deadlines, and ensuring that each team member is doing their bit.

The dashed lines in Figure 4.24 indicate that these team management processes are

 4-81

part of the ESAOA KMS (i.e., they are external processes thoroughly covered by the

literature, such as Thamhain [1990]).

<<reports to>>

Team management
(not part of ESAOA)

TL

TM

<<reports
to>>

CKO

Code and design reviews
(not part of ESAOA)

Team
artefact

B

Figure 4.24: Major role interrelations and processes performed by the TL.

4.6.6.4 Processes of the data steward (DS)

The DS is mainly responsible for finding, reviewing and organising documentation

and sample code used by the PE. The DS also maintains other files related to data

knowledge produced by the team, such as test cases used for regression testing.

Skills required by the DS include effective search strategies (e.g., use of Google

keywords) and knowledge of useful information sources (e.g., books and online

forums) from which data knowledge can be gleaned rapidly. The DS should be

competent in keeping records and taking notes at meetings so that important

knowledge produced by the team is made explicit, and thus retained by the team.

As is the case for all the roles, the first process performed by the DS is training,

specifically ‘DS training’ in which the CKS or CKO introduces team members to the

production and management of data knowledge (Figure 4.25 (a)). Since the team

members are all likely to perform each of the DS, PE, and IE roles at some stage

during a project, all the teams members should receive training for all these roles.

The CKO maintains and documents the DS training process and teaches this

process to the CKS. The CKS provides support for the DS on using the processes

learned during DS training. Much of this training is tacit, with the CKS showing the

DS effective strategies for web searches, methods of logging search text and URLs,

and how and where to save datasheets and other information documents to the team

workspace. The CKS also runs through the ESAOA tools (e.g., demonstrating use of

the fclass and other tools), and explains the various artefacts, and their

 4-82

classifications, which the DS is likely to find and use in a project (Section 4.6.7 details

the scripts and programs of the ESAOA KMS version 1). Figure 4.25 (b) models the

processes and artefacts used by the DS.

DS Training

*

DS artefact

Search
- Datasheets
- Manuals
- Sample code

*

Documentation

Software
artefact Software

(a)

(b)

Data knowledge
management
Which artefacts are DS
artefacts, records/minutes
relating to decisions,
knowledge production
tasks assignments

Logging useful search
results, tracking
component ids, reading
and organizing data
artefacts (datasheets,
sample code, etc).

CKS

CKO

Data knowledge
Knowledge of search tools,
websites, component
manufacturers, faqs, how to
sites, journals / magazines.

Effective use of keywords,
adapting DS artefacts.
Assisting PE to find sample
code, datasheets, other
information sources.

DS artefact

DS

DS
PE artefactB

AOD B

Datasheet K

Manual K

Documentation K

Sample
code

B

Search log K

Figure 4.25: (a) DS training process; (b) DS search process.

4.6.6.5 Processes of the process engineer (PE)

The process engineer creates development procedures, such as figuring out the

configuration settings for an operating system, or controlling a specific hardware

component from software. The IE uses procedures created by the PE in order to test

design concepts. Both the PE and IE are involved in experimentation. However, the

difference between their experiments is that the PE attempts to determine methods

of configuring and controlling components and tools that will be used in the system

prototype, whereas the IE focuses on testing design ideas by using processes

provided by the PE and thus exerts little additional effort in terms of developing

methods to configure tools or interface components. The PE requires expertise in

designing and testing development methods, as well as being able to keep memory

 4-83

joggers and component lists that will help the PE or IE to repeat these processes at a

future time. The PE may also add or customise ESAOA tools within the team

workspace. Figure 4.26 models the processes and artefacts used by the PE.

PE Training

PE

DS artefact PE artefact

<<describe>> <<describe>>

PE Process

<<describe>>

(b)

Process knowledge
management
Remembering components used,
procedures to use them. Knowing
where to find good resources (tutorials,
howto guides) to assist in development
procedures (e.g., forums)

Specifying components, writing code,
capturing routine chores using scripts.
Reading sample code. Describe
complex development problems,
explain solutions, willingness to
interact with fellow engineers (or
component manufacturers) using
forums and email.

CKS

CKO

(a)

Sample
code

Device
drivers

How to
guide

PE artefact

Managing hardware and
software components

Producing PE
artefacts

Process knowledge
Components controlled. Artefacts
involved in a development processes.
Data sources. Individuals who
contributed process knowledge.

Methods to control components, how
to adapt artefacts.

Routine procedures
Configuration steps. Sequences.

Sequence of steps to compile code for
a particular processor. Series of
procedure / tool invocations to be
repeated precisely.

ESAOA tool
coding

PE

CKS

B

Bash
Script

C++
Program

ESAOA
tools

Figure 4.26: (a) Interaction between PE, CKO and CKS; (b) Processes performed by the
PE that involve development process knowledge.

4.6.6.6 Processes of the innovation engineer (IE)

As mentioned in Section 4.6.4, the IE tests ideas to produce innovation in the project.

Section 2.5.6 of the literature reviews theories related to innovation management;

additionally, properties of individuals involved with innovation in development projects

are investigated by authors such as Nonaka & Takeuchi [1995], Leonard [1999],

McKeown [2008]. Consequently, the IE role is expected to exhibit qualities of:

creativity, expression and experimentation. In addition, for effective use of the

 4-84

ESAOA KMS and effective collaboration between the IE, PE and DS roles, the IE

needs a willingness to test design ideas, coupled with the ability to explain to the PE

the development procedures, related components and artefacts needed in order to

carry out experimentation tasks from which innovation knowledge is built.

The PE and IE are likely to spend a significant amount of time working side-by-side,

with the PE explaining to the IE how to carry out development methods, and the IE

requesting from the PE additional development strategies or modifications to existing

processes. Much of the interaction between the PE and IE is likely to be rapid and

performed face-to-face, and thus difficult to capture and record. For this reason, the

PE is involved in capturing solution strategies and memory joggers that will assist in

recovering or remembering development strategies. The IE will generally learn the

development strategies from the PE. However, the IE will generally not obtain the

detailed process knowledge, which the PE learns, relating to how the development

procedures are produced and maintained. The IE will simply learn which scripts and

configuration files to use, and which tool commands (or keystroke sequences) to use,

as explained by the PE. The processes and artefacts discussed here are modelled in

Figure 4.27.

 4-85

PE artefact

IE artefact

<<describe>>

<<describe>>

<<describe>>

(b)

Innovation knowledge
management
Artefacts containing innovations; ideas
tested, concepts that worked and did
not work, further design issues that
need to be investigated.

Requesting process knowledge.
Keeping track of innovation knowledge
produced. Prioritizing ideas to test.

CKO
(a)

Prototype
circuits

IE artefact

Managing IE artefacts

Producing IE
artefacts

Innovation knowledge
Design concepts to test, components and
artefacts needed to test concepts, artefacts
produced through innovation. Which
development procedures (provided by the
PE) to use in certain experiments.

Experimentation method, explaining
innovation goals, requesting and
describing development procedures
needed. Planning experiments to do.

Sample input /
output

IE PE

CKS
IE Processes

IE Training

Concept
sketch

It

Code
modules

It Application
code

IE

It

ItConcept
drawing

It

Figure 4.27: (a) Collaboration between CKO, CKS and IE; (b) Processes and artefacts
used and managed by the IE.

4.6.7 Software design of ESAOA workspaces

The ESAOA workspaces comprise a directory structure of artefacts and KM support

tools. The tools comprise Bash scripts (called scripts) and C++ executable programs

(termed programs). The scripts and programs are listed in Section 4.6.7. The initial

versions of the tools were all provided in the ESAOA communal distribution, and

teams could modify them, or add additional tools, as needed for their own projects.

The design of these workspaces became the main aspect of the framework

construction phase described in research design (see Section 3.5.1). As mentioned

in Section 3.5.1 the tools and other artefacts for ESAOA KMS version 1 were based

on analysis of Experiment 1, and involved the adaptation of artefacts produced by the

developers doing the experiment, or the addition of new artefacts developed by the

researcher.

 4-86

4.6.7.1 ESAOA scripts and tools

Many of the scripts simply call programs, and are often used as a means of calling

the programs without specifying many, if any, command line arguments, which saves

time. For example, the aod script changes to the directory containing AOD

documents (i.e., directory ‘Documentation/AOD’ as per the functionality hierarchy in

Section 4.6.5.2), and then displays the latest AOD drawing. ESAOA KMS version 1

has 40 initial scripts. Figure 4.28 shows the Bash code used to implement the esaoa-

snap script. This code calls ESAOA programs (such as esaoa-fm) to perform its

operation. The following scripts were of particular importance:

• Build-esaoa: compiling and linking a new ESAOA program.

• Esaoa-cleanup: removing various unimportant files, such as map files and

object files, allowing backups to take less storage space.

• Esaoa-create-script: generating an ESAOA script starting point in the

appropriate directory edit.

• Esaoa-find: using a combination of the GNU find utilities [GNU, 2008b] and

the fcs program to access file metadata and find artefacts.

• Esaoa-snap: creating a zip file snapshot of a directory and its subdirectories.

• Esaoa-tz: creating a backup of a project directory (similar to esaoa-snap).

• Godir: similar to esaoa-find, it looks for a directory and changes the current

working directory to the first directory found.

There are 34 initial programs in ESAOA KMS version 1. The most important

programs are outlined below; these programs are often called from scripts (for

example, the esaoa-fm and fcs programs were used in many scripts).

• Esaoa-fm: manipulating filenames (e.g., extracting the file extension).

• Esaoa-menu: used by scripts to present a menu to the user, in order to

capture commonly performed actions.

• Esaoa-mm: traverses ESAOA directory structure to generate make files.

• Fclass: used for maintaining classification data of soft artefacts (i.e.,

assigning and viewing classifications applied to files in a workspace).

• Fcs: maintaining file metadata (e.g., artefact classification data) using CSV

files. This program has a variety of command line arguments and is built into

the fclass program.

• Fim: managing the functionality index classification file (i.e., used to add

artefact functionality classifications).

 4-87

Figure 4.29 provides the initial lines of the esaoa-fm.cpp code file that implements

the esaoa-fm program. The code shows use of the KIT API, an API that was

developed to facilitate construction of the ESAOA programs, such as esaoa-fm.

Figure 4.28: Implementation of the esaoa-snap script.

#!/bin/bash
Script to create a zip snapshot of a directory, but does not
add compiled objects files or executables.
Part of ESAOA framework
pushd . >/dev/null # Store the current path
DIR=$(esaoa-cwd)
Determine relative path of the directory to 'snap'
APPDIR=$(esaoa-fm $DIR n)
cd ..
Generate a new archive name
ARCH=$(esaoa-fm $APPDIR.zip u)
Create the archive
echo "--------------------CREATING ARCHIVE--------------------"
Display the ESAOA EXCLUDES environment variable
echo EX = $EXCLUDES
Use zip command to generate the archive
zip -r $ARCH $APPDIR -x $EXCLUDES
echo "--"
ls -lh $ARCH # display size of the snap archive
popd . >/dev/nulls

/** @file esaoa-fm.cpp
 * Filename manipulation application.
 * Programmer: S. Winberg
 * Date : 20 Jan 2005 */
/* Standard C includes */
#include <stdio.h>
#include <string.h>
#include <time.h>
/* KIT (Kit of IT tools) API includes */
#include "KitFile.h"
#include "KitStream.h"
#include "ESAOA.h"
#include "Kit_CONSOLE.h"

int verbose = 0; // set to 1 to enable debug messages
int is_console_app = 1; // if 1: use console; else GTK calls
/***************** FUNCTION IMPLEMENTATION *****************/
/** Function to provide help information */
void help () {
 fprintf(stderr,"ERROR: Please specify a file name\n");
 ...

Figure 4.29: Implementation of the esaoa-fm program.

 4-88

4.6.7.2 The Kit for Information Technology (KIT)

A C++ application programming framework, called the Kit for Information Technology

(or KIT), is included in the ESAOA communal distribution. KIT provides high-level

functions for navigating ESAOA directory structures and for manipulating CSV files

that contain meta-data for files. The KIT application programming interface (API) is

used to connect a C++ program to the KIT application framework. The communal

workspace includes a description of the KIT API with code examples. The UML class

model for KIT, and a description of its classes, is provided in Appendix C.4 (the

appendix includes a flowchart and code snippets of a C++ ESAOA program

implemented using KIT).

4.6.7.3 The central server and the networking infrastructure

The communal workspace and team workspace (which were introduced in Section

4.6.2) are used to store and share artefacts. Artefacts of the communal workspace

are shared between all teams, but artefacts of a team workspace are shared only

between members of that team. The workspaces also constitute an environment that

includes artefacts structured among directories and ESAOA tools to assist ESAOA

tasks. A central server, running the Linux operating system, is used to meet these

needs. The central server provided one common workspace, utilised by all teams,

which was overlaid by a particular team member’s team workspace, which was in

turn overlaid by that team member’s personal workspace. This method of overlaying

workspaces was achieved by loading one Bash script environment configuration over

another (with subsequent environment settings overwriting those of previous

settings). Figure 4.30 describes this approach. This approach was mainly used in

Experiment 2, in that ESAOA tools were accessed using remote login from lab

computers. However, if a team member wanted to work ‘off line’ on his or her own

computer (i.e., not logging in to the central server), a copy of the communal

workspace and appropriate team workspace, in addition to the ESAOA tools and

other development software, had to be installed on that computer.

 4-89

PATH=/usr/local/qt/bin:/sbin:/bin:/usr/sbin:/us
r/bin:/usr/X11R6/bin:/usr/local/sbin:/usr/local/
bin:/opt/umon-bin:.
ESAOA_ROOT="/data1/swinberg/aoa"

Initial Environment Configuration

CPLUS_INCLUDE_PATH="/usr/local/qt/include"
ESAOA_EDITOR="kwrite"
ESAOA_INSTALL="/usr/local/ESAOA-0.1"
ESAOA_NAME="ESAOA"
ESAOA_PDF="xpdf"
ESAOA_RC="/etc/esaoa-0.1.rc"
ESAOA_TEAM="/teams"
ESAOA_VER="0.1"
PATH="/usr/local/ESAOA-0.1/Scripts:/usr/local/ESAOA-0.1/
Programs:/usr/local/qt/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/
bin:/usr/local/sbin:/usr/local/bin:/opt/umon-bin:."
TOOLS_DIRS="/usr/local/ESAOA-0.1/Scripts:/ usr/local/ESAOA-
0.1/Programs"

Communal Environment Configuration

CPLUS_INCLUDE_PATH="/usr/local/qt/include"
ESAOA_EDITOR="emacs"
ESAOA_INSTALL="/usr/local/ESAOA-0.1"
ESAOA_NAME="ESAOA"
ESAOA_PDF="acroread"
ESAOA_RC="/etc/esaoa-0.1.rc"
ESAOA_TEAM="/teams/team0"
ESAOA_WIP="/data1/swinberg/aoa"
ESAOA_VER="0.1"
PATH="/teams/team0/Scripts:/teams/team0/Programs:/usr/local/ES
AOA-0.1/Scripts:/usr/local/ESAOA-0.1/Programs:/usr/local/qt/bin:
/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin:/usr/local/sbin:/usr/local/
bin:/opt/umon-bin:."
TOOLS_DIRS="/teams/team0/Scripts:/teams/team0/Programs:/usr
/local/ESAOA-0.1/Scripts:/usr/local/ESAOA-0.1/Programs"

Team Environment Configuration

Loads communal
environment settings

Loads team environment
settings

Loads WIP environment
settings

Figure 4.30: Consecutive loads of Bash environments for ESAOA workspaces.

4.6.8 Implementation and distribution of ESAOA workspaces

The ESAOA workspaces are put into place using ESAOA distributions. These

distributions are in the form of archives that include soft artefacts organised into an

ESAOA directory structure. The artefacts also include documents that describe roles,

processes (captured in the form of guideline documents, how to manuals, scripts and

programs) and other artefacts that collectively describe a baseline version of an

ESAOA KMS. The distributions also provide template artefacts that are used by the

roles described in Section 4.6.4. There are three types of ESAOA distributions, which

are summarised in Table 4.33.

The ESAOA communal workspace distribution comprises 302 files in 26 directories.

The team workspace distribution has 163 files in 27 directories. The workspace

distribution consisted of 31 files in 9 directories (mostly a collection of installation

 4-90

programs to be installed on the workspace computer if alternate applications have

not already been installed – these software applications include free or open-source

software programs, such as Putty.exe [Tatham, 2009]). Note that there is no personal

workspace distribution; it is assumed that individual team members will start with a

copy of their shared team workspace. Furthermore, only the team workspace

distribution has an installation script (although it requires some manual intervention).

The other workspaces and workstation distributions need to be manually installed.

Table 4.33: ESAOA KMS version 1 distributions.
ESAOA Distribution Archive file Contents
ESAOA communal
workspace distribution

ESAOA-communal-
1.0.tar.gz

Communal soft artefacts
maintained by the CKO and CKS
and used by all teams.

ESAOA team workspace
distribution

ESAOA-team-1.0.tar.gz A baseline collection of soft
artefacts that provides a starting
point for team projects.

ESAOA workstation
distribution

ESAOA-workstation-
1.0.tar.gz

Programs used by all roles to
access the ESAOA communal
and team workspaces.

4.6.8.1 Implementation of the ESAOA communal workspace

The ESAOA communal workstation distribution provides processes in the form of

programs and scripts, together with template document and code files. These

artefacts are not modified directly by team members, but are maintained by the CKO

and CKS. The communal workspace has the directory structure shown in Figure

4.31; the annotations describe the directory contents. Further detail about these

directories is provided below.

+-/usr/local/ESAOA-1.0/ (ESAOA communal artefacts) project root
 +-Software/ root for software artefacts
 +-Tools/ Communal ESAOA tools (not toolchains for compilers, etc)
 | +-Scripts/ Communal ESAOA Bash scripts (e.g., dt script)
 | +-Programs/ Communal ESAOA C++ programs (e.g., mm program)
 +-Hardware/ root for artefacts most strongly related to hardware
 +-Copyright/ Copyright / licensing information for communal artefacts
 +-Documentation/ Other communal documentation
 +-Templates/ Templates for documents and code

Figure 4.31: Top-level directory structure of ESAOA communal workspace.

The ESAOA workspaces are accessed from the ESAOA shell environment. The

ESAOA shell environment extends the Bash (Bourne Again Shell) [BASH, 2009]

command line environment using additional scripts and C++ programs. The scripts

and programs encode process knowledge and strategies for managing ESAOA

 4-91

knowledge. Tools are provided in the communal distribution for finding, cross-

referencing and relating files, amongst other tasks.

Both scripts and programs can be manually invoked from a terminal within the

ESAOA shell environment. Text editors and integrated development environments

(IDEs) are started from within the ESAOA environment and can be configured to

invoke ESAOA scripts or programs automatically. The following subsections

respectively discuss the ESAOA scripts, ESAOA programs, and ESAOA templates

that are provided with the ESAOA communal distribution.

ESAOA communal scripts

ESAOA scripts are used by the PE as a means of capturing automatable5 process

knowledge that can be expressed effectively by a scripting language. Bash scripts

were chosen for the ESAOA KMS, as these scripts can be coded swiftly because

they follow a simple programming construct that can be learned quickly. A more

advanced and powerful scripting language (e.g., Python [Lutz, 2006]) was not used,

as these languages generally take longer to learn. The Bash scripting language was

found to be an effective means of capturing routine process knowledge that occurred

in Experiment 1 (e.g., the steps to netboot an embedded operating system that

occurred in project P1-2 event chain 28). ESAOA scripts are divided into communal

scripts (provided with the ESAOA communal distribution) and team scripts (which

team members created during projects). In order to override a communal script, a

team script is given the same name as the ESAOA communal script. The baseline

team workspace provided by the team distribution does not provide any script. The

scripts included in the ESAOA communal workspace are described in Table 4.34.

Table 4.34: ESAOA communal scripts.

Script Name Description Used by
aod Display AOD diagram for project All
build-esaoa Build C++ ESAOA program that encodes a process, adds to

Scripts directory in current project.
CKO / all

check-
comments.sh

Checks number of comments in a code or script file. Can display
all or a summary (first line) of comments in file.

TL

desc Describe a file (adds to projects file description CSV file) DS
dus Show human-readable disk usage summary. All
enter-aoa Enter the ESAOA environment. All
esaoa-
addpath

Add the current (or specified) path to the current project
environment.

PE

esaoa-artefact Add meta-data to artefact (stored in CSV file in local directory). DS

5 The term ‘automatable’ is used here to refer to procedure knowledge that can be effectively
represented as a computer program.

 4-92

esaoa-burn Script to ‘burn’ a bin file in to flash on a target platform. PE
esaoa-checks Perform checks to verify that the ESAOA environment is

operating / installed correctly.
All

esaoa-clean Remove unneeded / temporary / object files in current directory. DS, PE
esaoa-
cleanup

Goes through application directories for project and performs an
m clean operation.

DS

esaoa-cp Copy a file and its classification: calls the Linux cp command and
ESAOA’s fclass tool. (version 1 cannot copy classifications
across different workspaces; this must be done manually)

All

esaoa-create-
c

Create a new C file using a C file template stored in the
/usr/local/ESAOA-1.0/Templates directory.

PE, IE

esaoa-create-
cpp

Create a new C++ file using a C++ file template stored in the
/usr/local/ESAOA-1.0/Templates directory.

PE, IE,
CKO

esaoa-create-
script

Create a new ESAOA Bash script using a file template stored in
the /usr/local/ESAOA-1.0/Templates directory.

PE, CKO

esaoa-dt Show the date and time in a standard, concise format (uses
template DD-MMM-YYYY).

All

esaoa-edit Open the default editor to edit a code file (teams can choose to
override the default editor using their own esaoa-edit script).

All

esaoa-exeapp Execute the application – if using PCBox executes on PC,
otherwise instructs embedded platform to run the program.

PE, IE

esaoa-find Find an artefact based on keywords. Find can search based on a
filename or on text within the body of the file.

All

esaoa-help Show help for a particular ESAOA program or script provided
with the communal workspace.

All

esaoa-home Go to root folder of team or personal workspace All
esaoa-info Display information about the active ESAOA communal

workspace and ESAOA team workspace.
DS, CKS,
CKO

esaoa-m Make current application PE, IE
esaoa-mkrc Make ESAOA RC file (a Bash script file executed when the user

changes into the directory containing that file).
PE, CKO,
CKS

esaoa-mv Rename/move a file and moves its fclass classifications. (Need
to manually moved classifications between workspaces.)

All

esaoa-nop Does nothing – used in testing the installation. All
esaoa-
platform

Change target platform or variant of platform. PE, IE

esaoa-project Manage the current project. All
esaoa-rm Removes a file and all its classifications using fclass. All
esaoa-scratch Manage temporary files. All
esaoa-term Open another terminal. All
esaoa-test Test a ANSI C or C++ file. PE, IE
esaoa-tz Compress current directory and sub-directories as tar.gz archive. DS
exit-esaoa Exit from the ESAOA environment. All
godir Go to a certain directory (e.g., go app tries to find a directory

containing the text ‘app’).
All

log Add an entry to the current project’s log. All
platform-info Display information about the currently selected target platform. PE, IE
title Display or set the title of the directory. DS
tree Display the directory tree of the current directory. All

ESAOA communal programs

ESAOA programs are C++ applications, which are used as a means of capturing

routine process knowledge that can be expressed effectively using a Bash Script. A

simple C++ application framework called KIT (see Section 4.6.7.2) is included in the

ESAOA communal distribution. KIT provides high-level functions for navigating

 4-93

ESAOA directory structures and for manipulating CSV files containing file meta-data.

Table 4.34 describes the tools provided within the ESAOA communal workspace.

The PE was responsible for any customisation or addition of ESAOA tools in the

team workspace in order to capture procedures and allow them to be repeated

quickly (Section 6.6.5 indicates this as a PE process). Development of C++ programs

(using KIT), as a means of capturing automatable procedures, were likely to take

more time than writing Bash scripts for the same purpose. However, C++ programs

may be better suited for some purposes than scripts. Furthermore, the developer

may be skilled in C or C++ programming, but have little experience in Bash scripting.

For these reasons, the PE could choose between Bash scripts or C++ programs.

An example of an ESAOA program produced in Experiment 1 is the ascii-table

program6 (see Table 4.34). This simple C++ program was written to provide a quick

means to find ASCII codes of characters, thereby assisting in knowledge production;

consequently, it was added to the set of communal ESAOA tools.

As was the case for ESAOA scripts, ESAOA programs are divided between

communal programs (provided in the communal distribution) and team programs

developed by members of a team. An ESAOA communal program could be

overridden by giving a team program the same name as the communal program (the

ESAOA environment configured the path to accommodate this facility).

One of the most important programs in the ESAOA communal program collection

was the esaoa-mm (or mm) program. This program captured the researcher’s

knowledge of creating make files for portable embedded applications for which the

code modules were organised according to the ESAOA team workspace structure.

Table 4.35: ESAOA communal programs.
Program Name Description Used by roles
ascii-table Display ASCII table or part of it. PE, IE
esaoa-apps Display list of applications in team workspace or go to an

application.
PE, IE

esaoa-askpass Read a password. All
esaoa-bar Display a status bar. PE, IE
esaoa-capture Capture data from target (using an RS232C port linked to

the embedded platform).
IE

esaoa-cwd Display current working directory (following symbolic links.)All

6 The P1-1 engineer developed the ascii-table program because he was tired of manually
looking up ASCII codes needed in testing the SoSiG communications protocol.

 4-94

esaoa-defs List or add a definition to project defs.csv database. DS
esaoa-err Add a line of text or file to the ESAOA error log file for

indicating user concerned.
PE, IE

esaoa-fm ESAOA filename manipulation application. All
esaoa-godir Used by godir script to find a directory. All
esaoa-log Called by log script to manage logs for a project. All
esaoa-menu Display and control a menu used by ESAOA scripts. PE
esaoa-mm MakeMake application – creates a Makefile for an

application.
PE, IE

esaoa-moddep Determine dependencies for a C or C++ code module. All
esaoa-neaten Neaten a C or C++ file. DS, TL
esaoa-pathtool Add a directory to the path in the team workspace. PE, IE
esaoa-ppc Use in C or C++ pre-processing (e.g., finding comments,

author names, etc).
PE, IE

esaoa-projroot Determine path for the directory root of current project. All
esaoa-prompt Called by Bash when in the ESAOA environment to

display a command prompt.
All

esaoa-readln Prompt user for a line of text. All
esaoa-setup Configure the ESAOA environment. PE
esaoa-sm Send / log a message to fellow team member. All
esaoa-snap Make zip snapshot of current directory and subdirectories. All
esaoa-status Add a status entry or annotate an existing status entry. All
esaoa-tally Count files, occurrences of certain events logged. TL
esaoa-upload Upload a data file to the target (using an RS232C port

linked to the embedded platform).
PE, IE

esaoa-version Display current version of ESAOA communal workspace. All
esaoa-zip Zip archive manager (used to manage archives stored in

Project directory).
DS

fim Functionality classification index file manager. All
fclass Add functionality classification for a file. All
Fcs Used to maintain CSV files containing meta-data for files. All
Istime Check if a certain date/time has been reached. All
Penv Modify/display ESAOA environment parameter. PE
Sdb Simple database application (SDB). Used in manipulating

CSV files using SQL.
All

ESAOA communal templates

The ESAOA templates provide convenient starting points for certain types of

artefacts stored in an ESAOA workspace. The choice of templates is based on

artefacts and development procedures observed in Experiment 1. Three artefact

templates of interest are: ‘definitions.defs’, ‘projects.mnu’ and ‘esaoa-project.rc’.

In project P1-2, the engineers maintained a list of term definitions. In the ESAOA

KMS, the esaoa-defs program was used to assist in maintaining definitions across

projects in multiple files called ‘defs.csv’ (one copy in each project root folder).

The ‘menu.mnu’ file is a menu file template used by the esaoa-menu program – the

menu structure is simple, in that leaf menu7 entries invoke a command (or shell script

7 The term ‘leaf menu’ refers to menu items at the lowest level of a menu hierarchy, which do
not have further submenus.

 4-95

containing multiple commands) and then exit the menu program. This structure was

based on scripts developed in Experiment 1 that could be made more efficient by

using a menu of this design instead of asking a series of yes/no questions in order to

run a particular command or sequence of commands.

In Project P1-1, the engineers found it necessary to modify their shell environment

(e.g., adding paths and setting environment variables). Considering that both

Projects P1-1 and P1-2 used notably different shell configurations, it was decided

that each ESAOA project folder, when entered using the cd command, should

configure the shell environment according to an ‘esaoa-project.rc’ file placed in the

project root directory. This allows for more rapid change between projects, while

having the important configuration settings kept in a known place.

Table 4.36: ESAOA communal templates.
Program Name Description Used by roles
aoa.tar.gz ESAOA team workspace not containing files. All
code.c Template C file. PE, IE
code.c++ Template C++ file. PE, IE
code.cpp Template C++ file. PE, IE
dayplan.csv Template dayplan (for team leader) in CSV format. TL
dayplan.xls Template dayplan (for team leader) in Microsoft Excel

format.
TL

definitions.defs Example list of definitions (managed by esaoa-defs). DS
esaoa-project.rc Example project RC file. PE, CKO
esaoa-script Template ESAOA Bash script. PE, CKO
menu.mnu Example menu. PE, CKO

4.6.8.2 ESAOA team and personal workspace

The ESAOA team workstation comprises a Bash shell environment and a directory

structure. The shell environment is entered using the enter-esaoa command. Figures

4.32 and 4.33 show screenshots of the ESAOA shell environment accessed using a

Cygwin terminal [Cygwin, 2008]. The ESAOA shell environment is configured in two

steps: first, the communal workspace configuration is loaded (file ‘/etc/esaoa-01.rc’

for version 1) and then the ‘esaoa.rc’ in the personal ESAOA workspace is loaded.

The CKO maintains the communal ‘esaoa.rc’ file, and the team maintains the top-

level ‘esaoa.rc’ file. Following this strategy, configuration changes can be applied

effectively from the CKO to all teams or from one team to other teams.

 4-96

swinberg@forge:~$ enter-esaoa
ESAOA Version 1.0
Using configuration: ESAOA_RC=/etc/esaoa-1.0.rc
Confuring ESAOA workspace root:
 Absolute directory: /data1/swinberg/aoa
Workspace (WID): 15849917
Username: username
Description:
forge
SELECTED CONTACT: 'Simon Winberg'
STARTING SERVER
 LOG : /tmp/username-esaoa.log
 ERRORS: /tmp/username-esaoa.err

ESAOA:$R/>

Command to start the
ESAOA environment

Communal configuration
parameters

Which workspace was
entered (a personal
workspace in this case)

A unique workspace
identification number,
used in logging

The computer’s
username in use.

Errors and session logging
information are displayed to
console and in these
temporary files.

When in the ESAOA environment, the
command prompt changes. The $R
indicates the current directory is the root
of the current workspace. IDEs, text
editors, etc are started after this point.

Figure 4.32: Using Cygwin to access a team workspace on the central server.

AOA:$R/> cd Projects
AOA:$PROJECTS/> l
FOLDER 'Projects'
CONTENTS:
 Tutorial01
 Project03 (This is the VIBYNET project)

AOA:$PROJECTS/> cd Project03
Entered project 'Project03'
WELCOME TO PROJECT 'Project03'

This is the VIBYNET project

+================== NOTICE ==================+
| This framework has additional tools. |
| * Type 'help' to view the list of tools. |
| * Type 'todo' to view process information. |
+==+

Added to path: /opt/gcc-arm9tdmi/bin
AOA:$P/>

Change to projects
folder

The ESAOA ‘l’ command
produces a listing like
this, showing excerpt
metadata for project
folders.

By changing into a
project directory, the
user enters an ESAOA
sub-environment
configured for that
project. For example,
additional directories are
added to the path.

The prompt changes to
$P to indicate the user is
in a project directory.
The $P environment
variable is set to the root
of the project.

Figure 4.33: Using Cygwin to access a project in an ESAOA team workspace.

4.6.8.3 ESAOA workstation distribution

The ESAOA workstation distribution comprises a set of programs that were installed

on team members’ computer workstations. These programs include tools for

accessing the embedded platform (e.g., uploading executable programs) and for

 4-97

using the ESAOA workspaces (e.g., Cygwin and X-Windows clients). Most of these

programs are open-source and freely available. Figure 4.34 shows the directory

structure for this distribution.

ESAOA-workstation-1.0
 |- Software.txt
 |- SSH
 |- OpenOffice
 |- TFTPD
 |- Editors
 |- GoogleTools
 |- SIMULATOR
 \- UML

Figure 4.34: Directory structure of ESAOA workstation distribution.

4.6.8.4 Sample installation of ESAOA workspaces

The ESAOA workspaces can be configured in multiple ways. Figure 4.35 shows how

ESAOA workspaces were prepared for Experiment 2. This structure was based on

the way in which developers worked on Projects P1-1 and P1-2.

 4-98

Team
Member

Exchange docs /
solutions

Access
dev. Tools
& ESAOA

tools
Access
work files &
documents

backups

Computer
Windows XP lab PC

Linux Server
(forge.ee.uct.ac.za)

 COMMUNAL WORKSPACE

WORKSTATION

Communal
artefacts

ForumNetworked
shared folders

USB
memory

stick

WinAxe
XServer

OpenOffice Windows
Explorer

 CSB337
Embedded

platform

access

access

 HyperTerm

TFTP
Server

Uses

Uses

Figure 4.35: Sample ESAOA workspace installation.

4.7 Towards Experiment 2

The ESAOA KMS version 1, as described in Section 4.6, was implemented across 13

projects. These 13 projects formed part of Experiment 2. Data resulting from the

activities of these development teams were captured and analysed. In the next

chapter, the findings from Experiment 2, in which the first iteration of the ESAOA

KMS was applied, are presented.

 4-99

 4-100

Chapter 5:

The Second Experiment

This chapter focuses on the findings of the second experiment. A brief overview of

the thirteen projects that comprise this experiment is given in Section 5.1. This is

followed, in Section 5.2, by a presentation of the detailed results obtained by means

of the data analysis (described in Chapter 3). Section 5.3 summarises the detailed

results presented in Section 5.2. The results of the code and design reviews and the

review panel evaluations are given in Section 5.4. Section 5.5 performs comparisons

between the findings, using correlations to investigate how the different variables

identified in the results may influence one another. Section 5.6 reports on evaluations

performed by Experiment 2 participants. Section 5.7 presents general conclusions

concerning the first version of the ESAOA KMS. The final section, Section 5.8,

identifies changes planned for the second version of the ESAOA KMS.

5.1 Overview of the second experiment

The second experiment comprised thirteen projects in which teams of novice ES

engineers conceptualised, designed and developed ES prototypes over an eight-

month period. These prototypes are simulations of what may be expected of ES

engineers in commercial contexts. The selection criteria for these projects are

detailed in Section 3.6.1; as mentioned in that section, the projects of Experiment 13

all used the same embedded platform (namely, the CSB337 embedded computer

manufactured by Cogent Computers [2005]) and developers added additional,

specialised hardware components as needed. The projects of Experiment 2 are

described in Table 5.1.

 5-1

Table 5.1: List of Experiment 2 Projects.

Project
No.

Project Title Project Description Comments

P2-1 Location-aware
Tourist Information
System (TIS)

The TIS is a GPS-based device that allows a
tourist to determine his/her current position and
provides information about the current area.

Similar to the idea of GPS-
type navigation systems in
wide use.

P2-2 GPS Bus Tracker
(GBT)

A GPS-based device that gives the closest bus
station to the current position and the time of
the next bus to a given destination. Includes
function to show optimal path to a destination.

Idea to extend GPS
navigation system for use
with public transportation.

P2-3 Vibynet A ‘Vibynet piece’ is a compact electronic device
carried or worn by people. It has an identity
code and allows storage of other identity codes
used to recognise other Vibynets pieces in the
vicinity. Features: shows recognised identity
codes, direction, distance, call.

Product to be used by a
wide range of private
individuals, similar to a
‘beeper’ product.

P2-4 MyIP Phone
Station (MPS)

A stand-alone (non-PC) VoIP (both voice and
video) answering machine system that connects
directly to Ethernet. Answers any VoIP calls not
answered manually within a certain time limit.

Product similar to a
commercial telephone
answering machine.

P2-5 Home Automation
System (HAS)

Comprises a central unit that connects to other
electronic systems and household products
around the house, incorporates input devices
(keypads and sensors) and output devices
(LCD screens and linear actuator).

Builds on the idea of
‘intelligent home’ products
and service (see
http://www.
intelligenthome.com.au/)

P2-6 Automation
Headlights Dimmer
(AHD)

A motor car system that senses a bright on-
coming light and automatically dims its own
headlights until the light source has passed.

Similar to DIY upgrade kits
advertised in Popular
Mechanics magazines.

P2-7 Field Sensor for
Maglev Trains
(FSMT)

Based on the idea of using electromagnetic
fields to levitate and drive high speed trains.
Focus is a device for sensing electromagnetic
fields and digitally notifying other systems.

A type of off-the-shelf
component that a
development company may
buy.

P2-8 Cordless STereo
(CST)

A stereo that has no speakers, but outputs
digital audio for Blue Tooth headphones.

Similar to existing Blue
Tooth products.

P2-9 Central Alarm
Clock (CAC)

Main controller based in a common room in the
home. Has buttons that correspond to rooms in
the house. Remote control to help parents wake
up their kids without moving a centimetre.
Communicates over AC power lines.

Similar in concept to burglar
alarm systems, which are
commonplace products.

P2-10 Voice Activation
System (VAS)

Voice recognition system to
activate/deactivate/control electrical appliances
(e.g. TV's, lights).

Similar to commercially
available automatic dimmer
switches.

P2-11 Supermarket Query
Device (SQD)

Device communicates with supermarket server,
which holds database of items on special. Lets
user browse through current specials, locate
items of interest.

Comparable to electronic
information directory found
in shopping centres.

P2-12 Personal Protection
Device (PPD)

Has one button that can be used to set off an
alarm to notify campus/site security people that
a certain individual, at a certain location, is in
danger so that the closest security officers can
be sent to the rescue. Device is small enough to
attach to ID swipe card or to wear around neck.

A product that could replace
a standard panic alarm
system.

P2-13 Vehicle Usage
Tracker (VUT)

Affordable vehicle usage monitoring kit (for DIY
installation). Displays real-time car statistics,
such as average speed and fuel consumption.
Colour display and audio warning system.

Could be sold as a DIY kit,
like others currently
advertised in Popular
Mechanics magazines.

 5-2

http://www.%20intelligenthome.com.au/
http://www.%20intelligenthome.com.au/

Data were collected from the projects of Experiment 2 using the strategy described in

Section 3.8. Once the experiment was completed, the data sources were examined

by following the same procedure as the one used in Experiment 1, in which the data

sources were all printed, sorted chronologically and then annotated (see Section

4.3). The data systematising procedure was then applied (as described in Section

3.9.2), which involved producing a knowledge register for each project (Appendix B

shows the complete knowledge register of the first project, Project P2-1).

5.2 Results of the second experiment

The ES laboratory was prepared before the thirteen project teams began their work.

The ESAOA workstation version 1 tools (listed in Section 4.6.7.1) were installed on

the laboratory computers. The ESAOA environment and baseline ESAOA

workspaces were installed on a central server. The SnapGear uCLinux operating

system [SnapGear, 2007] was used on the embedded platforms, with Micromonitor

as a “boot platform” [Sutter, 2002, pg. 62].

Before starting on the projects, each team member completed a three-hour training

session1 on using the ESAOA KMS version 1. The set of participants were divided

into two sessions, with 18 individuals attending the first session and 21 attending the

second session. During training, the participants worked in an individual capacity, not

as a team. Each individual was trained in the procedures of the DS, PE, and IE roles

(Section 4.6.4 defines these roles). The training sessions introduced the participants

to basic aspects of KM and to terminology related to the ESAOA KMS (specifically

the ESAOA knowledge ontology) and made use of ESAOA models to assist in

explaining the KMS. In addition, the training took the participants through a simple

tutorial [Winberg, 2005b] on the use of the ESAOA environment, ESAOA

workspaces, and ESAOA workstations (which included the procedures relevant to

the DS, PE and IE roles). During training, participants were exposed to refined

versions of some of the artefacts produced by the Experiment 1 teams (see Section

4.6.5.5); this was done mostly as case study discussions during the training. In each

training session, the participants developed a simple C program that ran on the PC

box virtual platform (a simplified ES simulated platform that executed on the central

server – see Section 4.6.5.5).

1 This training period and the two weeks learning the ESAOA KMS were performed before the

start of the eight-month period; during this time teams also worked on product requirements.

 5-3

After training, the participants were required to work more closely together in their

teams. The teams each spent a further two weeks familiarising themselves with the

ESAOA KMS, during which time they each worked on a mini-project in which they

used aspects of the ESAOA communal workspace to implement an installation of

uCLinux [SnapGear, 2007] on the CSB337 platform, and to develop a ‘Hello World’

embedded software application [Winberg, 2005b]. The team members were

encouraged to consult with the research (filling the CKO role) and knowledge

steward to improve their understanding of the ESAOA KMS while working on this

mini-project. During this time, the members also decided on their primary ESAOA

role (i.e., DS, PE or IE) for their project (this is termed the ‘primary role’ because, as

mentioned in Chapter 3, an individual can change roles as needed during a project).

Once the initial two week training period was over, the teams started to work on their

main projects, and the process of capturing data related to ESAOA KM began.

During the projects, the teams supplemented and adapted tools and artefacts of the

ESAOA workspaces. These modifications tended to be changes to the digital

artefacts within ESAOA workspaces (such as changes to scripts, code files and

directory structures), as well as modifications to the roles and procedures of ESAOA

KMS version 1.

The thirteen subsections that follow respectively provide results for each one of the

thirteen projects of Experiment 2. Each subsection begins with an overview of the

general progression of development work done on the project. For each project, a

figure showing a boundary artefact, which was extracted from the data related to the

project, is provided as a means to assist the project descriptions. Four knowledge

occurrence graphs (explained in Section 3.9.7.2) are provided for each project; these

respectively show (a) data knowledge occurrences over event chains, (b) process

knowledge occurrences over event chains, (c) innovation knowledge occurrences

over event chains, and (d) total knowledge occurrences over event chains. Each

graph tracks both the accumulated productive knowledge occurrences (the black

trend line) and the accumulated non-productive knowledge occurrences (the red

dotted trend line). Knowledge occurrence tables (see Section 4.5.3.1) are also

provided for each project. Each subsection ends with a short synopsis that reflects on

the probable relations between development trends, together with a knowledge

occurrence table that summarises the statistics. The process knowledge shown in

the knowledge occurrence tables is divided into subcategories of role knowledge,

logistics knowledge, and engineering method knowledge – this was done (as

 5-4

explained in Section 5.7.2) because these subcategories were found to be largely

distinct from one another and were therefore separated to provide better views into

process knowledge production.

The numbering of figures, graphs and tables is based on subsection numbers: the

caption numbers of the tables in Section 5.2.1 start with ‘Table 5.2.1’; the caption

numbers of the tables in Section 5.2.2 start with ‘Table 5.2.2’, and so on. The same

method is used for the captures of figures and graphs.

5.2.1 P2-1 Location-aware Tourist Information System (TIS)

The first project (Project P2-1) was the creation of a ‘Tourist Information System’ (or

TIS for short). The objective of this product is to allow a tourist (the user of the

system) to determine his/her current position on a detailed street map. In addition, it

provides information about the surrounding area that is relevant to tourists (e.g.,

shops, hotels and historic sites). The product was intended to be mounted in a rented

car, and to broadcast information and advertising on the car’s radio. The device is

programmed to provide information based on the current longitude and latitude

position obtained from a GPS unit. Information and advertising stored on the unit are

updated by connecting to a central server using the general packet radio service

(GPRS). Figure 5.2.1 illustrates the TIS; Figure 5.2.1 (a) provides a system block

diagram, and Figure 5.2.1 (b) shows an enclosure drawing. Both images shown in

Figure 5.2.1 were included in the team ESAOA workspace for the project and were

classified by the team as boundary artefacts. The first diagram was assigned the

additional functionality classification ‘Documentation/concept model’, whereas the

second was assigned ‘Documentation/concept sketch’. These artefacts were used

repeatedly during meetings as boundary artefacts.

The TIS prototype made use of the following components: a Motorola on-core M12M

GPS receiver module (GPS starter kit and RS232 evaluation board)2, an 8-column 7-

Segment LED display, LXT971A on-board Ethernet controller, and the AT91RM9200

on-chip timers.

2 http://www.avnet.co.za/Semiconductors/Motorola/FS_Oncore/MotGPS-FS_Oncore.htm

 5-5

 Location-aware tourist information system enclosure
drawing

Location-aware tourist information system component
interconnection diagram

Figure 5.2.1 (a): Component interconnection diagram of Tourist Information System

(Project P2-1); (b): Enclosure drawing.

Data knowledge (see Graph 5.2.1 (a)) was produced during the first half of the

project in order to decide on components to use and to build process knowledge for

the components that were chosen. After event chain 37, no further data knowledge

was required by the team.

The data knowledge graph clearly indicates that, as the project developed, a portion

of data became non-productive. This occurred between event chains 12 to 16, in

which the group spent a significant portion of time reading up on GPS module

options, with the intent of finding one that was simple to control via an RS232 serial

connection, as well as exploring GPRS module options during this stage. This body

of knowledge was classified as non-productive because only one of the GPS

modules was ultimately used, and because the group decided not to incorporate a

GPRS modem for uploading advertising and location information, but to use a direct

TCP/IP Ethernet for this task instead. In terms of productive data, event chain 28

required a considerable effort in producing productive data knowledge during which

time the group researched the National Marine Electronics Association (NMEA)

ASCII communications protocol used to communicate with the GPS receiver module.

Process knowledge production, shown by Graph 5.2.1 (b), tended to level out when

developers produced significant data and innovation knowledge (e.g., between event

chains 9 – 19 and 27 – 41). The developers first had to understand how to develop

 5-6

embedded software for the uCLinux operating system (event chain 3 – 10), before

they could create methods of using TCP/IP sockets and the Ethernet controller

(event chains 18 – 23). Only towards the end of the project (event chains 41 – 49)

did the team succeed in accessing the GPS module. Most of the non-productive

process knowledge occurred during event chains 21 – 27 when the team

experienced problems in ISO-mounting the uCLinux RAM disk (which was necessary

to add their executable application program to the boot image) and in using tftp (in

order to test their application without placing it in the RAM disk).

Innovation started at event chain 10 and, apart from the first few non-productive

occurrences of innovation, almost all other event chains generated productive

innovation knowledge (with the sole exception of event 52). In comparison to process

and data knowledge, innovation knowledge (see Graph 5.2.1 (c)) occurred more

consistently, as seen in the frequent upward steps in the innovation graph. At event

chain 19, the team did have an initial version of the embedded application running on

the embedded platform. However, this version was using a GPS stub module

because the important process knowledge related to methods used to communicate

with the GPS module was acquired only towards the end of the project (after event

chain 41).

A divergence trend is noticeable in Graph 5.2.1 (d), in which the productive

knowledge for the combination of data, process and innovation grew more rapidly

than the combined non-productive knowledge. Variations of this trend are evident

across all thirteen projects.

 5-7

Graph 5.2.1 (a): Data knowledge in P2-1.

Graph 5.2.1 (b): Process knowledge in P2-1.

 5-8

Graph 5.2.1 (c): Innovation knowledge in P2-1.

Graph 5.2.1 (d): Productive and non-productive knowledge in P2-1.

Knowledge occurrences were summarised, and are tabulated in Tables 5.2.1 (a) and

(b). The first table (Table 5.2.1 (a)) shows the percentages of productive and non-

productive knowledge within each of the three knowledge categories. Table 5.2.1 (a)

 5-9

shows that in all categories of knowledge, there was more productive knowledge

than non-productive knowledge. The ratio of productive knowledge to non-productive

knowledge was even for both logistics knowledge (a ratio of 1:1) and engineering

methods (a ratio of 29:25 ≈ 1.1:1). The most out-of-balance ratio for productive to

non-productive knowledge was role knowledge (a ratio of 25:4, equivalent to 6.25:1).

The majority of data knowledge occurrences were productive (71%), which was

found to be a similar trend across all projects. Process knowledge was the most

common form of non-productive knowledge found in this project.

Table 5.2.1 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-1 PK NPK Total
Data Knowledge 71% 29% 100%
All Process Knowledge 63% 38% 100%
 Role 25% 4% 29%
 Logistics 8% 8% 17%
 Engineering methods 29% 25% 54%
Innovation Knowledge 82% 18% 100%

Table 5.2.1 (b) summarises the percentages of productive and non-productive

knowledge occurrences across the knowledge categories. Table 5.2.1 (b) indicates a

relative evenness across the different knowledge types in the productive category.

Project 2-1 produced more productive innovation knowledge occurrences (24%) than

most of the other teams (the average for innovation knowledge is 19%). This team’s

prototype and demonstration were awarded the highest overall score (100%) by both

the researcher (in code and design reviews) and the review panel (see Section 5.4).

Table 5.2.1 (b): Proportions of data, process and innovation knowledge in P2-1.

Knowledge Type: P2-1 PK NPK Total
Data Knowledge 21% 9% 29%
Process Knowledge 26% 16% 41%
Innovation 24% 5% 29%
TOTALS 71% 29% 100%

5.2.2 P2-2 GPS Bus Tracker (GBT)

The second project team (Project P2-2) worked on the ‘GPS Bus Tracker’ project,

which was intended to help users find the closest bus stop and the optimal route from

one bus stop to another (Figure 5.2.2 illustrates the concept). The team developed a

portable device that was intended to interface with a cellular telephone. The

PC/phone software was supposed to retrieve bus data (time tables, routes, locations,

etc) from a server. Bus data would then be transferred to the Bus Tracker via a

Bluetooth connection. The user would call up on the cellular telephone (connected to

 5-10

the Bus Tracker) to choose a destination and view the best bus stop. The

components used included: the M12M Motorolla GPS receiver module (included in

the GPS RS232 starter kit), the Dallas DS1307 real time clock, pushbuttons, LEDs,

and the LXT971A Ethernet controller.

The team had to do a considerable amount of research on the components they had

chosen, particularly the GPS modules, which is evident in the occurrences of

productive data knowledge produced by the team (see Graph 5.2.2 (a)). A likely

cause for the large amount of non-productive data knowledge was the team’s inability

to find sample code for using this particular GPS module with the uCLinux operating

system (which all the project teams were using).

In this project, the first occurrences of non-productive process knowledge (see Graph

5.2.2 (b)) were caused by the team’s difficulties in defining their roles and performing

within their (disputed) roles. A later difficulty was the use of a GPS module for which

they developed complex implementation procedures in order to be able to use the

device in the product. Knowledge occurrences began as the group installed ESAOA

tools on their own PCs. The team was working on two problems: getting interrupts to

function and getting the GPS module to work. Once the team obtained good sample

code (around event chain 28 – 49), they were able to communicate with the GPS

module. The productive process knowledge occurrences from event chain 69

onwards are indicative of the team’s success in getting these interrupts to function.

At event 81, the team attempted to develop alternate and more elegant methods for

using the components and interrupts. However, much of this effort was not

successful, and it would have meant significant changes to the work already done by

the innovation engineer. Consequently, most of the non-productive process

knowledge occurrences after event 80 can be attributed to this unused effort.

 5-11

Figure 5.2.2: Concept scenario for the GPS Bus Tracker (Project P2-2).

Innovation knowledge occurrences began (see Graph 5.2.2 (c)) at event chain 18,

when the team developed the first version of their software, which could be executed

on the embedded hardware. At event chain 33, the group successfully installed the

menu. At event chain 39, there was further development in computing the bus routes

based on GPS positioning. Subsequent indications of innovation are indicative of

further integration and refinement. A divergence trend (see Graph 5.2.2 (d)) is noted

in P2-2’s increase in productive over non-productive knowledge occurrences.

 5-12

Graph 5.2.2 (a): Data knowledge in P2-2.

Graph 5.2.2 (b): Process knowledge in P2-2.

 5-13

Graph 5.2.2 (c): Innovation knowledge in P2-2.

Graph 5.2.2 (d): Productive and non-productive knowledge in P2-2.

Summaries of knowledge occurrences in the productive and non-productive

categories are tabulated in Tables 5.2.2 (a) and (b). Table 5.2.2 (a) indicates a

relatively high occurrence of non-productive data knowledge compared to the other

 5-14

projects. As previously explained, the cause of this was the difficulty of the project,

and challenges in finding useful hardware/software interfacing information.

Table 5.2.2 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-2 PK NPK Total
Data Knowledge 53% 47% 100%
All Process Knowledge 80% 20% 100%
 Role 16% 4% 20%
 Logistics 16% 0% 16%
 Engineering methods 48% 16% 64%
Innovation Knowledge 100% 0% 100%

Table 5.2.2 (b) shows that process knowledge occurrences accounted for almost

double those of data or innovation. This was slightly higher than the process

knowledge occurrences of the other projects. In addition, this team had a slightly

lower than average percentage of innovation knowledge occurrences. In terms of the

assessment of artefacts by the researcher, and the evaluation of the prototype

demonstrated to the review panel, this team achieved the lowest overall score (65%).

Table 5.2.2 (b): Proportions of data, process and innovation knowledge in P2-2.

Knowledge Type: P2-2 PK NPK Total
Data Knowledge 19% 17% 35%
Process Knowledge 39% 10% 49%
Innovation 16% 0% 16%
TOTALS 74% 26% 100%

5.2.3 P2-3 Vibynet

The third project (Project P2-3) involved the development of the ‘Vibynet’ product

(illustrated in Figure 5.2.3). A ‘Vibynet piece’ is a product that a user wears, which

alerts the user to other Vibynet users in the vicinity.

The Vibynet project team built productive innovation knowledge quite early in the

project, viz. from event chain 4, as seen in Graph 5.2.3 (c). The product was

designed around an S/PDIF-based [Finger, 1992] wireless transceiver module (using

the nRF24Z1 evaluation kit), to be configured to operate in the 49Mhz unlicensed

band. The group chose this audio-streaming module because they originally intended

for the Vibynet to have two modes: ‘alert’ mode (sensing neighbouring devices) and

‘hail’ mode (operating as a digital two-way radio). There was a delay in obtaining the

wireless evaluation kit, which meant that the group only started to read about the

specific module quite late in the project (event chain 29, see data knowledge graph,

 5-15

Graph 5.2.3 (a)). Since the delivery of the module was delayed, the group began by

simulating broadcast wireless communications, using an ad hoc 1-wire protocol

(OWP). Although the team had planned to use a wireless module capable of

providing at least 65Kbps, they ultimately resorted to using a slower ‘bit-bang’

software driver for their OWP, which could only achieve 8Kbps. A significant amount

of the non-productive innovation knowledge (see Graph 5.2.3 (c)) occurred when the

team attempted to determine how to increase the speed of the bit-bang routine.

When the actual wireless module arrived (around event chain 35), the team had to

learn how to configure and use it. During this stage, process knowledge (see Graph

5.2.3 (b)) was produced (much of which was non-productive due to problems with the

interface). At around event chain 41, the team began to generate productive

innovation knowledge concerning the wireless module (all other innovative

knowledge was built using the OWP simulator). Graph 5.2.3 (d) indicates a trend,

also noted in the previous projects, in terms of the divergence of productive and non-

productive knowledge occurrences.

Figure 5.2.3: Concept drawing for Vibynet (Project P2-3).

 5-16

Graph 5.2.3 (a): Data knowledge in P2-3.

Graph 5.2.3 (b): Process knowledge in P2-3.

 5-17

Graph 5.2.3 (c): Innovation knowledge in P2-3.

Graph 5.2.3 (d): Productive and non-productive knowledge in P2-2.

Table 5.2.3 (a) shows that, despite the difficulties previously described, the Vibynet

team were able to produce a relatively high level of productive knowledge.

 5-18

Table 5.2.3 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-3 PK NPK Total
Data Knowledge 67% 33% 100%
All Process Knowledge 72% 28% 100%
 Role 17% 0% 17%
 Logistics 28% 11% 39%
 Engineering methods 28% 17% 44%
Innovation Knowledge 73% 27% 100%

The relatively high proportion of process knowledge (shown in Table 5.2.3 (b)) was

linked to the team simulating RF communication. They then had to adapt the

simulation code so that it would work when their wireless transceiver kit arrived. This

team achieved a combined score of 77.5% for their prototype and demonstration.

Table 5.2.3 (b): Proportions of data, process and innovation knowledge in P2-3.

Knowledge Type: P2-3 PK NPK Total
Data Knowledge 23% 11% 34%
Process Knowledge 30% 11% 41%
Innovation 18% 7% 25%
TOTALS 70% 30% 100%

5.2.4 P2-4 MyIP Phone Station (MPS)

The MyIP, or Voice over Internet Protocol (VoIP) answering machine project (P2-4),

produced the highest percentage of productive knowledge (91% of all knowledge

occurrences was productive – see Table 5.2.4 (b)). Only 4 event chains culminated in

dead ends (see Graph 5.2.4 (a) and (b)). As can be seen in Graphs 5.2.4 (a), (b) and

(c), the MyIP team consistently developed productive data, process, and innovation

knowledge.

Three main hardware components were used in this project: the Phillips PCF8591 (a

single chip containing multiplexed ADC and DAC), ADC and DAC analogue/digital

converters, the LXT971A on-chip Ethernet controller (built into the microcontroller),

and the S1D13706QVGA LCD controller. The reason for using the PCF8591 was to

record and alternatively replay digital voice messages (alternating between the ADC

and DAC function of the PCF8591, without having to learn a second interfacing

protocol). The fact that they needed to learn only one protocol may have contributed

to the high level of productivity in this team.

The team had partial success with the S1D13706QVGA LCD controller; the team

wanted to display only the number of messages and times on the LCD. They were

 5-19

able to write to the display, but they were not able to set the mode or use colour

bitmap graphics – this accounted for event chain 39 being classified as producing

non-productive innovation knowledge (see Graph 5.2.4 (c)). There was only one

occurrence of non-productive data knowledge at event chain 36 (see Graph 5.2.4

(a)), which was similarly related to difficulties with the display.

Figure 5.2.4: Topology of myIP Phone Station (Project P2-4).

For the MyIP functionality, the team utilised a simple UDP-based communications

protocol. They did not implement the official VOIP protocol for the prototype, but

instead received raw 8-bit voice data sampled at 4Khz. The main problem they

experienced was testing the socket routines, by sending UDP packets between a PC

and the CSB337. This was solved relatively quickly after a non-productive knowledge

occurrence in event chains 12 – 13 (see Graph 5.2.4 (b)).The MyIP team also used a

pre-built web server (namely, the BOA web server [Doolittle & Nelson, 2006])

compatible with Linux. They used a web server instead of implementing a front panel

(the users had to connect to the answering machine via a PC).

Graph 5.2.4 (d) and Table 5.2.4 (a) indicate P2-4’s high levels of productive

knowledge, which was the highest of all the projects.

 5-20

Graph 5.2.4 (a): Data knowledge in P2-4.

Graph 5.2.4 (b): Process knowledge in P2-4.

 5-21

Graph 5.2.4 (c): Innovation knowledge in P2-4.

Graph 5.2.4 (d): Productive and non-productive knowledge in P2-4.

 5-22

Table 5.2.4 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-4 PK NPK Total
Data Knowledge 92% 8% 100%
All Process Knowledge 88% 13% 100%
 Role 25% 0% 25%
 Logistics 6% 6% 13%
 Engineering methods 56% 6% 63%
Innovation Knowledge 94% 6% 100%

Table 5.2.4 (b) clearly shows the team’s high level of innovation knowledge

occurrences – indicative of their highly innovative work. Team Vibynet came a close

second to P2-1, with a combined artefacts and demonstration score of 99.25%.

Table 5.2.4 (b): Proportions of data, process and innovation knowledge in P2-4.

Knowledge Type: P2-4 PK NPK Total
Data Knowledge 26% 2% 28%
Process Knowledge 30% 4% 35%
Innovation 35% 2% 37%
TOTALS 91% 9% 100%

5.2.5 P2-5 Home Automation System (HAS)

The purpose of the HAS was to control electronic consumer products; it did this by

controlling relays to switch the main current of appliances on/off (see Figure 5.2.5).

HAS instruments comprised an actuator network – with each multiple actuator node

controlled by a central computer. Each actuator node was a CSB337 embedded

platform, and so was the central computer (the team started off by implementing an

initial version of the central computer program, called ‘PCControl’, which ran on a

workstation PC, and they later ported it to the CSB337 platform). The actuator nodes

and central control computer were connected using a mains modem that

communicates over 200 VAC house mains circuits (they used the LM2893 by

National Semiconductors configured to produce 128KHz noise on the mains line for a

64KBps data rate). Each actuator node contained 3 outputs: a relay (capable of

switching 2 amps at 220VAC), a DC motor (to open/close curtains, widows, operate

fans, etc.), and a LED 7-segment LCD display, controlled by a parallel interface.

There was one input: a reed relay, simulated as a Pushbutton in the prototype. The

user control interface was complex, requiring the user to program each actuator

node. The team originally planned to use the MC3479 step motor controller, but

chose not to do so due to time constraints.

 5-23

Lounge

Bedroom Bathroom

Open Plan
Kitchen

And Dining
Room

H

Motion Sensor

H

Motion Sensor
H

Motion Sensor

Automatic Dimmer Switch

Control Unit

Keypad

Keypad

H

Light Sensor

Automatic
Dimmer
Switch

Light Switch

B
Doorbell

Figure 5.2.5: Installation diagram of Home Automation System (Project P2-5).

Difficulties experienced by the HAS team include: the main modem could only

communicate with actuator nodes in the same circuit. However, most homes have

multiple circuits for safety reasons. The team had access to only two mains modems

(due to costs). However, the mains modem was simple to use, providing a standard

AT command interface via an RS232 serial interface. The team experienced some

power problems because the modem does not draw from the AC mains, and so a 9V

radio battery was supplied. The CSB337 does not provide a 9V power output, so the

mains drawing current battery did not last long. The mains modem was not a low

power device, and thus the battery had to be replaced frequently. While this did slow

the team down, the activities spent finding and replacing batteries did not count as

knowledge occurrences.

Data knowledge was produced (see Graph 5.2.5 (a)) as the team researched the

various components. Finding relevant sample code is indicated in the ‘jumps’ in event

chains 14 – 18 (see Graph 5.2.5 (b)). The team had a number of occurrences of non-

productive data knowledge as they attempted to activate and handle interrupts from

the pushbuttons. This involved reading about how interrupts are enabled on the

AT91RM9200 microcontroller, around event chain 26. The team read sample code

related to sockets in event chains 15 and 18. They also had difficulty understanding

the RS232UART controller built into the AT91RM9200 microcontroller. The device

 5-24

had two comports, and the team experienced problems configuring the second

comport, which was used to connect to the mains modem.

Graph 5.2.5 (a): Data knowledge in P2-5.

Graph 5.2.5 (b): Process knowledge in P2-5.

 5-25

Graph 5.2.5 (c): Innovation knowledge in P2-5.

Graph 5.2.5 (d): Productive and non-productive knowledge in P2-5.

 5-26

Event chain 10 (see Graph 5.2.5 (c)) indicates the occurrence of innovation

knowledge when the team successfully configured the second comport and managed

to control the mains modem from the embedded software. Innovation occurred in

steps, usually when the team got together and worked productively for long hours

over the PC. A TCP/IP communication packet structure was used as an interface to

the control computer, whereas the LED and pushbuttons were utilised for the

actuator nodes. These were not used as a front panel, but rather to verify actuation

events and to test inputs. Graph 5.2.5 (d) shows a similar divergence trend,

indicating the team’s steady production of more productive than non-productive

knowledge.

Table 5.2.5 (a) shows the team’s high levels of productive knowledge within each of

the knowledge categories. Table 5.2.5 (b) indicates an even distribution of the

different knowledge types across the project. This team was awarded a combined

score of 93.5% for their prototype and demonstration.

Table 5.2.5 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-5 PK NPK Total
Data Knowledge 69% 31% 100%
All Process Knowledge 60% 40% 100%
 Role 20% 0% 20%
 Logistics 13% 7% 20%
 Engineering methods 27% 33% 60%
Innovation Knowledge 91% 9% 100%

Table 5.2.5 (b): Proportions of data, process and innovation knowledge in P2-5.

Knowledge Type: P2-5 PK NPK Total
Data Knowledge 26% 12% 38%
Process Knowledge 21% 14% 36%
Innovation 24% 2% 26%
TOTALS 71% 29% 100%

5.2.6 P2-6 Automation Headlights Dimmer (AHD)

This project turned out to be more straightforward than the other projects. The project

focused on the design of a DIY headlight dimmer for a standard vehicle. If such a

system is to be implemented commercially it would be subject to many safety

regulations. In their creation of the prototype, however, the engineers decided to

ignore the large volume of literature on safety issues. This was a practically oriented

team, which was reluctant to engage in research tasks. The group used the following

main components: the Phillips PCF8591, the CSB on-board flash memory (the

 5-27

28F640J3A flash memory chip), the LEDs and pushbuttons, the Infineon SAK82C900

(CAN controller), a digital pot, and a photo-transistor. A feature these had in common

was that many of these have simple interfaces, with the exception of the 28F640J3A

flash memory chip and the PCF8591. The team planned to adjust the strength of the

light using a dimmer device instead of turning the headlights on/off.

Figure 5.3.6: Installation of the Automation Headlight Dimmer (Project P2-6).

Unlike most of the other projects, which tended to begin with data knowledge, this

team chose not to research the components, and this is evident in the lack of initial

data knowledge (see Graph 5.2.6 (a)). Instead, productive process knowledge (see

Graph 5.2.6 (b)) occurred from the start because the team began writing software

right away. Furthermore, this team used Micromonitor directly instead of using the

uCLinux operating system, which most of the other teams used. Apart from minor

difficulties with using Micromonitor, around event chains 12 and 20, everything went

fairly well. The team managed to speedily produce a simple menu interface at event

chain 6 without any difficulties (see Graph 5.2.6 (c)). At event chain 17, the team got

the PCF8591 operating in ADC mode. At event chain 31, the Automation Headlights

Dimmer product was functional. Project P2-6 showed a divergence trend between

productive and non-productive knowledge occurrences, similar to ones seen in the

other projects.

 5-28

Graph 5.2.6 (a): Data knowledge in P2-6.

Graph 5.2.6 (b): Process knowledge in P2-6.

 5-29

Graph 5.2.6 (c): Innovation knowledge in P2-6.

Graph 5.2.6 (d): Productive and non-productive knowledge in P2-6.

 5-30

Table 5.2.6 (a) shows moderate levels of non-productive data knowledge, low levels

of non-productive process and no non-productive innovation knowledge occurrences.

100% of the innovation knowledge was productive.

Table 5.2.6 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-6 PK NPK Total
Data Knowledge 63% 38% 100%
All Process Knowledge 92% 8% 100%
 Role 25% 8% 33%
 Logistics 21% 0% 21%
 Engineering methods 46% 0% 46%
Innovation Knowledge 100% 0% 100%

Table 5.2.6 (b) shows that innovation comprised only 9% of total knowledge

occurrences, thus indicating that this project was not particularly innovative.

Nevertheless the team did produce a working prototype, and they were also the first

team that managed to get together an initial operational system. The team was

awarded a combined score of 94% for their prototype and demonstration. The high

score was awarded on the basis of their competent demo presentation and the

functionality of their prototype.

Table 5.2.6 (b): Proportions of data, process and innovation knowledge in P2-6.

Knowledge Type: P2-6 PK NPK Total
Data Knowledge 14% 9% 23%
Process Knowledge 63% 6% 69%
Innovation 9% 0% 9%
TOTALS 86% 14% 100%

5.2.7 P2-7 Field Sensor for Maglev Trains (FSMT)

This team designed a small magnetic field sensor, one of the subsystems used in a

magnetic levitation (Maglev) train. In order to sense the magnetic fields, they

designed a custom circuit, which contained an inductor coil and an ADC among other

commonly used circuit components. These sensors were designed to be placed

along the undercarriage of a (hypothetical) Maglev train. Components used by

Project P2-7 included: the PCF8691 ADC, the LF198 (a sample and hold IC) and the

KMZ10A magnetic field sensor. The team planned to use the SAK82C900 Infineon

CAN controller via QSPI, but were not able to accomplish this.

 5-31

+

Height
Sensor

Driver Console

Microcontroller

Suspension Coil
Power

Undercarriage
Suspension Coil

Guideway Power
Supply

Guideway Stator
Packs

Automatic
Feedback

Loop

M
Speed
control

Linear
MotorOutput

Current

Input

Maglev Train EMS
Control System Control Base

Station

Wireless
Connection

Output

Current

Control base station

Wireless connection

Linear motor

Speed
control

Automatic
Feedback
loop

Maglev Train EMS
Control System

Figure 5.2.7: Component interconnection diagram of Field Sensor for Maglev Trains

(Project P2-7).

The group corrupted the flash memory device, and therefore needed to read up

about the MacRagior Raven and the flash memory device in order to clear and

reformat the flash memory and to reinstall the boot loader. This corruption occurred

while they were trying to install the uCLinux RAM disk and kernel in flash. This

incident produced non-productive data knowledge between event chains 15 – 24

(see Graph 5.2.7 (a)). The earlier non-productive data knowledge occurrence (at

event chain 11) had to do with the connection between the ADC and microcontroller.

The project team erroneously followed methods described in a web-based manual

concerning use of a BDI2000 JTAG device; except that they applied the methods to a

different device, the MacRagior Raven JTAG device. This account for non-productive

process knowledge between event chains 27 – 49 (see Graph 5.2.7 (b)). Once the

team realised that the BDI2000 and Raven were not totally compatible, they came up

with their own approach that worked. Despite these difficulties encountered, the team

began to produce innovation knowledge from quite early in the project (event chain 3)

and had only one instance (event chain 26) of non-productive innovation knowledge

(see Graph 5.2.7 (c)). This occurrence was due to the team’s changeover from

Micromonitor to uCLinux. This project also shows a clear divergence trend in the

productive vs. non-productive graph (Graph 5.2.7 (d)).

 5-32

Graph 5.2.7 (a): Data knowledge in P2-7.

Graph 5.2.7 (b): Process knowledge in P2-7.

 5-33

Graph 5.2.7 (c): Innovation knowledge in P2-7.

Graph 5.2.7 (d): Productive and non-productive knowledge in P2-7.

Table 5.2.7 (a) shows high levels of productive knowledge occurrences in this

project. The lack of non-productive role and logistics knowledge occurrences is

 5-34

indicative of good project leadership and team work. Table 5.2.7 (b) shows an even

distribution of productive knowledge across knowledge types and an average

distribution of productive and non-productive knowledge occurrences. The team was

awarded an overall score of 89.75% for their prototype and demonstration.

Table 5.2.7 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-7 PK NPK Total
Data Knowledge 70% 30% 100%
All Process Knowledge 61% 39% 100%
 Role 17% 0% 17%
 Logistics 11% 0% 11%
 Engineering methods 33% 39% 72%
Innovation Knowledge 93% 7% 100%

Table 5.2.7 (b): Proportions of data, process and innovation knowledge in P2-7.

Knowledge Type: P2-7 PK NPK Total
Data Knowledge 27% 12% 38%
Process Knowledge 21% 13% 35%
Innovation 25% 2% 27%
TOTALS 73% 27% 100%

5.2.8 P2-8 Cordless Stereo (CST)

The Cordless Stereo project involved developing an FM radio repeater that could be

tuned to rebroadcast an FM channel as a Bluetooth digital sound transmission. The

components used by the team were: an RF radio receiver, a Bluetooth transceiver

module (in the form of a DIP chip), and two PCF8591 units operating in ADC mode.

The team intended to use a Bluetooth headset to listen to the Bluetooth transmission.

The team consistently produced data knowledge throughout the project as they

researched Bluetooth and FM radio (see Graph 5.2.8 (a)). In order for the product to

be constructed as planned, it was necessary for the team to determine how to control

the Bluetooth module. However, they did not fully accomplish this task – and their

attempt to solve this problem accounts for the majority of occurrences of non-

productive process knowledge in event chains 15 – 41 (see Graph 5.2.8 (b)). The

team divided the work into three major parts: one team member focused on

understanding Bluetooth, the second team member focused on connecting the radio

receiver and sampling the stereo 8-bit sound data, while the third team member

focused on coding the embedded software, which integrated a menu, the sound

sampling routines, and the BlueTooth transmission routines. This third group member

was responsible for most of the productive process knowledge, while the other two

members produced most of the data knowledge.

 5-35

Tuner

Stereo
Earphone
jack

Analogue stereo
sound (R channel)

Analogue stereo
sound (L channel)

PCF8591
ADC

PCF8591
ADC

AT91RM9200
Microcontroller

8

8

RF public broadcast
channel received

BlueTooth digital
stereo sound
broadcast BlueTooth

Transceiver
Module

BlueTooth earphones receive
stereo transmission

Figure 5.2.8: Concept drawing for the Cordless Stereo (Project P2-8).

There was no occurrence of non-productive innovation knowledge. The third team

member was responsible for the initial innovation (event chains 7 – 21) in which the

embedded software was designed. The team then came together at the point where

the innovation graph levels out (event chains 21- 40; see Graph 5.2.8 (c)); at this

point they were producing productive process knowledge for connecting the RF

receiver to the Microprocessor, but were producing non-productive knowledge with

regard to connecting the Microprocessor to the Bluetooth module. The rise in

innovation knowledge at the end of the project involved directing the sampled RF

digitised sound to the comport, since the team ran out of time in their attempt to use

the Bluetooth module.

The productive vs. non-productive knowledge occurrence graph (Graph 5.2.8 (d))

indicates that, overall, there was a divergence tendency, with the occurrences of

productive knowledge exceeding those of non-productive knowledge.

 5-36

Graph 5.2.8 (a): Data knowledge in P2-8.

Graph 5.2.8 (b): Process knowledge in P2-8.

 5-37

Graph 5.2.8 (c): Innovation knowledge in P2-8.

Graph 5.2.8 (d): Productive and non-productive knowledge in P2-8.

Table 5.2.8 (a) indicates moderate levels of productive and non-productive

knowledge occurrences within each of the categories. Table 5.2.8 (b) indicates that

there was a higher occurrence of process knowledge than of other knowledge types

 5-38

in this project. This was largely due to the team’s attempts to communicate with the

Bluetooth module. The team achieved a combined score of 80% for their prototype

and demonstration.

Table 5.2.8 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-8 PK NPK Total
Data Knowledge 75% 25% 100%
All Process Knowledge 73% 27% 100%
 Role 15% 0% 15%
 Logistics 8% 0% 8%
 Engineering methods 50% 27% 77%
Innovation Knowledge 100% 0% 100%

Table 5.2.8 (b): Proportions of data, process and innovation knowledge in P2-8.

Knowledge Type: P2-8 PK NPK Total
Data Knowledge 18% 6% 24%
Process Knowledge 39% 14% 53%
Innovation 22% 0% 22%
TOTALS 80% 20% 100%

5.2.9 P2-9 Central Alarm Clock (CAC)

The Central Alarm Clock system consists of a central control unit based in a common

room in the home (e.g., the lounge). The central control unit is able to activate alarm

clocks remotely throughout the house. The system allowed the times of all alarm

clocks in the home to be changed and synchronized centrally, thereby enabling the

user to set alarms for different rooms from the central unit. The central control unit

provided a menu-driven user interface that was connected via a PC using an RS232

ASCII terminal. Each alarm clock in the system was connected to the central control

unit via an ad hoc RF network (although the project initially planned to utilise a mains

modem). The main electronic components used by this project were: the Unigen

UGWR2US RF Transceiver, the NE566 (in square wave generation mode), the

DS1307 Dallas Real-time clock (RTC) module, and a pseudo-electric beeper.

The group successfully developed the initial outline of the embedded software

application for the alarm clocks and central controller. Non-productive process

knowledge occurred at event chains 13 – 14; what the team was doing was

attempting to drive an 8 ohm speaker from a single programmable output bit on the

microcontroller and to develop different tones. They decided to simplify things instead

by using a pseudo-electric beeper (event chain 25 onwards). Process knowledge

developed towards the end of the project did not affect the innovation knowledge

 5-39

produced previously (see Graph 5.2.9 (c)), because they simply replaced one

component with another, and changed the way in which it was accessed.

Display and
Control Panel

Configuration

Box

Sound
Output
(Speakers)

Room1

Room2

Room3

Room4

Wire

Remote
Control

Infra Red

Figure 5.2.9: Installation diagram for Central Alarm Clock (Project P2-9).

There were no non-productive innovation knowledge occurrences. The innovation

appeared early in the project (event chain 6), as the team produced the software and

became able to communicate between the central controller and a remote alarm

clock. They did not draw much on data knowledge for innovation knowledge

occurrences.

Graph 5.2.9 (d) shows occurrences of both productive and non-productive data

knowledge; at event chain 17, the non-productive occurrences cease and the

productive knowledge occurrences continue, showing the usual divergence trend.

Table 5.2.9 (a) indicates that there were moderate to low levels of non-productive

knowledge. The team experienced no problems with regard to roles or logistics.

 5-40

Graph 5.2.9 (a): Data knowledge in P2-9.

Graph 5.2.9 (b): Process knowledge in P2-9.

 5-41

Graph 5.2.9 (c): Innovation knowledge in P2-9.

Graph 5.2.9 (d): Productive and non-productive knowledge in P2-9.

Table 5.2.9 (b) indicates that data knowledge occurrences were higher than average,

and process knowledge occurrences slightly lower than average, while innovation

 5-42

knowledge occurrences were about average. There was a high overall level of

productive knowledge, but only an average occurrence of innovation knowledge. The

team scored 86.5% for their prototype and demonstration.

Table 5.2.9 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-9 PK NPK Total
Data Knowledge 69% 31% 100%
All Process Knowledge 89% 11% 100%
 Role 33% 0% 33%
 Logistics 22% 0% 22%
 Engineering methods 33% 11% 44%
Innovation Knowledge 100% 0% 100%

Table 5.2.9 (b): Proportions of data, process and innovation knowledge in P2-9.

Knowledge Type: P2-9 PK NPK Total
Data Knowledge 33% 15% 48%
Process Knowledge 30% 4% 33%
Innovation 19% 0% 19%
TOTALS 81% 19% 100%

5.2.10 P2-10 Voice Activation System (VAS)

The objective of the VAS was to turn on/off the mains supply of electronic appliances

by voice command. Examples of appliances controlled by the VAS included:

televisions, music systems, PCs, and lights. The initial concept design was rather

ambitious, and involved one microphone in each room, which digitally relayed a

recorded voice to the central computer that could turn appliances on or off by

sending commands over a wireless connection. However, the resultant system was

simpler and more elegant than the original concept – the prototype that was built

comprised only two subsystems: a collection of ‘Voice-activated Plugs’ (or VAPs) and

a central control computer (a PC). This team developed drawings that they called

‘concept cartoons’ to describe the operation of their system. Although most of their

concept cartoons were done (by the innovation engineer) using pen on paper, they

did reproduce a selection of the drawings as more professional digital images.

Figures 5.2.10 (a) and 5.2.10 (b) graphically represent the operation of the system

using a concept cartoon.

The team originally planned that the VAPs would be controlled (turned on or off) and

programmed wirelessly by the control computer via a wireless link (the programming

task involving two voice commands being recorded and digitized, viz. one command

 5-43

to turn the appliance on, the other to turn it off), which would make it possible to

upload the recordings to a VAP. The team decided to substitute the wireless

connection with a wired Ethernet LAN to reduce development time for the prototype.

The team used the following components: LXT971A (an on-board Ethernet

controller), a PCF8591 in ADC mode, the CSB337 Epson graphics controller, a

CM741 microphone, as well as on-chip timers and on-chip counters. A PC central

controller was connected to multiple linked switches via a LAN.

User issues voice command

Light On

Talking
to me??

ON

OFF

Lamp Lamp VAP

Talking
to me??

ON

OFF Hi-Fi

Hi-Fi VAP
Scene 1:
User gives voice command
to tell lamp VAP to turn on

Power lead

Figure 5.2.10 (a): First scene in the concept cartoon showing how the voice-activated
plugs (VAPs) operate in the Voice Activation System (Project P2-10).

The first occurrences (event chains 6 – 7) of non-productive data knowledge had to

do with problems encountered in understanding a module (which the team

downloaded from the Internet) for parsing command strings. The non-productive

occurrence between event chains 14 – 24 related to problems in understanding how

to control the timers on a VAP. Instead of timers, they used on-board counters

clocked by down-sampling the 133MHz master clock for the processor. The resultant

data knowledge produced for using the timers was classified as non-productive.

Further non-productive data knowledge occurred at event chain 32 – 33; this involved

controlling pushbuttons (intended as a manual override for switches that did not

respond to voice commands) and linking an interrupt to the pushbuttons.

 5-44

The team started to build productive process knowledge at the start of the project;

this was related to the GCC compiler and developing a TCP/IP debugging menu

interface to control the voice activated switches. This menu interface was expected to

respond to commands sent via the network (e.g. “LIGHT ON”). The menu was

always active to allow for easy debugging.

Scene 2:
The lamp VAP turns on
power to the lamp

Was a command
for me!

ON

OFF

Lamp Lamp VAP

Not talking to
me.

ON

OFF Hi-Fi

Hi-Fi VAP

Figure 5.2.10 (b): Second scene of concept cartoon for operation of VAPs.

There were two instances of non-productive process knowledge (event chains 15

and 31), which had to do with using the PCF8591 ADC to sample voice commands.

They encountered numerous difficulties in the task of sampling voice commands,

such as matching voice sample rates on the VAPs and PC. Voice commands and

microphone functionality were achieved only close to the end of the project.

There was no non-productive innovation knowledge. The team began building

innovation at event chain 3, which involved configuring a VAS and implementing

query commands to change the responses to voice commands. Considerable

innovation occurred between event chains 19 – 23 as the team successfully

integrated solutions to turn an appliance on or off based on a time duration.

 5-45

At event chain 34, the team put in place voice command overrides (to compensate

for cases where the remote switch was unable to understand the command). On/off

manual overrides were put in place prior to completing voice recognition.

At the end of the project (event chains 35 – 37), partial success was made in making

VAPs respond to voice commands (only short commands worked, such as ‘ON’, as

long as they were pronounced similar to the original recording). Considering that

voice recognition is an inherently difficult topic, that VAPs did respond to voices, and

that the implemented voice recognition functionality was kept in the system, the

innovative effort in performing voice recognition was considered productive.

The divergence trend seen in other projects is also evident in Graph 5.2.10 (d). Table

5.2.10 (a) indicates high levels of non-productive data knowledge, low levels of non-

productive process knowledge and no occurrences of non-productive innovation

knowledge, as well as no occurrences of non-productive knowledge with regard to

roles and logistics. Table 5.2.10 (b) indicates average levels of data knowledge, but

high levels of productive process and innovation knowledge. There was an average

overall percentage of productive vs. non-productive knowledge. The team scored

80.75% for their prototype and demonstration.

Graph 5.2.10 (a): Data knowledge in P2-10.

 5-46

Graph 5.2.10 (b): Process knowledge in P2-10.

Graph 5.2.10 (c): Innovation knowledge in P2-10.

 5-47

Graph 5.2.10 (d): Productive and non-productive knowledge in P2-10.

Table 5.2.10 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-10 PK NPK Total
Data Knowledge 60% 40% 100%
All Process Knowledge 82% 18% 100%
 Role 18% 0% 18%
 Logistics 27% 0% 27%
 Engineering methods 36% 18% 55%
Innovation Knowledge 100% 0% 100%

Table 5.2.10 (b): Proportions of data, process and innovation knowledge in P2-10.

Knowledge Type: P2-10 PK NPK Total
Data Knowledge 31% 21% 51%
Process Knowledge 23% 5% 28%
Innovation 21% 0% 21%
TOTALS 74% 26% 100%

5.2.11 P2-11 Supermarket Query Device (SQD)

The Supermarket Query Device (illustrated by Figure 5.2.11) comprised the

installation, in a supermarket, of a server to which SMS messages could be sent. The

server would then reply to the caller with an SMS, telling the customer about

‘specials’ available in the store as well as where items were located. There would be

two types of query: 1) queries with regard to ‘specials’ (special + keyword) and 2)

queries regarding location (locate + keyword). Components used by the team

 5-48

included: the Erickson T10 cellphone, the Motorola JK evaluation board with LCD

panel, and a Falcom Twist MC35 GPRS modem (RS232 version).

The team needed to do Internet-based research on the Erickson T10 in order to

gather data on how to enable the T10 to act as a device to send and receive SMS

messages to/from the CSB337, which was acting as the supermarket query server.

This team produced more non-productive than productive data knowledge (see

Graph 5.2.11 (a)) due to the intensive research they needed to do on the Erickson

T10. They were unable to get the SMS system to work, and this resulted in much of

the data becoming unproductive. They had to find a way of understanding the

communication protocol to control the T10 without using the Microsoft Windows

software provided with the Erickson cellular telephone. They tried to implement their

own driver for the T10, but ultimately abandoned the T10 (around event chain 19)

and instead obtained a Falcom Twist MC35 GPRS modem.

Process knowledge occurred early on due to simulation and the sending of text

messages. The team were able to send query messages directly to the CSB337, but

not via a cell phone text message. At event chain 13 (see Graph 5.2.11 (b)), they

found the solution to the query. Much of the process knowledge between event

chains 20 – 35 involved getting the GPRS modem to send and receive text

messages.

Figure 5.2.11: Concept diagram of Supermarket Query Device (Project P2-11).

 5-49

Event chain 29 (see Graph 5.2.11 (c)) indicates where the team successfully

implemented the handling of the SMS messages. There were only two occurrences

of non-productive innovation knowledge where the team replaced one component

with another.

After the false start previously described, the divergence tendency noted on the other

graphs emerges toward end of this project too (see Graph 5.2.11 (d)).

Graph 5.2.11 (a): Data knowledge in P2-11.

 5-50

Graph 5.2.11 (b): Process knowledge in P2-11.

Graph 5.2.11 (c): Innovation knowledge in P2-11.

 5-51

Graph 5.2.11 (d): Productive and non-productive knowledge in P2-11.

Table 5.2.11 (a) shows high levels of non-productive data and innovation knowledge

(for reasons previously explained), but low levels of non-productive process

knowledge. From Table 5.2.11 (b), it can be seen that this team had lower than

average occurrences of innovation knowledge. The team achieved a combined score

of 80.75% for the prototype and its demonstration.

Table 5.2.11 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-11 PK NPK Total
Data Knowledge 44% 56% 100%
All Process Knowledge 82% 18% 100%
 Role 24% 0% 24%
 Logistics 12% 0% 12%
 Engineering methods 47% 18% 65%
Innovation Knowledge 67% 33% 100%

Table 5.2.11 (b): Proportions of data, process and innovation knowledge in P2-11.

Knowledge Type: P2-11 PK NPK Total
Data Knowledge 18% 23% 41%
Process Knowledge 36% 8% 44%
Innovation 10% 5% 15%
TOTALS 64% 36% 100%

 5-52

5.2.12 P2-12 Personal Protection Device (PPD)

This device operated as a remote panic button. Instead of having to press a fixed

panic button at a specific location, the user would be able to press the panic button

on the Personal Protection Device (PPD). Receivers would then triangulate the

user’s position based on the strength of the RF transmission. Components used by

the PPD team included LEDs, pushbuttons, an alarm siren and an improvised

transistor-based circuit for simulating wireless communications. The team used an

additional development tool, the SimIT open-source ARM instruction set simulator

[SimIt-ARM, 2008].

In terms of data knowledge, the team researched different systems, some of which

ended up as ‘dead ends’. These dead ends resulted in most of the non-productive

data knowledge that occurred in this project. The team had trouble establishing roles

and allocating tasks. It was also difficult to mobilize the team members, most of

whom were generally reluctant to become fully involved with the project. As a result,

the team was not effective and this project was not entirely successful. There was

only one event chain in which occurrences of innovation knowledge were noted (see

Graph 5.2.12 (c), event chain 4). During this knowledge chain, the team successfully

ran software on the CSB337, essentially transmitting an alarm message when the

pushbutton was pressed. Graph 5.2.12 (d) shows an emerging divergence trend, but

this only started at a late stage in the project.

Figure 5.2.12: Concept poster for the Personal Protection Device (Project P2-12).

 5-53

Graph 5.2.12 (a): Data knowledge in P2-12.

Graph 5.2.12 (b): Process knowledge in P2-12.

 5-54

Graph 5.2.12 (c): Innovation knowledge in P2-12.

Graph 5.2.12 (d): Productive and non-productive knowledge in P2-12.

Table 5.2.12 (a) shows relatively high levels of non-productive knowledge within the

different knowledge types. Table 5.2.12 (b) indicates that this team had the lowest

 5-55

occurrence of productive innovation knowledge. The prototype and the

demonstration achieved a combined mark of 79%.

Table 5.2.12 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-12 PK NPK Total
Data Knowledge 55% 45% 100%
All Process Knowledge 67% 33% 100%
 Role 17% 17% 33%
 Logistics 17% 0% 17%
 Engineering methods 33% 17% 50%
Innovation Knowledge 50% 50% 100%

Table 5.2.12 (b): Proportions of data, process and innovation knowledge in P2-12.

Knowledge Type: P2-12 PK NPK Total
Data Knowledge 24% 20% 44%
Process Knowledge 32% 16% 48%
Innovation 4% 4% 8%
TOTALS 60% 40% 100%

5.2.13 P2-13 Vehicle Usage Tracker (VUT)

The VUT was intended as a DIY kit to be installed in a motor vehicle and to provide

supplementary read-outs and statistics, such as fuel consumption, rev counter,

average speed, and audio-warnings (e.g., going over the speed limit or excessive

revving). The components used by the team included: 7-segment LCD3

alphanumeric array, Multipoint RS485/RS422 transceivers, a watchdog timer,

DS1338 real time clock, an ADXL202 (digital output accelerometer) and the

28F640J3A flash memory (8Mbyte Intel StrataFLASH).

The initial non-productive data knowledge occurrences at event chains 2 – 7 (see

Graph 5.2.13 (a)) had to do with the need to research a variety of drivers for the 485

chip, not all of which were used. At event chain 7, the team understood how to

access the flash memory from their embedded software. Productive data knowledge

occurred, when they found out about RedHat (event chains 15-22) and SimIT (event

chain 29).

3 The team planned to use a bitmapped LCD display, but decided to follow a simpler design

using a seven segment alphanumeric LCD array (providing 10 characters).

 5-56

The initial non-productive process knowledge had to do with initial difficulties with the

RS485. There were initial process difficulties in investigating the eCos operating

system driver for the 485 chip designed for the Agilent AAED-2000. The initial

productive process knowledge occurred as the team successfully installed and

configured Linux on the CSB337 evaluation board. At event chains 9 – 11 (see

Graph 5.2.13 (b)) the team successfully implemented a TCP/IP socket connection,

which enabled the communication between the CSB337 and their PC.

No non-productive innovation knowledge occurred in this project (See Graph 5.2.13

(c)). Occurrences of productive innovation knowledge began at event chain 13, after

the successful TCP/IP socket connection and the enabling of communication

between the CSB337 and the PC. They were trying to install ESAOA tools on

RedHat Linux and configure Linux. The team was able to generate vehicle usage

statistics, display these on the Motorola JK board’s LCD, and download the statistics

to a PC over an Ethernet connection.

Graph 5.2.13 (d) indicates the initial convergence at event chains 1 – 8 and

thereafter strong divergence.

Analogue input

from speedometer

8-bit input from

odometer

8 8

8

14

Figure 5.2.13: Component interconnection diagram for Vehicle Usage Tracker (Project

P2-13).

Analogue output

to speaker

CSB337 ADC DAC

LCD

 5-57

Graph 5.2.13 (a): Data knowledge in P2-13.

Graph 5.2.13 (b): Process knowledge in P2-13.

 5-58

Graph 5.2.13 (c): Innovation knowledge in P2-13.

Graph 5.2.13 (d): Productive and non-productive knowledge in P2-13.

 5-59

Table 5.2.13 (a) shows the relative high levels of non-productive data knowledge, as

previously explained. Occurrences of productive innovation knowledge were slightly

below average in P1-13, nevertheless the prototype was judged to be successful by

the researcher and the review panel, receiving the third highest score of 95%.

Table 5.2.13 (a): Productive and non-productive knowledge per knowledge type.

Knowledge Type: P2-13 PK NPK Total
Data Knowledge 61% 39% 61%
All Process Knowledge 77% 23% 77%
 Role 15% 0% 15%
 Logistics 0% 0% 0%
 Engineering methods 62% 23% 62%
Innovation Knowledge 100% 0% 100%

Table 5.2.13 (b): Proportions of data, process and innovation knowledge in P2-13.

Knowledge Type: P2-13 PK NPK Total
Data Knowledge 28% 18% 46%
Process Knowledge 26% 8% 33%
Innovation 21% 0% 21%
TOTALS 75% 26% 100%

5.3 Summary of knowledge occurrences

The number of knowledge occurrences per knowledge category for each Experiment

2 project is listed in Table 5.3.1 (a). The last three rows of the table indicate

respectively: the sum of all knowledge occurrences for each column, the average

knowledge occurrences for each column, and a percentage of the sum of knowledge

occurrences for the column over the total number of knowledge occurrences for the

experiment.

As shown in Table 5.3.1 (a), 75% of the occurrences were productive, whereas 25%

were non-productive; this clearly shows there were many more productive than non-

productive knowledge occurrences. The average ratio for productive to non-

productive knowledge across the projects is 75:25 (or 3:1).

The distribution of productive data, process and innovation knowledge occurrences

across the projects was in the ratio of 23:32:20 (see last row in Table 5.3.1 (a)). The

projects produced 12% more instances of productive process knowledge than

innovation knowledge, and 9% more occurrences of productive process knowledge

than data knowledge. These ratios may be explained by the knowledge intensive

nature of ES product development [Hughes & Cotterell, 2005; Kettunen, 2003;

 5-60

Henninger & Schlabach, 2001], whereby data knowledge, that is, knowledge of

components and tools, is needed before ES product development can occur, and

development processes are needed before practical innovative ideas can be

effectively tested.

Table 5.3.1 (a): Knowledge occurrences for each Experiment 2 project, separated by
knowledge category.

Project No. Total
knowledge

Data
knowledge

Process
knowledge

Innovation
knowledge

Total

Pr
od

uc
tiv

e

N
on

-
pr

od
uc

tiv
e

Pr
od

uc
tiv

e

N
on

-
pr

od
uc

tiv
e

Pr
od

uc
tiv

e

N
on

-
pr

od
uc

tiv
e

Pr
od

uc
tiv

e

N
on

-
pr

od
uc

tiv
e

P2-1 41 17 12 5 15 9 14 3 58
P2-2 75 27 19 17 40 10 16 0 102
P2-3 31 13 10 5 13 5 8 3 44
P2-4 42 4 12 1 14 2 16 1 46
P2-5 30 12 11 5 9 6 10 1 42
P2-6 30 5 5 3 22 2 3 0 35
P2-7 38 14 14 6 11 7 13 1 52
P2-8 39 10 9 3 19 7 11 0 49
P2-9 22 5 9 4 8 1 5 0 27
P2-10 29 10 12 8 9 2 8 0 39
P2-11 25 14 7 9 14 3 4 2 39
P2-12 15 10 6 5 8 4 1 1 25
P2-13 29 10 11 7 10 3 8 0 39
Sum 446 151 137 78 192 61 117 12 597
Averages 34.3 11.6 10.5 6.0 14.8 4.7 9.0 0.9 45.9
Percentage
occurrences 75% 25% 23% 13% 32% 10% 20% 2% 100%

Generally, the projects had more process knowledge occurrences than data or

innovation knowledge occurrences. The higher levels of process knowledge

occurrence could be ascribed to difficulties in applying the data knowledge to the

specific tools, components and embedded platform used in the projects [Winberg,

2006e]. Application of engineering methods generally comprises a major part of the

effort involved in product prototyping [Henkel, 2006].

5.4 Evaluations of artefacts, prototypes and demonstrations

This section reports on three assessments of the 13 Experiment 2 projects. The first

assessment relates to the continuous assessment model implemented by the

researcher during code and design reviews. For each code and design review, the

processes and progress of each team, as well as the current state of their prototype,

 5-61

were rated (see Section 3.8.1). The other two assessments relate to the

demonstrations that took place at the end of the experiment; demonstration check

sheets and requirements check sheets were completed by the review panel during

these assessments (see Section 3.8.6). These check sheets were then used to

obtain quantitative ratings for the functionality of the prototype, the quality of the

artefacts, and for how effectively the team performed their demonstration. Section

5.4.1 reports on the code and design review assessments performed by the

researcher, whereas Section 5.4.2 reports on the evaluations performed using

demonstration check sheets and requirements check sheets.

5.4.1 Evaluations of code and design reviews

The researcher evaluated each of the projects at various stages during code and

design reviews. Three evaluations were performed in total, one in each code and

design review, as described in Section 3.8.1. The reviews intentionally correspond to

phases of the ES lifecycle model given in Section 2.2, whereby Review 1 partly

relates to the requirements phase (as well as judging creativity and understanding of

planned prototypes); Review 2 relates to the specification and design phase (for

which ES design documents and enclosure models are rated); and Review 3 relates

to the implementation and integration phases (for which type of artefacts, quality of

artefacts, and relations between artefacts are checked).

5.4.1.1 Results from evaluation forms

Tables 5.4.1 (a), (b) and (c) respectively present the breakdown of ratings for Review

1, Review 2 and Review 3. The last two columns show averages (Avg) and standard

deviations (Std) across the projects. Sample evaluation forms filled in by the

researcher for these reviews are given in Appendix B.4 (the criteria are elaborated on

in the appendix). The last row of each table is the sum of the criteria ratings, which

gives an overall score for each project that indicates how well the team did for the

code and design reviews.

The total ratings for evaluations performed for the code and design review are shown

in Table 5.4.1 (d). The last column of the table gives average ratings for each project.

All ratings are sorted from the highest value (at the top) to the lowest value (the

second last row).

 5-62

Table 5.4.1 (a): Breakdown of creativity ratings per project.

Criteria Max P2-
1

P2-
2

P2-
3

P2-
4

P2-
5

P2-
6

P2-
7

P2-
8

P2-
9

P2-
10

P2-
11

P2-
12

P2-
13 Avg Std

Not commonplace 15 12 14 13 14 12 14 15 13 11 14 14 13 12 13.2 1.14
Context 5 4 5 4 2 3 5 5 3 2 2 5 4 4 3.69 1.18
Playing with ideas 10 9 4 7 9 8 8 9 4 9 8 9 8 10 7.85 1.86
Usefulness 10 8 8 8 8 7 9 9 7 9 9 8 8 8 8.15 0.69
Challenge 5 4 5 5 4 5 5 5 4 3 5 5 4 5 4.54 0.66
Sophistication of
techniques/parts 10 8 6 7 7 6 9 9 8 7 8 7 7 8 7.46 0.97

Interfacing &
connections 5 5 3 5 4 4 4 4 4 5 4 5 4 5 4.31 0.63

Diversity of parts 10 7 6 7 7 7 8 7 6 9 8 8 8 9 7.46 0.97
Enclosure 10 6 5 9 7 8 10 7 5 7 7 8 6 6 7.00 1.47
Cost-saving ideas 10 5 5 8 8 8 9 9 5 9 8 8 8 7 7.46 1.51
Drawings &
general clarity 10 7 6 10 8 9 9 9 6 8 7 9 7 8 7.92 1.26

TOTAL 100 75 67 83 78 77 90 88 65 79 80 86 77 82 79 7.31

Table 5.4.1 (b): Breakdown of design ratings per project.

Criteria Max P2-
1

P2-
2

P2-
3

P2-
4

P2-
5

P2-
6

P2-
7

P2-
8

P2-
9

P2-
10

P2-
11

P2-
12

P2-
13 Avg Std

Introduction 5 5 5 5 4 5 5 5 5 4 5 5 4 5 4.77 0.44
Block diagram 10 9 10 9 9 10 9 10 10 9 9 9 7 10 9.23 0.83
Use cases 5 5 5 5 4 5 5 5 5 5 5 5 3 5 4.77 0.60
Scenarios 5 5 5 4 4 5 5 5 4 4 4 5 4 5 4.54 0.52
UML class &
object design 10 9 10 9 8 10 8 8 7 6 8 9 7 9 8.31 1.18

Schematic/circuit 10 8 10 7 10 10 10 8 9 6 8 9 7 10 8.62 1.39
Component list 5 5 5 4 5 5 5 4 5 4 5 5 5 5 4.77 0.44
Enclosure design 5 5 5 5 5 5 4 5 5 4 3 5 2 4 4.38 0.96
No unwanted
redundancy 5 5 5 5 5 5 5 5 5 4 5 5 5 5 4.92 0.28

Accuracy 10 9 10 8 10 8 10 9 9 8 8 9 7 10 8.85 0.99
Completeness 5 5 5 5 5 5 5 5 4 4 5 4 4 5 4.69 0.48
General: clarify 10 9 9 10 9 10 8 9 8 8 8 8 7 10 8.69 0.95
General: internal
consistency 5 5 5 5 5 5 5 4 4 5 5 4 4 5 4.69 0.48

General: external
consistency. 5 5 5 5 4 5 5 5 3 4 5 4 4 5 4.54 0.66

General: cross-ref
/ traceability 5 5 4 5 4 5 5 5 3 5 5 5 5 5 4.69 0.63

TOTAL 100 94 98 91 91 98 94 92 86 80 88 91 75 98 91 0.72

 5-63

Table 5.4.1 (c): Breakdown of artefact ratings per project.

Criteria Max P2-
1

P2-
2

P2-
3

P2-
4

P2-
5

P2-
6

P2-
7

P2-
8

P2-
9

P2-
10

P2-
11

P2-
12

P2-
13 Avg Std

Naming artefacts 10 10 6 6 10 10 9 8 8 9 10 8 7 10 8.54 1.51
Organisation 10 10 6 8 10 10 9 8 7 8 8 7 7 10 8.31 1.38
Traceability 10 10 7 7 10 10 10 10 8 8 8 8 7 10 8.69 1.32
Modifiability 10 10 7 10 10 10 10 10 8 10 10 9 8 10 9.38 1.04
Reusability 5 5 3 4 5 5 5 5 4 5 5 5 5 4 4.62 0.65
General
readability 10 10 7 7 10 9 9 8 10 9 7 7 8 9 8.46 1.20

Readability of
code 5 5 3 3 5 5 5 4 5 5 4 4 5 4 4.38 0.77

Relating artefacts 5 5 4 5 5 5 5 4 4 4 4 5 4 5 4.54 0.52
Accessibility/ease
of location 10 10 6 9 10 10 10 10 7 10 10 8 7 10 9 1.47

Owner/author,
change history 5 5 3 3 4 3 3 4 3 5 5 3 5 4 3.85 0.90

Non-redundancy 5 5 3 4 5 5 5 5 5 4 5 4 5 5 4.62 0.65
Cross-referencing 5 5 4 4 5 5 5 5 4 5 5 5 4 5 4.69 0.48

Use of ESAOA
tools & other IT
tools/scripts

10 10 6 8 10 9 9 9 7 8 9 8 7 9 8.38 1.19

TOTAL 100 100 65 78 99 96 94 90 80 90 90 81 79 95 87.5 1.01

Table 5.4.1 (d): Totals of the code and design review ratings per project.

Rating 1:
Creativity

Review 2:
Design

Review 3:
Artefacts

Average (%)

Project Rating Project Rating Project Rating Project Rating
P2-6 90 P2-2 98 P2-1 100 P2-6 93
P2-7 88 P2-5 98 P2-4 99 P2-13 92
P2-11 86 P2-13 98 P2-5 96 P2-5 90
P2-3 83 P2-1 94 P2-13 95 P2-7 90
P2-13 82 P2-6 94 P2-6 94 P2-1 90
P2-10 80 P2-3 92 P2-7 90 P2-4 89
P2-9 79 P2-7 92 P2-9 90 P2-10 86
P2-4 78 P2-4 91 P2-10 90 P2-11 86
P2-5 77 P2-11 91 P2-11 81 P2-3 84
P2-12 77 P2-10 88 P2-8 80 P2-9 83
P2-1 75 P2-8 86 P2-12 79 P2-8 77
P2-2 67 P2-9 80 P2-3 78 P2-12 77
P2-8 65 P2-12 75 P2-2 65 P2-2 77
Avg. 79 Avg. 91 Avg: 87 Avg: 86

Average score: 86% (standard deviation 5.73 between averaged ratings)

According to Table 5.4.1 (d), the Project P2-6 team performed best on average

(having an average of 93% for all three reviews evaluations). During Review 1, the

Project P2-6 team was also judged to have the most creative concept. Project P2-6

 5-64

was only a few percentage points below the other projects for the second and third

review, confirming its place as the top rated project on average.

Projects P2-2, P2-5 and P2-13 had the highest design ratings, each project receiving

98% for Review 2. For Review 3, Project P2-1 was found to have the best quality

artefacts, albeit only slightly better (one percentage point) than those of Project P2-4.

Project P2-2, P2-8 and P2-12 received the lowest ratings on average; nonetheless,

this averaged rating was 77% and, considering that all these teams achieved at least

65% for any one review, it does indicate that they performed adequately overall.

Across all the reviews, the ratings were generally high, i.e. an average of 86% all

together. The standard deviation was fairly low at 5.73%, indicating that there was

less than 10% difference between the ratings on average.

5.4.1.2 Comments from knowledge production questions

During design review 2, the teams were asked to respond orally to questions related

to their knowledge production methods and information sources (see Section 3.8.1).

The researcher noted responses during the design reviews. After the final design

review the researcher reviewed all these notes and compiled a list of the most

commonly recurring methods; this list is given in Table 5.4.1(e) and has been

arranged according to the question that respectively gained insights in data, process

and innovation knowledge production methods. The responses for each question are

ordered accordingly to how often they reoccurred by different teams, or which were

given the most emphasis (most common and strongly emphasised response first).

The most common methods employed for acquiring data knowledge, as listed in

Table 5.4.1(e) included web searches and use of PDFs datasheets, user manuals

and other documentation that was either downloaded from the internet or provided in

the ESAOA communal workspace. Frequently used methods for obtaining process

knowledge included tasks where developers were determining the correct sequence

of hardware register assignments and procedure calls, compiling code, adapting

code, editing makefiles, and testing downloaded sample code. In terms of innovation

knowledge production, there was recurrent mention of getting the right sequence of

steps, adapting techniques used earlier to get new features to work, discarding prior

solutions, and difficulty in discovering the correct sequence of procedures to use.

 5-65

Table 5.4.1 (e): Commonly reported knowledge production methods.

Question Common responses
Q1: Methods used during
data knowledge production
and sources of information

Web searches, used PDFs in ESAOA communal workspace, shared
downloads folder, saved web pages, datasheets, manuals,
downloaded PDF documents, rename/relocate files, manufacturer
websites (ATMEL, Phillips semiconductors, Microchip), added
comments, search forums (e.g., what components other people
used), search in PDFs, Wikipedia, retailer websites (e.g., Sparkfun,
Avnet), searching pricelists (for finding low-cost component options),
add metadata using fclass, use find in downloaded sample code files
and manuals, made notes on product numbers, looking at table of
contents in datasheets, used esaoa-find, highlighted sections of docs,
C language guide, browser bookmarks, bookmarks in printouts.

Q2: Methods used during
process knowledge
production

Determining correct sequence of hardware register assignments and
procedure calls, change/rewrite/add code (esp. init.c, start and main
function, config.make and other makefiles), compiling code, changing
values sent to registers, searching though code, adding comments to
record settings/parameter options, correcting/finding addresses to
use, adding new #defines and constant values, finding sample code
and drivers on the web that works, noting down important steps (in
logbook / textfile), trying tutorials, changing downloaded drivers,
wiring-up and soldering hardware, searching forums, checking
pinouts, assigning GPIO pins, testing and debugging downloaded
code, programming flash boot memory, configuring boot loader,
checking components work (as planned), used multimeter to test
voltage levels and check connections, posting to group forum, using
oscilloscope to capture signals and do debugging, created scripts to
record settings / sequence of steps, downloading template files,
emailing code to teammate, esaoa-find, testing different tool
parameters, made scripts, installing drivers, editing configuration files,
reconfiguring driver options, changing sequence drivers are loaded in
uCLinux, printing out and checking code, looking through and testing
menus (in KDevelop), comparing to backups, posting to external
forums, looking-up in books (e.g., Linux handbooks), C programming
online guides and books, shared textfile of commands/tool params.

Q3: Methods used during
innovation knowledge
production

Usually needed new sequence of steps to get new feature working,
reused/adapted things done earlier, often couldn’t find steps that
worked, had to do various tests – more than one, tried different
techniques for same requirement, design ideas were easy but
implementing them was hard, modified/reused methods/code for
previous design issues, discarded many of our solutions, though of
most solution in the lab, various drawings (e.g., ‘concept cartoons’)
and point-form notes to explain/record ideas and solutions, Q3 usually
came first and Q1 and Q2 after, thought of ways to implement design
choices while implementing other design aspects, though of many
ideas/solutions outside the lab, though of solutions/ideas when
looking at websites while solving other problems, proposed and
minuted ideas at meetings, group email to CC all members, ideas
occurred while making concept poster, writing code more difficult than
thinking of design ideas, difficult to find what (method?) was wanted,
waste of time looking for ready-made solutions online, shared
methods while sitting together in lab – though it pointless and too
time-consuming to write down steps (“once we know the method, we
knew the method”), expected input/output files, emailed suggestions,
noted parts of solutions/ideas in logbook, used chat/instant
messaging while working simultaneously on different parts, came up
with our own approaches because ones online didn’t worked for us,
printed diagrams/code and added to them in meetings – later updated
files, milestones helped keep us focus and finished on time.

 5-66

5.4.1.3 Notes from design review 3

Design review 3 involved rating the quality of artefacts produced by teams, in

addition to investigating to what extent ESAOA support tools (i.e., ESAOA scripts or

programs) were modified, or added to, by the teams (see Section 3.8.1). Results

from design review 3 evaluation forms were presented in Section 5.4.1.1.

Many of the teams added to the collection of ESAOA support tools that were

provided in the baseline communal and team workspaces. All these new scripts were

in the form of Bash scripts, and were evidently (based on the comments at the top of

the scripts) crafted from the script template provided in the ESAOA communal

workspace. None of the teams used the KIT API to create their own C-based support

tools. Project teams P2-1, P2-4 and P2-6 added the most number of scripts, an

average of six scripts each. Project team P2-2 made the least use of scripts, only

adding one script (which in actuality appeared not to be an executable script, but

rather a text file that listed commands and their arguments that the team found useful

or used often – no comments were included in the file). The second last row in Table

5.4.1(c) in Section 5.4.1.1, which relates to the extent to which teams used ESAOA

tools, also closely corresponds to the extent to which teams made changes to

ESAOA scripts. In general, teams (except Projects P2-1 and P2-4) that added new

scripts provided little or no comments to explain their purpose.

5.4.2 Review panel’s evaluations

As mentioned in Section 3.8.6, the review panel watched and evaluated

demonstrations performed by the project teams towards the end of Experiment 2.

After these demonstrations had taken place, two different check sheets were

completed by the review panel for each project. The demonstration check sheet was

used primarily to rate the quality of the team during the demonstration; whereas the

requirements check sheet was used to rate the success of a team’s prototype and

the quality of their project artefacts. These evaluations were performed in order to

obtain quantitative ratings of a team’s performance, and of the team’s prototype, in

order to relate these performance measures of the end results to knowledge

production and the use of the ESAOA KMS.

The following two subsections present the ratings, first for the demonstration check

sheet, and then for the requirements check sheet. Section 5.5.1 compares these two,

in addition to discussing relations between these scores and the knowledge

production results.

 5-67

5.4.2.1 Demonstration check sheet results

The ratings for each criterion of the demonstration check sheet, for each of the 13

Experiment 2 projects is shown in Table 5.4.2 (a). The last column of the table shows

each team’s total score; this is labelled ‘functionality of team’, as the criterion as a

whole relates to how well the team functioned during the presentation (as can be

seen in the table, the functionality of the prototype is not intended to be evaluated

using this form; the requirements check sheet is used for that purpose). The bottom

row of the table gives averages for each column; for example, teams on average

scored 9/10 for their level of readiness.

Table 5.4.2 (a) shows that Project P2-1 (the Location-aware Tourist Information

System) was given the highest score (a final score of 100%) by the review panel.

This high score can likely be attributed to the fact that the team gave an excellent

demonstration, although their concept was not the most creative (see Section 5.4.1).

Table 5.4.2 (a): Demonstration check sheet scores for each project.

Pr
oj

ec
t N

o.

1) Preparedness 2) Summary
of project

3) Set-up of
components

4)
Experimentation

5)
Code

6)
General

Fu
nc

tio
na

lit
y

of
 te

am

 (%
 T

ot
al

)

R
ea

di
ne

ss

O
rd

er

Fl
ow

Ti
m

e
ke

ep
in

g

C
la

rit
y

E
xp

la
na

tio
n

D
es

cr
ip

tio
n

E
xp

la
na

tio
n

D
es

cr
ip

tio
n

M
et

ho
d

R
es

ul
ts

A
na

ly
si

s

E
xp

la
na

tio
n

R
ec

om
m

en
da

tio
ns

Q
ue

st
io

ns

La
ng

ua
ge

P2-1

10 10 1
0 10 10 10 10 10 10 10 10 10 10 10 10 10 100

P2-2 0 7 5 7 8 7 8 5 6 8 6 10 4 8 7 8 65
P2-3 10 7 6 10 7 7 8 8 8 6 6 8 8 7 9 10 78
P2-4 10 10 9 10 10 10 10 10 10 10 8 10 10 10 10 10 98
P2-5 10 8 9 10 9 9 10 10 7 8 10 8 8 9 9 10 90
P2-6 10 10 9 10 8 8 10 10 8 8 10 10 9 8 10 10 93
P2-7 10 10 8 10 8 8 8 8 8 9 9 10 10 10 8 10 90
P2-8 10 10 8 10 6 6 8 8 7 5 5 8 8 8 8 10 78
P2-9 10 9 8 10 5 6 10 8 8 7 8 6 8 8 7 10 80
P2-10 10 9 9 10 10 9 10 10 8 8 8 10 8 8 8 10 91
P2-11 10 8 8 10 9 7 9 8 8 5 8 8 8 8 7 10 82
P2-12 10 4 6 10 6 8 9 7 8 4 8 6 8 8 8 10 75
P2-13 10 10 8 9 10 10 10 9 8 8 10 8 10 10 8 10 93
Avg. 9 9 8 10 8 8 9 9 8 7 8 9 8 9 8 10 86

The Project P2-4 team came a close second with a total score of 98%. The third-
highest score was a tie between Projects P2-6 and P2-13, both of which were given
a demonstration rating of 93%. The project with the lowest score was Project P2-2,
with 65% (which was 10% below the second lowest score).

 5-68

5.4.2.2 Requirements check sheet results

The requirements check sheets focus on evaluating the functionality and quality of

the teams’ prototypes and project artefacts. Appendix B.2 provides the complete set

of criteria ratings decided by the review panel for the requirements check sheets of

each project of Experiment 2. Appendix B.3 lists the comments that the review panel

added to the check sheets for each of the projects. As shown in Section 3.8.6, the

criteria for the requirements check were grouped into four sections, with each section

given a weighting based on its importance. The sections were: 1) functional

requirements, 2) temporal requirements, 3) quality of artefacts, and 4) quality of the

prototype enclosure. The total scores for each of these sections, and the weighting of

each section, are shown for all the projects in Table 5.4.2 (b). The last row gives the

weighted total requirements score for each project.

The average ratings for each section, across all projects, were the following: the

average score for functional requirements was 74% (with a maximum of 90% for

Projects P2-1 and P2-5); the average score for temporal requirements was 72% (with

Project P2-10 receiving the highest score of 100%); the average score for the quality

of artefacts was 77% (with Project P2-1 receiving the maximum of 96%); and the

average prototype enclosure score was 59% (with Project P2-13 receiving the

highest enclosure score of 100%).

Table 5.4.2 (b): Section scores for each requirements check sheet.

Section Section
weight

Project No.
P2-
1

P2-
2

P2-
3

P2-
4

P2-
5

P2-
6

P2-
7

P2-
8

P2-
9

P2-
10

P2-
11

P2-
12

P2-
13

1. Functional
requirements 44% 90% 77% 75% 78% 90% 81% 65% 51% 64% 70% 74% 83% 66%

2. Temporal
requirements 11% 97% 63% 70% 63% 97% 37% 53% 67% 67% 100% 73% 57% 87%

3. Quality of
artefacts 40% 96% 94% 89% 80% 94% 85% 73% 73% 55% 62% 57% 66% 72%

4. Quality of
enclosure 5% 33% 80% 87% 33% 73% 73% 20% 33% 67% 100% 53% 20% 100%

Weighted
total: 90% 82% 81% 75% 91% 77% 64% 60% 61% 72% 66% 70% 72%

Project P2-5 (the Home Automation System) had the highest total score for the

requirements check sheet, viz. a total weighted score of 91%. This project also

received the highest score for functional requirements (a score of 90% shared with

Project P2-1), and it furthermore received one of the highest ratings for temporal

requirements and for the quality of the final project artefacts. The enclosure rating for

the prototype produced in the project received only an above-average rating.

 5-69

Projects P2-8 had the lowest overall requirements score, with Projects P2-7 and P2-9

only slightly ahead. These projects consistently received below average marks for

each of the four rating sections.

5.5 Comparisons

This section uses correlations between knowledge production statistics (the tabulated

results in Sections 5.3) and the results of project assessments (i.e., results shown in

Sections 5.4.1 and 5.4.2). The subsections below summarise the results of the

correlations, including discussion of the strongest relations and of how these appear

to influence one another. The correlation method is described in Section 3.12.

5.5.1 Comparing requirements and demonstration check sheets scores

Table 5.4.3 (a) lists the final scores for the demonstration and requirements check

sheets per project. The last column indicates the absolute differences between the

scores for each project. The correlation coefficient appears at the bottom of the table.

Table 5.4.3 (a): Demonstration check sheet scores compared to requirements check
sheet scores.

Project
No.

% Demonstration
check sheet score

% Requirements
check sheet

Abs.
Difference

P2-1 100 90 10
P2-2 65 82 17
P2-3 78 81 3
P2-4 98 75 23
P2-5 90 91 1
P2-6 93 77 16
P2-7 90 64 26
P2-8 78 60 18
P2-9 80 61 19
P2-10 91 72 19
P2-11 82 66 16
P2-12 75 70 5
P2-13 93 72 21

Correlation: r = 0.246

The correlation coefficient indicates a weak relation between the sets, indicating that,

even if a project satisfied most requirement checks, it was no guarantee that it would

achieve a correspondingly high demonstration rating. Since the correlation coefficient

is positive, though, higher requirements scores do tend towards higher demonstration

results. Projects P2-7 and P2-4 had the highest difference between the

demonstration and requirements scores; in both cases the teams scored much

 5-70

higher for the demonstration than they did for the requirements check. This was

largely attributable to Project P2-4 team’s particularly professional presentation, and

to Project P2-7 team’s particularly gripping product concept (which received the

second highest creativity score in Table 5.4.1.(d)) – in both cases, the review panel

was less critical of limitations of the prototypes due to the teams’ good impressions.

5.5.2 Comparing design reviews ratings to check sheet scores

In this section, comparisons are made between the averaged design review ratings

(shown in Table 5.4.1 (d)) and the scores awarded by the review panel for the

demonstration and requirements check sheets (see Tables 5.4.2 (a) and 5.4.2 (b)).

Table 5.5.2 (a) lists the scores to be compared; the last column gives an average of

the demonstration score and the requirements score. Table 5.5.2 (b) shows the

correlation coefficients for comparing each column of scores to the other columns.

Comparisons between the check sheets were already discussed in Section 5.5.1.

Table 5.5.2 (a): Design review averages compared to review panel scores.

Project
No.

% Design review
average score

% Demonstration
check sheet

% Requirements
check sheet

% Average of check
sheet scores

P2-1 90 100 90 95
P2-2 77 65 82 74
P2-3 85 78 81 80
P2-4 89 98 75 87
P2-5 90 90 91 91
P2-6 93 93 77 85
P2-7 90 90 64 77
P2-8 77 78 60 69
P2-9 83 80 61 71
P2-10 86 91 72 82
P2-11 86 82 66 74
P2-12 77 75 70 73
P2-13 92 93 72 83

Table 5.5.2 (b): Correlation results.

% Design review
average score

% Demonstration
check sheet

% Requirements
check sheet

% Average of check
sheet scores

% Design review
average score 0.860 0.325 0.745

% Demonstration
check sheet 0.860 0.246 0.783

% Requirements
check sheet 0.325 0.246 0.795

% Average of
check sheet scores 0.745 0.783 0.795

The highest correlation coefficient r in Table 5.5.2 (b) is 0.860 (where r2 = 74%). This

indicates a strong relation in which projects that scored highly for their design reviews

 5-71

also did well for their demonstration. This finding is corroborated by the literature,

which indicates that design reviews improve the success of development products

[Schach, 2005].

5.5.3 Comparing design reviews to knowledge production statistics

In this section the code and design review scores are compared to the numbers of

knowledge occurrences per project (Section 5.5.3.1), while code and design review

scores are compared to proportions of knowledge productions (Section 5.5.3.2).

5.5.3.1 Comparing code and design reviews to productive knowledge
occurrences

The code and design review ratings (Table 5.4.1 (d)) were correlated with the

number of knowledge occurrences for each project, separated into categories of

data, process and innovation knowledge. The resulting correlations coefficients are

given in Table 5.5.3 (a). The highest correlations are shown in bold.

Table 5.5.3 (a): Correlations between code and design review scores and productive
knowledge occurrences across all projects.

Design Review Productive data
knowledge

Productive process
knowledge

Productive innovation
knowledge

Concept rating -0.416 -0.425 -0.460

Design rating 0.493 0.414 0.526

Artefacts rating -0.218 -0.569 0.067

Average rating -0.362 -0.614 -0.178

The strongest correlation in Table 5.5.3 (a) is -0.614, between average review ratings

and productive process knowledge. This yields a coefficient of determination (r

squared) of 38%. This result suggests the proportion of productive process

knowledge is a potential indication of how well design reviews will be rated. This

linear correlation is a fairly weak relation, though, and it is a negative (i.e. an inverse

correlation). This correlation was not expected to be negative; it was expected that

higher proportions of process knowledge, especially productive process knowledge,

would lead towards a more successful project. However, these results appear to

imply that the reverse is more correct, specifically that higher levels of process

knowledge may lead to lower review ratings. This may appear counter-intuitive at

first. However, there are likely causes for this observation. For example, spending too

much time perfecting development methods may block progress instead of speeding

it up. In this regard, Project P2-2 experienced a more profound problem due to a lack

of coordination, in that different team members independently developed their own

 5-72

effective practices (which counted towards productive knowledge), but this

duplication wasted time, which ultimately led to the reviews indicating poor

performance. Other possible reasons for this inverse correlation include the following:

Firstly, the occurrence of ‘dead end’ data knowledge does not negatively affect the

quality of the final product (as long as appropriate productive data knowledge is

eventually found). Secondly, the fact that the team engaged in non-productive

processes does not necessarily influence the final artefact produced (as long as the

team did eventually use appropriate methods). Thirdly, there is also a potential link

between the quality of the ES artefacts and the occurrence of productive innovation

knowledge, as suggested by the third strongest correlation discussed below.

The second strongest correlation, -0.569 (r2 of 32%), is between artefact ratings and

productive process knowledge. This negative correlation implies that projects with

high quality artefacts produced smaller portions of process knowledge; or conversely,

most projects that produce larger portions of process knowledge had artefacts of

poorer quality. In this experiment, though, the former is more valid: projects with a

larger portion of process knowledge (namely P2-8 and P2-2) spend less effort on the

quality of their artefacts (supported by the artefact scores in Table 5.4.1 (d)). It is

important to note that the reviewers did not assess the maintainability of the

prototype – the developers were aware that the success of their prototype would be

primarily based on its functionality and usability. Consequently, some teams

(particularly Projects P2-3 and P2-12) sacrificed the quality of their artefacts for the

improved functionality of the prototype – for Experiment 2 projects, this trade-off was

generally beneficial and led to higher scores (provided the prototype was sufficiently

functional). Project P2-2 members furthermore have sacrificed artefact quality to

achieve a working prototype, but were also rated as less successful because they

produced a poorly functioning prototype and gave a weak demonstration.

The third strongest correlation was positive, the value 0.526 (r2 of 28%), between the

proportion of innovation knowledge and the design rating. This is a fairly weak

relation. It potentially indicates that a higher proportion of innovation knowledge leads

to a higher design rating. This appears to correspond to the way in which good

designs are identified, for which the difference between mediocre and excellent

products is often a matter of innovative ideas [Kopetz, 1997; Goossens et al., 1997].

Project P2-1 was rated the highest by the review panel, and also had the top score

for the quality of its artefacts. This indicates that a project team still had to have good

 5-73

underlying design artefacts in order to achieve exceptional results from the review

panel. It is likely that the quality of the artefacts would have become even more

important if maintenance issues had been considered too (as is recommended by

many authors, such as Stamelos et al. [2002]).

Other correlations indicate that the proportion of innovation knowledge has little or no

impact on either quality of artefacts or the overall success of Experiment 2 projects.

5.5.3.2 Comparing code and design reviews to knowledge occurrences

Correlations between the code and design review ratings and the total amount of

knowledge occurrences per knowledge category are shown in Table 5.5.3 (b) (note

that the previous section focused only on the proportions of productive knowledge).

The last row shows correlations between the knowledge types and averages for all

review ratings. The four highest correlations are in bold text.

Table 5.5.3 (b): Correlations between review scores and knowledge occurrences.

 Design Review Total data
knowledge

Total process
knowledge

Total innovation
knowledge

Concept rating -0.369 -0.500 -0.400

Design rating 0.460 0.443 0.525

Artefacts rating -0.497 -0.569 0.081

Average rating -0.537 -0.650 -0.178

The strongest correlation in Table 5.3.1 (b) is -0.650 (r2 of 42%), between total

process knowledge and the average design review ratings. The previous section

similarly showed the strongest correlation between productive process knowledge

and design ratings. However, as for the case in the previous section, this correlation

is also a negative one, thus implying that, for Experiment 2, higher proportions of

productive knowledge led to lower design ratings.

The second strongest correlation is a negative one of -0.569 (r2 of 32%), between

artefact ratings and proportion of process knowledge. As per the previous section,

projects with better artefacts seem to have lower proportions of process knowledge,

regardless of whether that process knowledge is productive or non-productive.

The third strongest correlation, -0.537 (r2 of 29%), is between the average of all

ratings and the proportion of data knowledge produced for a project. This is an

inverse correlation, indicating that projects, which on average achieve a high

 5-74

progress score, may be accumulating a smaller proportion of data knowledge or,

conversely, that projects with higher proportions of data knowledge are likely to

achieve lower progress ratings. For this experiment, the latter is more accurate:

teams (e.g., Projects P2-2 and P2-10) that accumulated higher proportions of data

knowledge tended to have lower progress review scores.

A positive correlation of 0.525 (r2 of 28%) exists between design ratings and the

proportion of innovation knowledge for the projects. This indicates a possibility that

projects with higher proportions of innovation knowledge get higher design scores.

5.5.4 Comparisons with productive innovation knowledge

The positive correlation between innovation knowledge and design scores, observed

in Section 5.5.3.2, is further investigated in this section by comparing proportions of

productive innovation knowledge to check sheet scores.

5.5.4.1 Comparing productive innovation knowledge and averaged scores for
check sheets

The averaged check sheet scores (which were given earlier in Table 5.5.2 (a)) are

correlated with the percentage proportions of productive innovation knowledge for

each project in Table 5.5.4 (a).

Table 5.5.4 (a): Percentage of productive innovation knowledge occurrences compared
to average of demonstration and requirements check sheet scores.

Project
No.

% Productive innovation
occurrences

% Average of check
sheet scores

P2-1 24 95
P2-2 16 74
P2-3 18 80
P2-4 35 87
P2-5 24 91
P2-6 9 85
P2-7 25 77
P2-8 22 69
P2-9 19 71
P2-10 21 82
P2-11 10 74
P2-12 4 73
P2-13 21 83

Correlation: r = 0.426

As Table 5.5.4 (a) shows, the correlation coefficient for the two sets is 0.426 (r2 of

18%), indicating a fairly weak positive relation. This potentially indicates the overall

success of a project, in terms of satisfying its requirements and the team delivering a

 5-75

successful demonstration, and it was higher for teams that produced a higher

proportion of innovation knowledge.

5.5.4.2 Comparing productive innovation knowledge to demonstration check
sheet scores

The proportions of productive innovation occurrences and the demonstration check

sheet scores for each project are listed together in Table 5.5.4 (b).

Table 5.5.4 (b): Percentage productive innovation knowledge occurrences compared to
demonstration check sheet scores.

Project No. % Productive innovation
occurrences

% Demonstration check
sheet score

P2-1 24 100
P2-2 16 65
P2-3 18 78
P2-4 35 98
P2-5 24 90
P2-6 9 93
P2-7 25 90
P2-8 22 78
P2-9 19 80
P2-10 21 91
P2-11 10 82
P2-12 4 75
P2-13 21 93

Correlation: r = 0.520

As shown in Table 5.5.4 (b), teams who scored 80% and above tended to have a

high percentage of innovation knowledge occurrences, whereas teams who scored

below 70% tended to have low occurrences of productive innovation knowledge. The

correlation coefficient between the sets is 0.520 (r2 of 27%). This indicates a potential

trend for the projects concerned (which is slightly stronger than the one found in

Table 5.5.4 (a)) between occurrences of productive innovation knowledge and the

success of the prototype demonstrations.

5.5.4.3 Comparing productive innovation knowledge to requirements check
sheet scores

The proportions of productive innovation occurrences and the requirement check

sheet scores for each project are listed together in Table 5.5.4 (c). The correlation

coefficient of 0.146 between the sets indicates that there is no relation. If a team

obtained larger proportions of innovation knowledge, it appears to give no indication

as to whether or not the requirements will be well satisfied.

 5-76

Table 5.5.4 (b): Percentage productive innovation knowledge occurrences compared to
requirements check sheet scores.

Project No. % Productive innovation
occurrences

% Requirements check
sheet score

P2-1 24 90
P2-2 16 82
P2-3 18 81
P2-4 35 75
P2-5 24 91
P2-6 9 77
P2-7 25 64
P2-8 22 60
P2-9 19 61
P2-10 21 72
P2-11 10 66
P2-12 4 70
P2-13 21 72

Correlation: r = 0.146

5.5.5 Comparing check sheet scores and knowledge occurrences

This section investigates correlations between knowledge occurrences for each of

the projects, as well as correlations between check sheet scores and knowledge

occurrences. Table 5.5.5 shows the resultant correlation coefficients for comparing

total knowledge occurrences (i.e. both productive and non-productive knowledge

category). The strongest correlation coefficients are shown in bold text.

Table 5.5.5: Correlations between check sheet scores and categories of knowledge
production.

D
em

on
st

ra
tio

n
ch

ec
k

sh
ee

t
sc

or
e

R
eq

ui
re

m
en

ts

ch
ec

k
sh

ee
t

sc
or

e

To
ta

l d
at

a
kn

ow
le

dg
e

To
ta

l p
ro

ce
ss

kn

ow
le

dg
e

To
ta

l i
nn

ov
at

io
n

kn
ow

le
dg

e

Demonstration
check sheet scores

 0.246 -0.401 -0.455 0.193

Requirements check
sheet scores

0.246 0.249 0.297 0.408

Total data
knowledge

-0.401 0.249

0.673 0.517

Total process
knowledge

-0.455 0.297 0.673

0.471

Total innovation
knowledge

0.193 0.408 0.517 0.471

The strongest correlation in the table is 0.673 (r2 of 45%) between process

knowledge and data knowledge. This indicates that more data knowledge leads to

more process knowledge, or that projects with more process knowledge also have

 5-77

more data knowledge. There is a correlation of 0.471 (r2 of 22%) between process

knowledge and innovation knowledge, which indicates that more innovation

knowledge occurrences need more process knowledge occurrences. There is

virtually no relation between the number of process and data knowledge occurrences

and how well requirements are met. However, the third strongest correlation, -0.455

(r2 of 21%), which is a weaker relation, indicates that too much work on refining

processes may lead to less successful product demonstrations.

5.5.6 Comparing check sheet scores and proportions of knowledge

This section investigates correlations between proportions of knowledge production

(combining productive and non-production proportions) for each projects, and

correlations between check sheet scores and these proportions of knowledge

production. Table 5.5.6 shows the resultant correlation coefficients, with the greatest

magnitude coefficients in bold.

Table 5.5.6: Correlations between check sheets and proportions of knowledge
production.

D
em

on
st

ra
tio

n
ch

ec
k

sh
ee

t
sc

or
e

R
eq

ui
re

m
en

ts

ch
ec

k
sh

ee
t

sc
or

e

To
ta

l d
at

a
kn

ow
le

dg
e

To
ta

l p
ro

ce
ss

kn

ow
le

dg
e

To
ta

l i
nn

ov
at

io
n

kn
ow

le
dg

e

Demonstration
check sheet scores 0.246 -0.151 -0.259 0.513

Requirements check
sheet scores 0.246 -0.256 0.034 0.241

Total data
knowledge -0.151 -0.256 -0.678 -0.211

Total process
knowledge -0.259 0.034 -0.678 -0.575

Total innovation
knowledge 0.513 0.241 -0.211 -0.575

The strongest correlation in the table is -0.678 (r2 of 46%) between process

knowledge and data knowledge. This indicates that higher levels of data knowledge

may lead to a smaller proportion of process knowledge. This was evident in Project

P2-2, in which members spent large amounts of time searching for information, and

consequently spent less time experimenting with possible development methods.

The second strongest correlation, -0.575 (r2 of 33%), between process knowledge

and innovation knowledge is also an inverse relation. Higher levels of process

knowledge appear to reduce the proportion of innovation knowledge obtained.

 5-78

Putting too much effort into optimising processes reduces opportunities for innovation

and, as discussed in Section 5.5.3.1, this may cause the prototype demonstration to

be less successful. The correlation of 0.513 (r2 of 23%) supports this conclusion,

showing that larger portions of innovation knowledge lead to more successful

demonstrations.

5.6 Team members’ evaluation of ESAOA KMS

On completion of the project, team members were invited to respond to a

questionnaire (see Section 3.8.7), which required them to evaluate the ESAOA KMS

as they experienced it in their projects. This was a voluntary exercise. The

participants were initially given hardcopy versions of the evaluation (after the

demonstrations). After a few days, due to a general lack of response, they were also

emailed softcopy versions the evaluation forms. In total, only ten of the 39

participants (i.e., 26%) of the participants responded. Some of the participants who

did not respond were asked why they had not responded; the main reason was that

they had other deadlines approaching (i.e., projects unrelated to Experiment 2 and

examinations) and that they had to focus their time on these other responsibilities.

Feedback from the participants is described below: firstly in terms of quantitative data

(Section 5.6.1) and secondly in terms of qualitative data (Section 5.6.2).

5.6.1 Quantitative data: 5-point scale rankings

Participants as individuals (rather than as teams) were asked to rate the ESAOA

KMS on a 5-point Likert scale [Meyers et al., 2005] in terms of the following:

1) Overall impressions of the ESAOA KMS;

2) General issues with regard to using the ESAOA KMS (how they rated their

ability to access knowledge, whether they would use the ESAOA KMS in their

professional work, the amount of support they received in project meetings

and workshops, and the level of difficulty of the project that they had worked

on);

3) The ESAOA directory structure (in particular the extent to which they found

the go utility effective, the ease of navigating the directory structure, whether

they found the directory structure logical, and whether they found that the

directory lists were becoming more user-friendly as the project progressed);

 5-79

4) The ESAOA enter and exit (in particular whether they found the “source

enter-esaoa” strategy effective, the command prompt confusing or clear, the

usefulness of actions, and exiting the project);

5) The MakeMake (mm) utility, particularly its usefulness and the ease of

changing platforms; and

6) The ESAOA environment variables. (Section 3.8.7 gives the full

questionnaire; these points correspond to parts 0 to 5 of the questionnaire).

Table 5.6.1 shows that the participants gave the ESAOA KMS a high overall rating

(an average of 4.6/5 or 92%), although there was considerable variation within the

ratings given to specific aspects of the ESAOA KMS.

Table 5.6.1: Summary of evaluation data.

Pa
rt

ic
ip

an
ts

1)
 O

ve
ra

ll

2) ESAOA: General 3) ESAOA: Directory
structure

4) ESAOA: Enter
and exit

5) mm
utility

6)
 E

nv
iro

nm
en

t

Ac
ce

ss

P
ro

fe
ss

io
na

l

M
ee

tin
gs

 &

w
or

ks
ho

ps

Pr
oj

ec
ts

G
o

ut
ilit

y

E
as

e

Lo
gi

c

B
en

ef
it

En
te

r

C
om

m
an

d
pr

om
pt

U
se

Ex
it

U
se

fu
l

C
ha

ng

pl
at

fo
rm

1 5 3 3 3 3 3 3 3 1 5 3 3 2 5 4 4
2 5 3 1 1 3 0 0 0 0 5 5 2 2 5 0 1
3 4 3 4 3 3 4 4 5 3 5 5 2 2 4 1 4
4 4 2 4 3 3 4 0 4 0 5 5 0 0 5 0 0
5 5 3 3 3 3 2 3 3 3 3 4 4 2 3 4 4
6 4 3 2 2 0 4 4 4 4 4 3 3 4 0 1
7 5 3 3 3 1 1 5 4 3 5 5 3 3 4 4 0
8 5 4 4 3 3 5 2 3 4 5 4 3 2 5 3 2
9 4 3 3 3 2 4 5 5 4 5 4 3 2 5 4 2
10 5 4 4 2 3 4 4 2 5 5 4 5 5 5 3 1

M
od

e

5 3 3 3 3 4 4 4 3 5 5 3 2 5 4 4

M
ed

ia
n

5 3.5 3 3 3 3 3.5 4 3 5 4.5 3 2 5 3 1.5

A
ve

ra
ge

4.6 3.6 3.2 2.6 2.6 3.0 2.7 3.5 2.4 4.7 4.4 2.7 2.3 4.5 2.3 1.9

%

92 72 64 52 52 60 54 70 48 94 88 54 46 90 46 38

From the row of average values in Table 5.6.1, it can be seen that high ratings were

given to the effectiveness and clarity of the esaoa-enter command (average 91%),

and to the dynamic, context-sensitive ESAOA command prompt (average 88%). The

 5-80

MM utility scored highly (average 90%) in terms of its overall usefulness to the

project, but low (average 38%) in terms of the ease of changing platforms.

The ‘ESAOA general’ category in Table 5.6.1 concerns: a) access to the ESAOA

workspaces; b) the degree of professionalism of the artefacts and tools provided with

the workspaces; c) the extent to which the training workshops and consultancy

meetings were useful to the participants; and d) an indication of whether the projects

were too hard (being unsuitable for the KMS, shown by a rating value of 1 or 2) or

very easy (not needing the KMS, shown by a rating value of 4 or 5). Access to the

ESAOA workspaces received a rating of 72%; this is likely attributable to the system

being easy to access but at times being unavailable due to network problems. The

level of professionalism of the tools did not receive a particularly high average rating

(namely, 64%); this may be due to the tools of ESAOA KMS version 1 being rough

prototype versions that were not sufficiently documented. The participants generally

found the consultancy meetings (with the CKO or CKS) and the training workshops to

be partly useful (giving a rating of 52%). The median rating of 3/5 for the project

indicates that the participants found that their projects were on average at a suitable

level of difficulty for use with the ESAOA KMS.

The category labelled ‘ESAOA directory structure’ in Table 5.6.1 relates mainly to the

ESAOA workspaces. Of the ratings in this category, the ‘logic’ criterion scored

highest (70%), which indicates that the participants generally found the structure of

the workspaces to be logical. However, they also found that the structure was neither

easy to use nor beneficial to their own development work.

The category labelled ‘ESAOA: entry and exit’ in Table 5.6.1 refers to the entering

and exiting of BASH environments that wrap the ESAOA workspaces. The ratings

show that the environment was generally easy to enter, but based on a rating of 54%

for the ‘use’ criterion, the participants did not particularly value this feature.

As indicated earlier, the mm utility was found to be the most useful, although the

participants either did not understand or did not use the platform tool (used as a way

of specifying the hardware platform for which the code would be compiled).

The qualitative data described in the next section provides additional reasons for the

discrepancies observed in the ratings.

 5-81

5.6.2 Qualitative data: comments from participants

Comments were invited in terms of the specific difficulties and benefits experienced

by the engineers who used the ESAOA KMS. The participants could add comments

to the survey discussed in Section 5.6.1, or they could respond to the researcher by

email. The participants of the qualitative responses were assigned numbers to match

the numbers assigned to the quantitative participants.

5.6.2.1 Difficulties

Respondent 8 identified the main difficulties as “learning the directory structure, and

how to code the PDM modules”. Respondent 1 felt that the “compiling on ESAOA

was often a problem…configuring make files [was] time consuming”. Respondent 4

similarly identified “compilation” as difficulty, but added that this could be because he

was “rusty with the use of make files”. In contrast, Respondent 3 felt that “ESAOA

was very helpful with compiling and running a project… however, adding additional

files proved difficult in some cases…”. Some of the participants experienced specific

difficulties. Respondent 9 claimed that the ESAOA “works fine in the lab, but had

trouble using on PC at home… problems with SQL”. Respondent 5 pointed out that

the ESAOA tools “[do not] immediately pick up that additional headers have been

included… this give cryptic linking problems later”. Respondent 3 indicated that “the

data steward role seems less important compared to the innovation engineer... ” and

“more like an assistant to the other roles”. Respondent 7 contributed that “better role

titles would be nicer”.

According to Respondent 7: “ESAOA helps us with the compiling and running”, but

that it “was difficult to change files for use of our project”. Respondent 6 suggests that

“getting used to [the ESAOA tools] in the beginning” was difficult. Respondent 10

claimed that “when it was working it worked fine… but there were cryptic error

messages, and I didn’t know what do when it breaks, especially for the mm tool”.

Respondent 10 constructively suggested that “more information or a manual about

how the makefile is generated would probably help with the errors”.

5.6.2.2 Benefits

There seemed to be general agreement that the ESAOA KMS was beneficial in

terms of compilation. Respondent 3 listed “compiling”, Respondent 9 listed “compiling

and keeping files together”, Respondent 7 listed “compiling and changing the

platform”, and Respondent 4 listed “quick compilation of programs onto any setup

platform” as the main benefits of the ESAOA KMS. Respondent 1 stated that, “When

 5-82

the make file works [ESAOA tools] increase [the] speed of compilation considerably”.

Respondent 5 claimed that the ESAOA tools “served to dramatically speed up the

initial setup and to help [with the terminology of] the way code/documentation is

archived”. Respondent 8 felt that the ESAOA KMS “helped with the make files and

porting”. Respondent 2 felt that “once understood, it [i.e., the ESAOA KMS] [gave] a

good understanding of a development environment”. Respondent 6 stated that

ESAOA tools “kept everything together, compilation help was fantastic (make files,

etc)”; this respondent also noted that “[the] fclass program helps keeping track of

what’s what” – but the respondent also found “csv files” [i.e., the files maintained by

the fcs and fclass tools] were “unexplained” and the content “cryptic”. Participant 9

confirmed that ESAOA helped with “speed of porting between uCLinux and

MicroMonitor”. This is echoed by Respondent 10, who stated that, “ESAOA was very

useful in the compiling, and intelligently combining the code modules and other parts

of the programs together… this saved time for the project work”.

The respondents mentioned mostly coding and compiling issues; little was mentioned

about other issues of the ESAOA KMS, such as the use of the various ESAOA

support tools and the functionality classifications (as described in Chapter 4). Both

the benefits and difficulties identified by the respondents were taken into account in

the further refinement and evolution of the ESAOA KMS (see Chapter 6).

5.7 General conclusions for ESAOA KMS version 1

This section begins with a summary of the types and frequencies of productive and

non-productive knowledge occurrences in Experiment 2 (see subsection 5.7.1). This

is followed by a comparison between results of Experiment 1 and Experiment 2 (in

subsection 5.7.3). The main trends emerging from the results of Experiment 2 are

then summarised (in subsection 5.7.4) and variables that influenced knowledge

production and the use of ESAOA KMS version 1 are analysed (in subsection 5.7.5).

Conclusions are drawn (in subsection 5.7.6) regarding the general effectiveness of

ESAOA KMS version 1 in terms of the projects studied. Subsections 5.7.7 to 5.7.8

proceeds with additional findings related to the breakdown of knowledge production

(i.e., further deconstructing the results).

 5-83

5.7.1 Summary of knowledge occurrences

The number of knowledge occurrences, and the resultant percentage breakdowns for

productive and non-productive knowledge occurrences for Experiment 2 were given

in Table 5.3.1 (a) in Section 5.3. Table indicates that Projects P2-4, P2-6 and P2-9

had the greatest overall proportion of productive knowledge occurrences.

The percentage breakdown of knowledge occurrences, out of the total knowledge

occurrences for the project concerned, and separated into the data, process and

innovation knowledge categories, is provided in Table 5.7.1 (a). The last row of the

table corresponds to the percentage values for productive knowledge in Table 5.3.1

(a) (i.e., the average percentage of productive data knowledge across all projects

was 23%, similarly it was 13% for non-productive data knowledge, and so on). Table

5.7.1 (a) is further used in Section 5.7.3 for comparing Experiment 1 and Experiment

2 results. Section 5.7.4 discussed further relations between the proportion of

innovation knowledge occurrences and the quality of artefacts and prototypes

produced in the project.

Table 5.7.1 (a) shows that the project with the highest proportion of productive data

knowledge was Project P2-9, the project with the highest proportion of productive

process knowledge was Project P2-6, and Project P2-4 had the highest proportion of

productive innovation knowledge occurrences.

Figure 5.7.1 provides an alternate visual view of the statistics shown in Table 5.7.1

(a); each bar shows, from the bottom of the figure, proportions of productive data,

non-productive data, productive process, up to non-productive innovation knowledge

occurrences for a project. In this figure, process knowledge occurrences can clearly

be seen to comprise a sizable chunk of the knowledge occurrences in many projects.

 5-84

Table 5.7.1 (a): Percentage of productive and non-productive knowledge occurrences
out of total knowledge occurrences per knowledge category.

Project
No.

All Data Process Innovation

%
 P

ro
du

ct
iv

e

%
 N

on
-

pr
od

uc
tiv

e

%
 P

ro
du

ct
iv

e

%
 N

on
-

pr
od

uc
tiv

e

%
 P

ro
du

ct
iv

e

%
 N

on
-

pr
od

uc
tiv

e

%
 P

ro
du

ct
iv

e

%
 N

on
-

pr
od

uc
tiv

e

P2-1 71% 29% 21% 9% 26% 16% 24% 5%
P2-2 74% 26% 19% 17% 39% 10% 16% 0%
P2-3 70% 30% 23% 11% 30% 11% 18% 7%
P2-4 91% 9% 26% 2% 30% 4% 35% 2%
P2-5 71% 29% 26% 12% 21% 14% 24% 2%
P2-6 86% 14% 14% 9% 63% 6% 9% 0%
P2-7 73% 27% 27% 12% 21% 13% 25% 2%
P2-8 80% 20% 18% 6% 39% 14% 22% 0%
P2-9 81% 19% 33% 15% 30% 4% 19% 0%
P2-10 74% 26% 31% 21% 23% 5% 21% 0%
P2-11 64% 36% 18% 23% 36% 8% 10% 5%
P2-12 60% 40% 24% 20% 32% 16% 4% 4%
P2-13 74% 26% 28% 18% 26% 8% 21% 0%
Averages 75% 25% 23% 13% 32% 10% 20% 2%

Figure 5.7.1: Bar chart showing percentage breakdown of productive and non-
productive knowledge occurrences per knowledge category for each project.

 5-85

5.7.2 Process knowledge components: role, logistics and innovation
knowledge

Due to the relatively high proportion of process knowledge occurrences, process

knowledge was separated into subcategories. Each occurrence of process

knowledge tended to involved activities relating to the acquisition of one of the

following three forms of process knowledge:

• Role knowledge: refining responsibilities or tasks to be performed by a

particular group member (e.g., allocating specific development tasks to an

individual), or more abstractly, modifying the responsibilities for a particular

KMS role (e.g., the team agreeing that whenever one of the members

performs the DS role, they need to make a note of which datasheets they

have read).

• Logistics knowledge: concerned issues such as scheduling meetings,

selecting tools, and ordering components.

• Knowledge of engineering methods: these comprise the procedures used

to build or adapt artefacts in order to create a working prototype (the term

used to describe this knowledge form is based on Brinkkemper et al. [1996]).

The knowledge register was reviewed for each project, and additional columns were

added to indicate this decomposition of process knowledge for each knowledge

event. This information is included in the knowledge occurrence tables of each

project in Section 5.2.

The knowledge of engineering methods category of process knowledge, which

concerns procedures for building or adapting artefacts, comprised the majority of

process knowledge in Experiment 2 – in most cases, over 50% of the total process

knowledge occurrences of a project concerned knowledge of engineering methods

(as per the results presented in Section 5.2). The logistics knowledge and role

knowledge subcategories are distinctly different to engineering methods: logistics

knowledge (as indicative in the knowledge register for Project P2-1 shown in

Appendix B) involves scheduling events or requisitioning resources, whereas role

knowledge chiefly concerns team member responsibilities and allocation of

development tasks.

 5-86

The acquisition of role knowledge tends to occur towards the start of the project (as

shown in the knowledge register for Project P2-1 and discussed in Section 5.7.2),

whereas logistics knowledge usually occurs slightly further into the project. For the

remainder of the project, all the process knowledge occurrences tend to involve

acquiring knowledge of specific engineering methods.

The successful completion of ESAOA activities was clearly most dependent on

obtaining knowledge of engineering methods (otherwise the team members would

not have been able to construct their prototypes); but completion of these activities

was also found to be highly dependent on effective role and logistics knowledge.

These dependencies are elaborated on below.

Logistics knowledge related to when and where activities were performed; without

this knowledge, team members could, for example, either waste time waiting for one

another, thinking that the other person had already produced an effective method.

The production, management and reuse of knowledge of engineering methods also

tended to depend on knowing where methods should be developed, or where they

were developed – which can also be seen as a dependency on logistics knowledge.

Examples of this situation were seen in most projects; for instance, the developers in

Project P2-1 needed to decide on meeting times and components before progressing

with the creation of effective development methods.

Obtaining knowledge of engineering methods effectively also depended on role

knowledge. Role knowledge concerns knowing who was responsible for producing

particular forms of knowledge and for producing and maintaining the ESAOA

artefacts related to this knowledge. When the teams did not understand, or disputed

the responsibilities of certain roles, then the project tended to become side-tracked,

and the team had difficulty being productive. This was observed particularly in

Projects P2-2 and P2-8; in both cases, some of the team members lost direction,

were misinformed of their assigned responsibilities and had to have further meetings

or correspondence with fellow team members to clarify these issues. Role knowledge

also related to the knowledge of which ESAOA activities tended to be performed by

certain individuals; if the team members had a good understanding of this

knowledge, individuals were less likely to waste time developing different

development methods, and would instead know whom to call on to explain methods

already produced.

 5-87

The comparisons in Section 5.5 identified potential indicators for gauging the

progress of the team and the success of the prototype based on the proportions of

knowledge produced. For Experiment 2 projects, higher proportions of innovation

knowledge (whether productive or non-productive) tended towards better prototype

designs. Both higher proportions of productive data knowledge and higher

proportions of productive process knowledge tended to have positive influences on

design ratings. Teams that put a greater amount of effort into improving the quality of

artefacts tended to acquire lower percentages of process knowledge and lower

demonstration ratings (Project P2-1 was an exception).

While non-productive data, process and innovation knowledge are inevitable, it is

important that productive data and process knowledge is obtained, because these

are needed for innovation to occur, and for the prototype to be built. The correlations

in Sections 5.5.5 and 5.5.6 support this, such as the direct relation between

increasing innovation occurrences and increasing process occurrences, and larger

proportions of innovation knowledge leading tending to higher demonstration ratings.

A number of correlations unexpectedly showed no, or only very weak, relations

between variables, which the researcher had expected to be related. The correlations

between artefact ratings and innovation knowledge, for instance, showed no relation,

indicating that innovation may not demand high quality artefacts (however, projects

that on average received high code and design review ratings did tend to achieve

high scores for the review panel). The correlations further showed no relation

between high concept ratings and successful demonstrations scores.

In Section 5.5, only a weak correlation emerged between demonstration scores and

well-satisfied requirements. This corresponds to how the teams were evaluated, in

that some teams spent time doing experiments rather than improving the quality of

artefacts – this is unlikely to hold in the general case, especially for production

projects; however, in this thesis, successful prototype demonstrations were

considered more important than satisfying all the requirements (as explained in

Section 1.1.2).

5.7.3 Comparison of Experiments 1 and 2

This section compares the findings from Experiment 1 with those of the Experiment 2

in terms of occurrences of productive and non-productive knowledge (see Section

4.5.3 for Experiment 1 results presented using event chains as a basis for analysis).

 5-88

Table 5.7.3 (a) reproduces the statistics for productive and non-productive

knowledge occurrences for Experiment 1 (shown in Table 4.27 in Chapter 4); recall

that each Experiment 1 team used their own ad hoc KMS. Table 5.7.3 (b) provides

the averages for productive and non-productive knowledge occurrences for

Experiment 2, in which ESAOA KMS version 1 was applied.

Table 5.7.3 (a): Experiment 1 averages for productive and non-productive knowledge.

Knowledge Type % Productive
knowledge

% Non-productive
knowledge

Total %

Data Knowledge 11 29 40
Process Knowledge 16 25 41
Innovation 10 11 20
TOTALS 36 64 100

Table 5.7.3 (b): Experiment 2 averages for productive and non-productive knowledge.

Knowledge Type % Productive
knowledge

% Non-productive
knowledge

Total %

Data Knowledge 23 13 36
Process Knowledge 32 10 43
Innovation 20 2 21
TOTALS 75 25 100

A comparison between Tables 5.7.3 (a) and 5.7.3 (b) reveals on average 39% more

occurrences of productive knowledge in Experiment 2 projects than in Experiment 1

projects. Experiment 2 had 12% more productive data knowledge occurrences, 16%

more productive process knowledge occurrences, and 10% more productive

innovation knowledge occurrences.

The percentage breakdown of data, processes and innovation knowledge shifted

slightly between the two experiments. In Experiment 2, the proportion of data

knowledge reduced by 4%; the proportion of process knowledge increased by 2%

and the proportion of innovation knowledge increased by 1%. Clearly, similar

proportions of these knowledge categories were used in both experiments.

The doubling of the proportion of productive innovation knowledge in Experiment 2

over Experiment 1 is a significant finding: it shows a shift in the Experiment 2 projects

toward a greater focus on producing a larger component of productive innovation

knowledge than in Experiment 1. However, this is not necessarily directly ascribed to

more effective KM strategies used in Experiment 2 as part of using the ESAOA KMS

version 1 than the ad hoc methods used in Experiment 1 – there is nevertheless a

 5-89

strong indication that use of ESAOA KMS version 1, and its workspaces, support

tools, roles and other aspects, may have had an beneficial effect on increasing the

proportion of productive knowledge occurrences in Experiment 2.

There is a general improvement in the creation of productive knowledge in

Experiment 2 over Experiment 1; this can be attributed to factors such as the pre-

selection of development tools and training workshops (in Experiment 2 cross-

compiler toolchains were integrated into ESAOA workspaces and used in training

sessions). Provision of initial artefacts and template files, all carefully organised into

ESAOA workspaces, is likely to have benefited Experiment 2 teams as well.

5.7.4 Trends noted from application of ESAOA KMS (version 1)

This section discusses emerging trends based on results from Section 5.2 and the

correlations performed in Section 5.5. The first subsection concerns a relation

between the quality of a prototype and the team’s production of innovation

knowledge. The second subsection concerns trend in event chains across the

Experiment 2 projects. The third subsection presents a trend observed in all

Experiment 2 projects concerning how teams progressed towards the acquisition of

productive innovation knowledge.

5.7.4.1 Emerging relationship between innovation knowledge and quality of
prototype

A trend across the projects emerged that suggests a relationship between the quality

of the prototype and the production of productive innovation knowledge. Table

5.7.4 (a) shows that, on average, the higher the percentage of innovation knowledge

occurrences, the higher the prototype scored. The exceptions are Projects P2-6, P2-

11 and P2-12, each of which received high scores but had less than average

innovation knowledge occurrences. These exceptions are likely due to the

adjudicators not assessing the complexity of prototypes – Project teams P2-6, P2-11

and P2-12 all produced prototypes that were less complex than those created by the

other teams. For instance, the Project P2-6 prototype (the Automation Headlights

Dimmer) comprised components with simple interfaces, and had little embedded

software (i.e., as it was simply sampling an ADC and adjusting a digital variable

resistor; the project had no PC-based software). Likewise, the Project P2-11

prototype (the Supermarket Query Device) was fairly simple, as the embedded

software mostly needed to communicate with a GPRS modem. Project P2-12 (the

Personal Protection Device) similarly required minimal innovation.

 5-90

Table 5.7.4 (a): Emerging trend indicating relationship between productive innovation
knowledge and quality of the prototype.

Pr
oj

ec
t N

o.

Pr
oj

ec
t T

itl
e

%
 P

ro
du

ct
iv

e
In

no
va

tio
n

kn
ow

le
dg

e
oc

cu
rr

en
ce

s

Q
ua

lit
y

of

ar
te

fa
ct

s
(d

es
ig

n
re

vi
ew

 3
 s

co
re

)

D
em

on
st

ra
tio

n
ch

ec
k

sh
ee

t
sc

or
e

C
om

m
en

ts

P2-1 Location-aware
Tourist
Information
System

24 100 100

P2-1 produced a high quality prototype,
and has a 5% higher than average
amount of innovation knowledge.

P2-2 GPS Bus
Tracker 16 65 65

P2-2 did not produce a high quality
prototype, and had 3% less than
average occurrences of productive
innovation knowledge.

P2-3 Vibynet

18 78 78

P2-3 produced an average quality
prototype and had 1% less than
average occurrences of productive
innovation knowledge.

P2-4 MyIP Phone
Station 35 99 98

P2-4 produced a high quality prototype,
and had a 16% higher than average
amount of innovation knowledge.

P2-5 Home
Automation
System

24 96 90
P2-5 produced a high quality prototype,
and had a 5% higher than average
amount of innovation knowledge.

P2-6 Automation
Headlights
Dimmer

9 94 93
P2-6 is an exception: the task was a
relatively simple one and the high mark
was awarded based on functionality.

P2-7 Field Sensor for
Maglev Trains 25 90 90

P2-7 produced a high quality prototype,
and had a 6% higher than average
amount of innovation knowledge.

P2-8 Cordless
Stereo 22 80 78

P2-8 produced a high quality prototype,
and had a 3% higher than average
amount of innovation knowledge.

P2-9 Central Alarm
Clock 19 90 80

P2-9 produced an average/high quality
prototype, and had an average amount
of innovation knowledge.

P2-10 Voice
Activation
System 21 90 91

P2-10 produced a high quality
prototype, and had a 3% higher than
average amount of innovation
knowledge.

P2-11 Supermarket
Query Device 10 81 82

P2-11 produced an average prototype,
and had a 9% lower than average
amount of innovation knowledge.

P2-12 Personal
Protection
Device

4 79 75
P2-2 produced an average prototype,
and had a 15% lower than average
amount of innovation knowledge.

P2-13 Vehicle Usage
Tracker 21 95 93

P2-13 produced a high quality
prototype, and had a 2% higher than
average amount of innovation
knowledge.

Average: 19 88 86

 5-91

5.7.4.2 Emerging trends across event chains

This section concerns trends noted across the event chains, after a comparison

across the data, process, and innovation graphs was done. Table 5.7.4 (b) describes

the trends noted.

Table 5.7.4 (b): Trends emerging across the event chains.

Project No. Trends note across event chains

P2-1 Data knowledge produced in the first 2/3 of project; plateaus were evident between
process knowledge steps, innovation started in first 1/3, in steady consistent steps
with a final steep rise just before completion.

P2-2 Data and process knowledge were produced across whole project (no plateaus),
but innovation knowledge was more erratic.

P2-3 Data knowledge plateaus in final 1/3 of project, plateaus in process knowledge,
early start to innovation and consistent steps.

P2-4 Data knowledge produced in first 2/3 of project; plateaus between process
knowledge, innovation started in first 1/3, in steady consistent steps with final
steep rise.

P2-5 Data knowledge plateau in final 1/3 of project, plateaus in process knowledge,
innovation started in first 1/3, in steady consistent steps with final steep rise.

P2-6 Late start to data knowledge production, consistent process knowledge, low
occurrence of innovation knowledge. The task was a relatively simple one and the
high mark was awarded on the basis of functionality.

P2-7 Data knowledge occurrences quite late into the project, plateaus in the process
knowledge, steady consistent increases in innovation.

P2-8 Data knowledge occurrences quite late into the project, plateaus in the process
knowledge, erratic increases in innovation.

P2-9 Data knowledge occurrences late into the project, plateaus in process knowledge
occurrences, few innovation occurrences.

P2-10 Data knowledge occurrences late into the project, plateaus in process knowledge
occurrences, some erratic innovation occurrences.

P2-11 Data knowledge produced in first 2/3 of project; plateaus between process
knowledge, some erratic innovation occurrences.

P2-12 Data knowledge produced late into the project, process knowledge has plateaus,
only one instance of innovation knowledge.

P2-13 Data knowledge produced in first 2/3 of project; plateaus between process
knowledge, innovation starts in first 1/3, in steady consistent steps with final steep
rise.

In the three most successful projects (P2-1, P2-4 and P2-13) the following trends

were noted:

1. Data production began in the first third of the project and flattened out in the

final third of the project (see Graphs 5.2.1 (a), 5.2.4 (a) and 5.2.13 (a)).

Unproductive data knowledge occurred more frequently at the start than at

the end of the project.

2. The three process knowledge graphs (Graphs 5.2.1 (b), 5.2.4 (b) and 5.2.13

(b)), showed productive process knowledge occurrences from the start

(usually reflecting the allocation of roles and attending to logistical matters).

Thereafter process knowledge reached a plateau as the team members

 5-92

researched the problem and attempted to find the data they needed. Process

knowledge then increased as the teams applied various engineering methods

to the problem. Process knowledge thereafter reached another plateau as the

team found solutions and produced innovation knowledge.

3. Occurrences of innovation knowledge began in the first half of the project,

grew in steady and consistent steps, often with a sudden rise towards the

project conclusion (see Graphs 5.2.1 (c), 5.2.4 (c) and 5.2.13 (c)).

These patterns can be detected in all of the thirteen projects, but are most

pronounced in the progression of the top three projects. While there were no truly

weak projects, the project that was consistently identified by the researcher and the

review panel as the least successful one (i.e., Project P2-2) showed the most

deviation from the trends previously described.

In the Project P2-2 graphs, occurrences of data and process knowledge increased

throughout the project, without the plateaus as previously described. There was a

late start in occurrences of process knowledge and data knowledge (see Graphs

5.2.2 (a) and 5.2.2 (b)), with both continuing to the project end. The innovation ‘steps’

were fewer and more erratic than in the more successful projects.

Team members of Project P2-1 effectively applied the ESAOA version 1 roles from

an early stage, and came together towards the final third of the project to support

innovation. In Project P2-2, however, ESAOA version 1 roles were ineffectively

applied, resulting in an unequal distribution of work and a subsequent lack of support

for innovation.

A trend noted across all the productive versus non-productive knowledge occurrence

graphs was the divergence trend, showing productive knowledge occurrences

growing more rapidly than non-productive knowledge occurrences.

5.7.4.3 Progression towards innovation

All Experiment 2 projects showed a similar, repeating cycle, which comprised two

sub-cycles. The first sub-cycle, termed a progression towards process, focused on

reappearing similar types of activities related to the acquisition of data knowledge

and process knowledge. Once effective process knowledge was obtained, the

activities quickly changed to ones that predominantly involved the application of

 5-93

process knowledge to formulate innovation knowledge – this second sub-cycle is

termed progression towards innovation knowledge.

A progression towards process tended to involve activities such as web searches to

find information, reading data sheets, and testing potential development methods –

essentially, data knowledge and process knowledge were usually built together.

Solving problems that produced process knowledge tended to guide needs for data

knowledge. The activities in the progression towards innovation typically concern

implementing design ideas that satisfy one or more project requirements, done by

applying development methods established in a preceding progression towards

process.

All Experiment 2 projects demonstrate examples of these progressions: a particular

example is drawn from the sequence of event chains 14 to 18 in Project P2-5 (the

Home Automation System). In event chains 12, 13 and 14 of Project P2-5, the team

focused on researching components (event chains 12 and 13 involved reading about

relays and researching DC motor control techniques in code downloaded from the

internet). Event chain 14 involved testing an alternate development method for the

control of relays via software (a method that was later discarded because a

previously established method was easier to use). Event chain 16 involved

production of innovation knowledge, in which an idea for controlling the relays in

actuator nodes was successfully implemented (thereby achieving a requirement of

the project). The collection of event chains 12, 13, 14 and 18 are thus related, and

together can be seen as leading towards the innovation knowledge in event chain 18.

In this sequence of events, event chains 12, 13, and 14 essentially related to

establishing the data knowledge and process knowledge (i.e., a progression towards

process) that was required to produce the innovation knowledge of event chain 16

(i.e., a progression towards innovation).

Progressions do not always result in success outcomes. For example, a progression

towards process might not lead towards a progression towards innovation (e.g., the

developers may be unable to build the knowledge needed to achieve a goal).

Similarly, a progression towards innovation may end unsuccessfully, such as the

developers running short of time focus on other priorities. Consequently, these

progressions can be further qualified:

 5-94

• Productive progression: a progression that was successful (e.g., a

productive process progression that led to process knowledge later used in

an innovation progression).

• Non-productive progression: an unsuccessful progression.

• Episode: one or more process progressions that led to one or more

innovation progressions.

• Productive episode: an episode involving productive progressions.

• Non-productive episode: an episode comprising non-productive

progressions.

The concepts of progressions and episodes defined above can be modelled visually.

Figure 5.7.4 (a) shows a productive episode, and Figure 5.7.4 (b) illustrates a non-

productive episode. The upper portion of each figure visually models phases of

knowledge production within an episode (as described earlier in this section), which

usually starts with an idea, such as a design concept to test, followed by acquisition

of data and process knowledge (during a progression towards process, where data

and process knowledge event chains are modelled as rectangles), and finally

innovation knowledge is produced (during a progression towards innovation, where

the innovation knowledge event chain is shown as a star). The lower portion of each

figure shows productive knowledge occurrence graphs resulting from the sequence

of event chains modelled (suggesting visual pattens in these graphs that allude to the

identification of these progressions).

A productive episode (see Figure 5.7.4 (a)) typically involves a steady build-up of

productive data and process knowledge occurrences, followed by an innovation

occurrence. In Experiment 2 many of the more successful projects produced mainly

productive episodes as the project progressed, which resulted in the divergent trend

discussed in Section 5.7.4.2. Trends of this type indicate the team is working

productively (i.e., producing what is termed productive knowledge in this thesis); this

may indicate that the KMS is operating effectively during these activities.

 5-95

productive innovation
productive process progression

Figure 5.7.4 (a): Model of a productive episode (top) and corresponding knowledge

occurrence graphs (bottom).

A non-productive episode (see Figure 5.7.4 (b)) typically involves one or more

plateaus in the occurrence of productive knowledge (and increments in the non-

productive knowledge) seen in knowledge occurrence graphs. These episodes were

more common in less successful Experiment 2 projects (e.g., Project P2-2). Trends

of this type indicate a team is either performing unproductively (as in producing non-

productive knowledge as defined previously), or the KMS is not operating effectively.

Note that the knowledge occurrence graphs were produced after the project had

ended (hence it is known which knowledge events are productive, thus there are no

increments and later decrements in productive trend lines shown in Figure 5.7.4 (b)).

#1 Data #1 Data

#2
Process

#1 Data

#3
Data

#1 Data

0 1 2 3 4 5

Productive
Data
Productive
Process
Productive
Innovation

Event chain
number

Event chain #1
#2

Process
#3

Data

#2
Process

#4
Process

#1 Data

#2
Process

#4
Process

#3
Data

Non-productive
Data
Non-productive
Process
Non-productive
Innovation

IDEA IDEA IDEA IDEA IDEA IDEA

#5 INNOVATION

progression

 5-96

Figure 5.7.4 (b): Model of a non-productive episode (top) and corresponding knowledge

occurrence graphs (bottom).

5.7.5 Variables that affected the ESAOA KMS (version 1)

The evaluations of the prototypes, done by the review panel (see Section 5.4),

showed that not all productive innovation knowledge was at the same level of

sophistication and complexity. Consequently, if a project achieves a higher proportion

of productive innovation knowledge than another does, it does not necessarily mean

that the first project will result in a more successful product. For instance, Project P2-

13 had 21% productive innovation knowledge compared to 22% for Project P2-8 (i.e.,

a fairly insignificant difference in the proportion of innovation knowledge), yet the

review panel considered Project P2-13 superior to Project P2-8. There was a range

in the appropriateness, elegance, attention to detail, and functionality in the ES

prototypes and solutions used. The following list identifies a number of variables that

are likely to affect the amount and quality of productive knowledge, and productive

innovation knowledge in particular:

1. Level of difficulty of development task. Simple or routine tasks will probably

not generate much, if any, innovation knowledge (such as in the case where

Project P2-1 developers wired up a GPS module following a datasheet – little

#1 Data #1 Data

#2
Process

#1 Data

#3
Data

#1 Data

0 1 2 3 4 5

Productive
Data
Productive
Process
Productive
Innovation

Event chain

number

Event chain #1
#2

Process
#3

Data

#2
Process

#4
Process

#1 Data

#2
Process

#4
Process

#3
Data

Non-productive
Data
Non-productive
Process
Non-productive
Innovation

IDEA IDEA IDEA IDEA IDEA IDEA

#5 INNOVATION

non-productive process progression
non-productive
innovation progression

 5-97

innovation knowledge was produced around the time that these tasks were

performed).

2. Project leadership. Experiment 2 results indicate that an understanding of the

roles and responsibilities leads to a higher proportion of productive knowledge

(e.g., Project P2-2 experienced the most leadership difficulties and had the

relatively lowest productive innovation knowledge). This finding confirms more

general principles of good leadership leading to productive work as per the

research literature (such as Nonaka et al., 2001a).

3. Project coordination. Well-coordinated teams tended to produce higher

proportions of productive knowledge; for example, Project P2-1 members

were well coordinated throughout the project and had one of the highest

proportions of productive knowledge. This finding corresponds to the project

management literature (e.g., Ford, 1995; Wagner et al., 2009).

4. Access to resources (including knowledge resources, adequate facilities, etc).

Teams that established good filing practices, and made their resources easily

accessible to fellow group members, tended to work more productively. This

was particularly noticeable in Project P2-4; the team made good use of

ESAOA artefact classification tools, maintained well structured directories and

file names, and had the highest proportion of productive innovation

knowledge.

5. Level of understanding of ESAOA scripts, programmes and directory

structures. Teams, such as Project P2-1 and P2-4, which put a large effort

into understanding and applying the ESAOA system had higher levels of

productive knowledge production compared to other projects.

6. Level of ability to install the ESAOA distributions on alternate Linux-based

operating systems. The results indicate that teams that included developers

proficient in Linux were at an advantage in productive knowledge production

(likely attributable to ESAOA being designed for use on such a platform).

7. Level of the data stewards’ research skills (and willingness to engage in

information searches and build a knowledge base for the project). Teams in

which the data steward role was engaged in information searches and were

willing to contribute communal artefacts (such as team P2-1), also tended to

have higher levels of productive knowledge production.

8. Level of the process engineers’ knowledge of engineering methods (including

script-writing and experimentation methods).

 5-98

5.7.6 Effect of the ESAOA KMS (version 1)

The findings of Experiment 1 were confirmed by Experiment 2 with regard to the

presence of data, process, innovation knowledge categories and productive and non-

productive knowledge types across these categories. Knowledge events (as

explained in Experiment 1 and confirmed in Experiment 2) can be clustered into

knowledge event chains. Overall, more productive knowledge event chains than

non-productive knowledge event chains were found across all thirteen projects in

Experiment 2. There was an improvement in the proportion of productive knowledge

occurrences in Experiment 2 in comparison with Experiment 1. For the thirteen

Experiment 2 projects, the proportion of productive innovative knowledge

occurrences for a project has been shown to be a possible indicator for the success

of the prototype developed.

5.7.7 Study of knowledge forms contributed by roles

In Experiment 2, it was found that the contribution of data knowledge and process

knowledge was made by both data steward (DS) and process engineer (PE) roles

(the inspiration that led to this observation was made only after the knowledge

register was complete, and occurred while investigating project P2-11). Although it

was not hypothesised in the methodology, it was assumed that the DS would

contribute notably more data knowledge than the PE and, similarly, that the PE would

produce substantially more process knowledge than that provided by the DS. A

difficulty arose in determining the contribution of knowledge produced according to

role because the knowledge register did not show this information. Determining the

answer to this problem would have involved reinvestigating the original data, which

would have taken a significant amount of time to complete if all thirteen projects were

studied. Instead, to get an impression of how knowledge forms are contributed per

role, the original data for a selection of projects was revisited. The choice of projects

to review was based on the artefacts quality rating (see Table 5.4.1 (a)). The project

with the highest score, the project with the lowest score, and a project with the

median score was chosen. The projects were P2-1 (which scored 100%), P2-2

(which scored 65%) and P2-10 (which scored 90%).

In order to conduct this analysis, additional columns were added to the knowledge

registers for P2-1, P2-2 and P2-11. Recall that each row in the knowledge register

refers to a single knowledge occurrence, and that it is described as knowledge of

data (KD), knowledge of process (KP) or knowledge of innovation (KI) occurrence.

 5-99

The data source for each knowledge occurrence had to be reviewed, in order to

determine which members were involved in the knowledge management activities

concerned. The columns added to the knowledge register for the three projects are

illustrated in Table 5.7.7 (a). The columns are defined as follows:

 KO No.: Knowledge occurrence number (same as the first column)

 DS con: A value of ‘1’ if the DS role was involved in producing knowledge for

this data occurrence (a value ‘0’ otherwise).

 PE con: A value of ‘1’ if the PE role contributed to producing the knowledge.

 IE con: A value of ‘1’ if the innovation engineer (IE) role played a part in

producing the knowledge.

 Delta: A value of ‘1’ if the DS provided process knowledge, or the PE

provided data knowledge, or the IE provided either data or process

knowledge.

 DS KD: A value of ‘1’ if DS contributed data knowledge.

 DS KP: A value of ‘1’ if DS provided process knowledge.

 DS KI: A value of ‘1’ if DS provided innovation knowledge.

 PE KD: A value of ‘1’ if PE provided data knowledge.

 PE KP: A value of ‘1’ if PE provided process knowledge.

 PE KI: A value of ‘1’ if PE provided innovation knowledge.

 IE KD: A value of ‘1’ if IE provided data knowledge.

 IE KP: A value of ‘1’ if IE provided process knowledge.

 IE KI: A value of ‘1’ if IE provided innovation knowledge.

Table 5.7.7 (a): Excerpt from Project P2-1 knowledge register showing columns added
to track contribution of knowledge form per role for each knowledge occurrence.

KO
No.

DS
con

PE
con

IE
con

Delta DS
KD

DS
KP

DS
KI

PE
KD

PE
KP

PE
KI

IE
KD

IE
KP

IE
KI

1 0 1 0 0 0 0 0 1 0 0 0 0
2 0 1 0 0 0 0 0 1 0 0 0 0
3 1 1 0 1 0 1 0 0 1 0 0 0 0
4 0 1 0 0 0 0 0 1 0 0 0 0
5 1 0 0 1 1 0 0 0 0 0 0 0
6 0 1 0 0 0 0 0 1 0 0 0 0
7 1 0 0 1 1 0 0 0 0 0 0 0
8 0 1 0 0 0 0 0 1 0 0 0 0
9 1 0 0 1 0 1 0 0 0 0 0 0 0
10 0 1 0 0 0 0 0 1 0 0 0 0

 5-100

The third entry in Table 5.7.7 (a) shows a situation in which the data indicate that

both the DS and PE produced logistics process knowledge (note the Delta value of

‘1’ flagging the entry). According to the source email (email number 11), this involved

deciding on times and a venue in which to meet. The ninth entry concerned further

logistics process knowledge, which was contributed by the DS and not the PE.

The contribution of knowledge forms per role for projects P2-1, P2-2 and P2-11 is

shown respectively in Table 5.7.7 (b), Table 5.7.7 (c) and Table 5.7.7 (d). Each table

indicates the number of knowledge occurrences that each role contributed, together

with a percentage showing the proportion of knowledge occurrences a role was

involved with for a certain category of knowledge.

Table 5.7.7 (b): Contribution of knowledge forms per role for Project P2-1.

Role contributing DK
occurrences

DK
%

PK
occurrences

PK
%

IE
occurrences

IK %

Contributed by DS 12 71% 4 17% 4 24%
Contributed by PE 6 35% 19 79% 3 18%
Contributed by IE 1 6% 2 8% 17 100%
Produced together 2 12% 1 4% 7 41%
Total occurrences 17 24 17

In Project P2-1 (according to Table 5.7.7 (b)), the DS was involved in contributing

71% of data knowledge, the PE 35%, and the IE 6%. 12% of data knowledge

occurrences were produced by roles working together (and the data artefacts were

located or created and worked on jointly), only 4% of process knowledge was

produced by multiple roles, and 41% of innovation knowledge was produced by

multiple roles (24% by the DS and 18% by the PE). The DS was involved in 20

knowledge occurrences, the PE in 28 and the IE in 20. Table 5.7.7 (c) indicates the

percentage contribution of each role in this project.

Table 5.7.7 (c): Contribution of knowledge forms per role for Project P2-2.

Role contributing DK
occurrences

DK % PK
occurrences

PK % IE
occurrences

IK %

Contributed by DS 17 47% 0 0% 2 13%
Contributed by PE 13 36% 22 44% 1 6%
Contributed by IE 14 39% 32 64% 15 94%
Produced together 8 22% 4 8% 2 13%
Total occurrences 36 50 16

The role contributions for knowledge occurrence in Project P2-2 (see Table 5.7.7 (c))

differed markedly to those for Project P2-1. In the case of Project P2-2, the DS was

 5-101

involved in contributing 47% of data knowledge, the PE 36%, and the IE 39%. 22% of

data knowledge occurrences were produced by roles working together. The IE

contributed more process knowledge than the PE did, and the DS provided no

process knowledge at all. The DS contributed to 13% of innovation knowledge

occurrences. The DS was involved in 19 knowledge occurrences, the PE in 36 and

the IE in 61. Table 5.7.7 (d) indicates the percentage contribution for the roles.

Table 5.7.7 (d): Contribution of knowledge forms per role for Project P2-10.

Role contributing DK
occurrences

DK % PK
occurrences

PK % IE
occurrences

IK %

Contributed by DS 17 85% 4 36% 3 38%
Contributed by PE 5 25% 8 73% 1 13%
Contributed by IE 1 5% 1 9% 7 88%
Produced together 3 15% 2 18% 3 38%
Total occurrences 20 11 8

The DS was involved in 85% of data knowledge occurrences in Project P2-10 (see

Table 5.7.7 (d)), while the PE contributed to 25% of the occurrences and the IE to

5%. 15% of data knowledge occurrences were produced jointly. The PE contributed

73% of process knowledge and the DS 36%. The DS contributed to 38% of

innovation knowledge occurrences. The DS was involved in 24 knowledge

occurrences, the PE in 14 and the IE in 9. Figure 5.7.7 indicates the percentage

contributions for these roles.

Based on these results, the contribution to data, process and innovation knowledge

was not distributed equally among the DS, PE and IE roles in the three projects

investigated. The distribution also varied between projects. In P2-2, the IE

contributed more process knowledge occurrences than the PE did, whereas the IE

participated in almost as many data knowledge occurrences as did the DS. Project

P2-1, in comparison to Project P2-2, had a more balanced spread of role

participation, in that the DS contributed the most data knowledge, the PE the most

process knowledge, and the IE created most of the innovation knowledge.

In projects P2-1 and P2-10, over one third of innovation knowledge was produced

jointly (41% in P2-1 and 38% in P2-10). However, in Project P2-2 only 13% of the

innovation knowledge was jointly produced. The greatest proportion of jointly

contributed data knowledge was 22% (in Project P2-2), while the largest percentage

of jointly produced process knowledge was 18% (in Project P2-10). Based on these

results, it appears that the more successful projects (P2-1 and P2-10) had multiple

 5-102

roles participating in innovation knowledge production (i.e., innovation knowledge

was enhanced by other roles being involved in its management). This finding

suggests it is necessary to change the support structure for the ESAOA KMS, to

promote a flow of innovation knowledge from the DS and PE towards the IE – in

addition to transferring data knowledge from the DS to the PE, and process

knowledge from the PE to the IE.

Data steward
29%

Process engineer
42%

Innovation
engineer

29%

Data steward Process engineer Innovation engineer

(a) Project P2-1 Data steward
16%

Process engineer
31%

Innovation
engineer

53%

Data steward Process engineer Innovation engineer

(b) Project P2-2

Data steward
51%

Process engineer
30%

Innovation
engineer

19%

(c) Project P2-10

Figure 5.7.7: Pie charts showing contribution of each role for (a) Project P2-1, (b)

Project P2-2 and (c) Project P2-10.

5.7.8 Tool versus component knowledge occurrences

As discussed in Section 5.7.7, it was found that the contribution of data and process

knowledge was made by both DS and PE roles, and it was concluded that these role

needed to be revised in the second version of the KMS. The knowledge register for

each project in Experiment 2 has a component column and a tool column. A value of

1 in the component column indicates the knowledge occurrence related mainly to

researching a component, whereas a value of 1 in the tool column implies that the

knowledge occurrence mainly concerned study of a specific tool. A value of 0 was

placed in both tool and component columns if the knowledge occurrence involved

 5-103

more use, than study, of a tool or component. The tool and component columns were

summed to indicate an overall view of the amount of component study compared to

the amount of tool study that took place in the project.

From the Experiment 2 data, it can be seen that more knowledge occurrences relate

to acquiring knowledge of components rather than knowledge of tools. It was

therefore decided to replace the DS with a role that focuses on researching

components, and to shift the responsibility of acquiring data knowledge of tools to the

PE. In order to validate this plan, the Experiment 2 knowledge registers were

processed to compare the proportion of knowledge events involving researching

components to those that concerned researching tools. Table 5.7.8 (a) provides an

example (from Project P2-1) that shows how the tools and component columns were

used. In this example, the second row shows an occurrence of productive data

knowledge, which involved the study of a component. The fourth row shows another

case of productive data knowledge, but one that concerned both study of a

component and a tool.

Table 5.7.8 (a): Excerpt from Project P2-1 knowledge register showing the tools and
components columns.

No. Type … KD KP R L KI PK NPK … KO
No.

… Tool Component

240 E … 1 1 … 30 … 0 0
467 E … 1 1 … 31 … 0 1
414 E … 1 1 … 32 … 0 0
227 E … 1 1 … 34 … 1 1

Knowledge occurrences that involve the study of tools are referred to as ‘tool

knowledge occurrences’, while research of components are referred to as

‘component knowledge occurrences’. Although most of these involved production of

data knowledge, they could also involve the creation of process knowledge. The total

number of component knowledge occurrences and the sum of tool knowledge

occurrences for each project in Experiment 2 are shown in Table 5.7.8 (b). The

column titled ‘Both’ combines the number of tool knowledge occurrences and

component knowledge occurrences in order to provide a percentage split for these.

Table 5.7.8 (b) shows that Project P2-2 involved the highest number of tool

knowledge occurrences, specifically 27, which is more than three times the average

number of tool knowledge occurrences for all projects. Project P2-2 also had the

greatest number of component knowledge occurrences, viz. 47, which is also more

 5-104

than three times the average number of component knowledge occurrences for all

projects. The large accumulation of data knowledge (especially the amount of non-

productive data knowledge) produced in Project P2-2, the many dead-ends, the

difficulties in finding useful sample code, and the various abandoned strategies, all

account for this project’s comparatively large number of component knowledge

occurrences and tool knowledge occurrences.

Table 5.7.8 (b): Tool versus component knowledge occurrences.

Project Tool
knowledge
occurrences

Components
knowledge
occurrences

Both % Tool
knowledge
occurrences

% Components
knowledge
occurrences

P2-1 13 21 34 38% 62%
P2-2 27 47 74 36% 64%
P2-3 3 11 14 21% 79%
P2-4 8 20 28 29% 71%
P2-5 3 12 15 20% 80%
P2-6 4 10 14 29% 71%
P2-7 11 17 28 39% 61%
P2-8 6 18 24 25% 75%
P2-9 2 7 9 22% 78%
P2-10 14 4 18 78% 22%
P2-11 4 10 14 29% 71%
P2-12 3 7 10 30% 70%
P2-13 8 13 21 38% 62%
AVERAGE 8.15 15.15 23.31 35% 65%

According to Table 5.7.8 (b), component knowledge occurrences took place more

frequently (approximately twice as often) as tool knowledge occurrences. In most of

the projects, with the exception of P2-10, there were approximately twice as many

component knowledge occurrences than tool knowledge occurrences. This finding

implies that more work is involved in studying components than studying tools. In the

case of Project P2-10 (the Voice Activation System), the team, unlike most of the

other project teams, started building process knowledge right at the beginning of the

project and furthermore read up on a comparatively small number of components (in

fact, this team read up on the smallest number of components).

5.7.9 Logistics and role process knowledge

In Experiment 2, process knowledge was divided among the categories of role,

logistics and other. General trends across the projects for these categories of

process knowledge are summarised in Table 5.7.9. Generally, the team leader was

involved in producing both role (i.e., refining the responsibilities of each team

member) and logistics knowledge (i.e., deciding on venues and times to perform

 5-105

ESAOA activities) – the team leader’s involvement was generally associated with

decisions related to this knowledge. The process engineer created most other forms

of process knowledge (Section 5.7.8 discusses exceptions that were noted, such as

the innovation engineer producing most of the process knowledge in Project P2-2).

Table 5.7.9: Separation of role, logistics, and other knowledge.

Project
No.

Role Logistics Engineering
Methods

Combined %
Role

%
Logistics

%
Methods

P2-1 7 4 13 24 29% 17% 54%
P2-2 10 8 32 50 20% 16% 64%
P2-3 3 7 8 18 17% 39% 44%
P2-4 4 2 10 16 25% 13% 63%
P2-5 3 3 9 15 20% 20% 60%
P2-6 8 5 11 24 33% 21% 46%
P2-7 3 2 13 18 17% 11% 72%
P2-8 4 2 20 26 15% 8% 77%
P2-9 3 2 4 9 33% 22% 44%
P2-10 2 3 6 11 18% 27% 55%
P2-11 4 2 11 17 24% 12% 65%
P2-12 4 2 6 12 33% 17% 50%
P2-13 2 0 11 13 15% 0% 85%
AVERAGE 4.38 3.23 11.85 19.46 23% 17% 60%

The results in Table 5.7.9 show that the bulk of process knowledge (60% across

projects) on average fell into the category of other process knowledge. On average,

23% of the process knowledge occurrences involved role knowledge, while 17%

involved logistics occurrences. Considering that the team leader was involved in

most of the role and logistics knowledge occurrences, it can be deduced that the

team leader was involved in 40% of the process knowledge occurrences. This

involvement concerned writing emails, updating task allocation lists, scheduling

meetings, chairing meetings, and taking minutes.

Occurrences of other process knowledge mostly involved the production of

development methods (such as how to adapt or interface components using a

specific set of development tools). Generally, this knowledge was considerably more

complex and time consuming to produce than that of the role or logistics knowledge

(this aspect necessitated the need to separate out the role and logistics knowledge

from other forms of process knowledge). While the time taken to produce each

occurrence of role or logistics knowledge was in the order of hours (e.g., two hours to

schedule a meeting and plan an agenda), each occurrence of process knowledge

took considerably longer, more in the order of days than in the order of hours. This

observation is valuable because it provides a broad guideline for deciding the way in

 5-106

which roles can be allocated fairly. In particular, team management duties are likely

to entail significantly less time than ESAOA activities in which process knowledge is

created.

5.8 Implications for ESAOA KMS version 2

The findings of Experiment 2 suggest a number of potential refinements to ESAOA

KMS version 1, in order to create ESAOA KMS version 2. The implications of the

findings for changes to the ESAOA distributions (i.e., the install packages) are

described in Section 5.8.1, whereas modifications to ESAOA roles are discussed in

Section 5.8.2.

5.8.1 ESAOA distribution

A number of suggestions for the refinement of the ESAOA distribution emerged from

the project and evaluation data. These subsections that follow focus on these

refinements.

5.8.1.1 ESAOA tools – technical installation guidelines (version 2)

The ESAOA-Tools distribution was originally implemented using the Knoppix 4.2

(Debian-type) Linux operating system. Teams 12 and 13 attempted to install ESAOA-

Tools on a different operating system (namely, Redhat Linux); although they

succeeded in doing so, it was a lengthy procedure. Team 2 succeeded in booting

Knoppix from a Knoppix Live CD and setting up and using ESAOA communal and

team distributions (and the included ESAOA tools) on a USB flash memory stick.

Notes from these teams on accomplishing these tasks should be incorporated into

the ESAOA manual (i.e., the user manual for the ESAOA KMS).

5.8.1.2 Increased flexibility in ESAOA tools (version 2)

ES engineering teams are likely to undertake a range of projects, some of which

might comprise more straightforward development tasks, while others may be more

complex. ESAOA KMS version 2 should be able to accommodate different levels of

complexity within and across projects. More straightforward development tasks could

be ‘fast-forwarded’ through the ESAOA KMS by enabling the developers to skip

options or steps in the procedures. The training program should be adapted

accordingly.

 5-107

5.8.2 ESAOA roles

Additional defined roles emerged from Experiment 2, for example, that of workspace

administrator (who is in charge of maintaining the team’s ESAOA workspace). The

data steward role was removed and replaced by the component researcher

(responsible for finding information and reading up on ES components). The process

engineer was redefined to focus on methods engineering, which includes knowledge

of development tools. The team leader’s role was expanded to include the tracking

and storing of logistics and role knowledge. The innovation engineer in ESAOA KMS

version 2 was more clearly focused on applying process knowledge to test

innovations, while relying on the other roles (i.e., the process engineer and

component researcher) to provide support as well as suggesting ideas to test. The

ES engineers in both Experiment 1 and 2 were novice engineers; ESAOA KMS

version 2 should take into account both novice roles and more experienced ES

engineering roles, as well as issues in role extension (see Section 6.1.3.4).

5.8.2.1 Training

Training was offered to all team members at the start of Experiment 2. This training

tended to be specific to the ESAOA tools and should be extended to include more

focused and specialised training for the ESAOA roles. The ESAOA manual should

include specific guides for the different roles, and the ways in which interaction

between team members could be facilitated.

5.8.3 ESAOA technical manual

A simplified ESAOA technical manual (an addition to the more complete ESAOA user

manual) would assist ES engineers in the first stages of learning to use the ESAOA

KMS, and in understanding the ESAOA scripts, programmes and directory

structures. The manual could include strategies for information finding and building

the integrated knowledge base. The manual should guide the users with regard to

common engineering methods, including script-writing and experimentation methods,

and typical problem-solving repertoires. Some of these items could be accomplished

by using ‘concept cartoons’ (which the Project P2-10 team came up with as an idea

of exploring and expressing the functionality of their system).

5.8.4 ESAOA project management

The ESAOA KMS version 2 should be supported by a more complete user guide

(termed the ESAOA manual), which will enable team members to understand the

ESAOA roles in terms of allocation, functions, and role support. The user guide

 5-108

should also address processes, in particular the need for the ES development team

to begin developing productive data knowledge in the first third of the time allocated,

and to end all data searches by the final third of the project for optimal enabling of

innovation knowledge occurrences.

5.8.5 Team workspace

The team workspace (implemented as a shared file directory) was an effective

strategy for enabling teams to learn from one another (within and across projects),

although there were some problems in its usability. The team workspace should be

further developed in ESAOA KMS version 2 to encourage effective knowledge

sharing (see Sections 6.3.7 and 6.4.4).

5.8.6 Towards ESAOA version 2

The refinements to ESAOA version 1 listed in Sections 5.8.1 to 5.8.5 are addressed

in ESAOA KMS version 2, which is discussed in the next chapter (Chapter 6).

 5-109

 5-110

Chapter 6:

ESAOA KMS version 2

This chapter presents the second version of the ESAOA KMS and constitutes the

second iteration of the framework construction phase described in the methodology

(Chapter 3). This chapter follows a similar layout to that of Section 4.6 in Chapter 4,

in which the first version of the ESAOA KMS was described. Sections of this chapter

highlight major changes that were applied to the first version of the KMS to establish

the second version, including the reasons for these changes that were based on

results of Experiment 2. This chapter also presents findings concerning knowledge

worker roles because the responsibility assigned to roles, the artefacts that they

used, and the collaboration that occurred between roles, all had a significant

influence on the KM tools and KM practices used in a project. Consequently,

technical tool design and knowledge worker roles are presented in this Chapter.

This chapter starts, in Section 6.1, with an overview of ESAOA KMS version 2 in

which it is explained that the high-level structure of the KMS is separated into

technical processes, artefacts, and roles. The way in which these parts are integrated

using ESAOA workspaces is explained in this section.

The ESAOA knowledge ontology is summarised in Section 6.2; this defines the

specialised terminology structure for the ESAOA KMS that is used in subsequent

sections of this chapter.

The design and implementation of ESAOA version 2 workspaces is the focus of

Section 6.3. This section highlights the new features that were added to the first

version of the ESAOA workspaces. This section includes issues related to ESAOA

workstations, which are used to access workspaces, and the use of ESAOA

distributions in installing ESAOA workspaces.

The information contained in the preceding sections (i.e., the ESAOA knowledge

ontology and ESAOA workspaces) is drawn on in Sections 6.4 to 6.7 when detailing

 6-1

the design and implementation of ESAOA KMS version 2. More specifically, Section

6.4 refines the collection of ESAOA support tools. Section 6.5 provides details

concerning roles and role support structures. Section 6.6 describes processes of

ESAOA version 2 that are performed by the roles, and lastly, Section 6.7 introduces

a collection of artefacts, and artefact classifications, used in the KMS.

6.1 Overview of ESAOA KMS version 2

The workspace-based design was found to be an effective means to implement

version 1 of the ESAOA KMS, which was tested in Experiment 2. Consequently, the

workspace-based approach has been retained as the underlying design approach for

version 2 of the ESAOA KMS. Furthermore, the support tools, integrated knowledge

base and artefact classification techniques used in the second version of the ESAOA

KMS are revised versions of those used in the first version. Revisions, based on the

findings of Experiment 2, have been applied to the roles, processes and ESAOA

knowledge ontology of ESAOA KMS version 2. The initial collection and organisation

of the communal and team artefacts, which are the starting point for new installations

of the KMS, have been revised and the ESAOA distributions modified accordingly.

The development of the ESAOA workspaces for ESAOA KMS version 2, which

comprised the second iteration of the framework construction step described in

Section 3.5, followed a similar approach to that used for the construction of ESAOA

KMS version 1. Consequently, soft artefacts were taken from Experiment 2 teams,

and these artefacts were supplemented and improved upon for incorporation into

ESAOA version 2 workspaces. Changes were made to ESAOA workspace and

workstation design, and to the KMS operation in response to Experiment 2 results.

Although the first and second versions of the KMS utilised the same workspace-

based approach, the designs of the two versions differ in a variety of ways. Most

importantly, the second version of the KMS is more extensive than the first version

(Section 4.6 describes the first version). This chapter progresses through the design

of each aspect of ESAOA KMS version 2, highlighting changes made in relation to

version 1 and the reasons for these changes. ESAOA models are used to illustrate

the operation and structure of ESAOA KMS version 2, as was done in Chapter 4.

The subsections below outline major changes made to version 1 of the ESAOA KMS

in the course of constructing version 2. Section 6.1.1 starts by recapping the types of

 6-2

ESAOA workspaces used in the ESAOA KMS, and the notion of an ESAOA

workstation. Section 6.1.2 summarises changes made to ESAOA roles and role

support structures. Section 6.1.3 reviews roles and artefact classifications for ESAOA

version 2. Section 6.1.4 describes how the ESAOA support tools were upgraded, and

Section 6.1.5 concerns the additions to the documentation.

6.1.1 Use of ESAOA workspaces and workstations

The second version of the ESAOA KMS utilises the same three workspaces as the

first version does, although each workspace has been extended. As before, each

workspace comprises an ESAOA shell environment, a directory structure, an

integrated knowledge base, and a collection of ESAOA support tools. Each

workspace also depends on a collection of externally stored software programs (such

as cross compilers and text editors) that the user needs to be able to access in order

to view or work on artefacts in the workspace concerned.

Synchronization scripts have been added to version 2 of the ESAOA KMS support

tools, which automate the process of synchronizing a team member’s personal

workspace with the team member’s corresponding team workspace. Version 2

workspaces support multiple projects folders in a personal workspace that are built

by different teams (but a new team workspace needs to be created if there is no

existing team workspace with the same set of team members defined). Personal

workspaces can consequently contain links to multiple team workspaces. See

Section 6.3 for detail concerning ESAOA version 2 workspaces and workstations.

6.1.2 Changes to roles and role support structures

The design of ESAOA KMS version 1 followed a predominantly feed-forward flow of

knowledge. This approach was based on the Experiment 1 observations, in which

innovation was seen to happen when effective process knowledge was available,

and such knowledge in turn required effective data knowledge. Consequently, the

three team member roles established in ESAOA KMS version 1 followed a

hierarchical structure that focused on supporting the innovation engineer (IE). The IE

was thus at the top of this hierarchy, the process engineer (PE) one level down, and

the data steward (DS) at the bottom. The chief knowledge officer (CKO) and

communal knowledge steward (CKS) supported and advised the other roles.

When ESAOA KMS version 1 was applied in Experiment 2, it revealed both potential

advantages, and shortcomings, in this hierarchical feed-forward KMS design.

 6-3

6.1.2.1 Reducing priority of innovation and flattening the role hierarchy

The Experiment 2 results indicated that the hierarchical approach of ESAOA KMS

version 1 had certain advantages. For example, teams that produced higher

proportions of innovation knowledge often obtained higher prototype ratings (see

Section 5.7.4.1). However, correlations in Section 5.5 also showed that focusing

narrowly on innovation, and vigorously driving innovation knowledge, can cause

detrimental omissions in other parts of a project (such as producing less process and

data knowledge, thus leading to experiments being incomplete or product

requirements left dissatisfied – Project P2-7 is an example). The design of ESAOA

KMS version 2 compensates for these risks by reducing (but not eliminating) the

emphasis on innovation knowledge, thus preventing teams becoming overly

engrossed in driving innovation. Accordingly, the hierarchical role structure of version

1 has been flattened in the second version so that no particular role is considered

less important than any other role.

ESAOA KMS version 1 was based on a premise that each role was expected to

produce the largest portion of a certain type of knowledge; for example, the role of

the DS was to produce the most data knowledge, the PE the most process

knowledge, and so on. But Experiment 2 showed that this expectation was

inaccurate. For example, while the results in Section 5.7.7 generally showed that the

PE contributed most of the process knowledge and the IE contributed most of the

innovation knowledge, both also contribute large portions of data knowledge. The

difference between the expected types of knowledge produced per role, and the

actual types of knowledge produced per role, was especially noticeable in Project P2-

2, where 53% of the project’s data knowledge was produced by the PE and IE

(without DS involvement). Consequently, the roles of ESAOA KMS version 2 have

been changed to establish a better correspondence between the expected behaviour

of roles (and the knowledge that they produced) and the actual behaviour of the roles

carried out during a development project.

6.1.2.2 Towards a bi-directional flow of innovation

In Experiment 2, it was observed that the KMS used by the more successful project

teams followed a bi-directional flow of knowledge (Section 5.7.6 discusses the

analysis of data in which this observation was made). Innovation still drove process

knowledge and indirectly data knowledge too. However, there was also a flow in the

opposite direction, predominately between the DS and IE (often without involving the

PE) – this flow concerned enhancement of innovation techniques and knowledge

 6-4

provided by the DS. This effect was most noticeable in projects P2-1 and P2-5, in

which the DS thought of innovative ideas for the IE to test, while simultaneously

acquiring and understanding data knowledge needed by the PE. Consequently, the

predominately feed-forward flow of the first version of the KMS was found to be an

oversimplification. For this reason, changes were made to the role support structures

(i.e., the DS, PE, IE hierarchy), to accommodate a more bi-directional flow of

innovation knowledge. These changes involved eliminating the DS role and

incorporating two new roles into ESAOA KMS version 2 (see Section 6.1.3).

Experiment 2 observations showed that the creation of process knowledge also

inspired and guided innovation; an example of this occurred when activities of the PE

sometimes directed decisions relating to innovation. But this situation occurred less

frequently than situations where the IE or DS led innovation (show in Section 5.7.7).

The design of ESAOA KMS version 2 was therefore changed to reflect the

predominant flow of innovation from DS to IE, and from PE to IE, with more emphasis

given on the acquisition of data knowledge inspiring innovation. The IE role thus

retains responsibility for testing innovations, and making decisions on what to test.

In Experiment 2, team members performing the DS role considered the role title

inappropriate (see comments in Section 5.6.2), and indicated that the role appeared

unimportant compared to the other roles, and that it was dominated by the PE and IE

roles. These results suggest that the DS role was misconstrued as an assistant role,

where the individuals performing the DS role were expected to receive instructions

from the PE and IE – but this issue was generally expressed informally by the

participants, and only one team member considered the point important enough to

leave a written comment in the Experiment 2 survey. Further Experiment 2 findings

(shown in Section 5.7.8) indicated that the DS role tended to concentrate on

researching components (especially datasheets for electronic components and

information about device drivers), and acquired comparatively little data knowledge

related to tools. Both the DS and PE roles produced data knowledge, but these roles

generally performed different types of information-seeking tasks. Principally, the PE

used more forum postings, sample code, and manuals to build data knowledge that

related to development tools and operating systems. The DS mainly used manuals

and web-based documentation to gather data knowledge. These findings provide

further rationale for changing the roles and data knowledge management strategy

used in KMS version 1.

 6-5

6.1.3 Revised roles and artefact classifications

The roles and role support structures of ESAOA KMS version 2 have been structured

according to the reasons discussed above. Hence, roles of ESAOA KMS version 2

support a bi-directional flow of innovation, specifically by ensuring that all roles can

contribute innovation knowledge, although the building of this knowledge is still

largely driven by the IE. The revised system also avoids detracting from other forms

of knowledge production that may weaken the overall success of a project. The

changes to the ESAOA roles are explained below, and are expected largely to

eliminate the issue of role dominance mentioned earlier.

6.1.3.1 Component researcher (CR) and workspace administrator (WA)

Given the inadequacies of the DS role as observed in Section 6.1.2 above, the DS

role was removed for the second version of the ESAOA KMS and replaced by two

new roles. These new roles are the component researcher (CR) and the workspace

administrator (WA).

Activities of the former DS role that relate to researching components have been

assigned to the new CR role. The term DS artefact (previously used to classify

artefacts as being maintained by the DS) has been replaced with the term D artefact

(i.e., data knowledge artefact – see Table 6.8 for examples of D artefacts).

The new WA role is responsible for maintaining the consistency of artefacts in the

team workspace as a whole. In version 1 of the KMS, the maintenance of the team

workspace was to be divided between the various roles, where each role is

responsible for artefacts according to their role’s applied classification (e.g., the DS

maintaining only DS artefacts). However, in Experiment 2 developers tended not to

assign role classification (probably because this task had to be done manually and

was easily forgotten). Among the Experiment 2 teams that used version control

software (such as CVS [Grune, 2007]), the maintenance of team artefacts became

mostly automatic. The WA role is responsible for maintaining and understanding the

structure of team workspaces. Further explanations of the CR and WA roles are

given in Section 6.5.1, and the main processes they carry out are described in

Sections 6.6.4 and 6.6.6.

6.1.3.2 Revisions to the PE and IE roles

The PE role was modified to account for the production of data knowledge and to

avoid the hierarchical-type structure that resulted in Experiment 2. Changes to

 6-6

processes of the PE are intended to place the CR and PE at the same level of

authority. By giving the WA a more accurate title, as well as authority over the

structure of the team workspace, it is expected that an individual filling the WA role

will also not feel dominated by other roles. Processes and artefacts classifications

used by the PE and IE roles were modified to accommodate the new roles and

support structures.

The revised role support structure for ESAOA KMS version 2 is illustrated in Figure

6.1. The figure shows that the CR supports the PE, and the PE supports the IE

(represented by the role support associations, i.e., lines that end in a solid circle). It is

expected that the PE will build most of the project’s process knowledge, whereas the

CR will build most of the data knowledge related to components, and the IE will build

most of the productive innovation knowledge used for prototyping concepts. The

knowledge use associations model this behaviour, and these are shown as single

line arrows linking a role circle to a knowledge atom in Figure 6.1 – the knowledge

atoms are the blocks of three rectangles. The support structure also accounts for

both the CR and the PE providing innovation knowledge (shown in Figure 6.1 as

mentoring flows, the double line arrows, in which tacit junctions are associated with

innovation knowledge atoms). The model further shows that the CR is expected to

obtain innovation knowledge mainly related to components, whereas the PE is

intended to supply innovation knowledge chiefly related to development procedures.

Although version 2 of the ESAOA KMS has more roles than version 1, this does not

imply that version 2 teams need to be have more people in them. A particular

individual can fill more than one role (as was the case in version 1). Thus, the KMS

can still be run by teams of three members. For example, the same person could fill

both the PE and WA roles. However, certain combinations of roles performed by one

person can be ineffective, causing project work to be unfairly shared. For instance, in

a three-person team, an individual filling both the CR and PE roles would likely do

considerably more work than the other members would.

 6-7

 Productive
Innovation

Which design decisions
worked, how to test
designs

Process
knowledge
needs

IE

PE

Data
knowledge
needs

Component

Which components to
use for certain needs.
Interfacing standards,
pins to use for interfacing

Datasheets, URLs

Innovation

Ideas for components to
use, or interconnectivity,
inspired from studying
component datasheets &
related documentation

Sites / books / forums CR

Innovation
Suggestions inspired
from finding and testing
tools and processes
Sites / books / forums to
look at

Process

Development
techniques

Tools to use

Figure 6.1: The role support structure and flow of knowledge around which ESAOA
KMS version 2 is designed.

6.1.3.3 Revision to the TL role

The team leader (TL) role is responsible for the managerial duties of a team, for

example ensuring that all team members are performing their duties. No processes

were specified for the TL in ESAOA KMS version 1; but certain TL processes related

to the performance assessment of ESAOA activities have been added to version 2 of

the KMS. Section 6.5.2 elaborates on TL responsibilities and Section 6.6.3 describes

processes of the TL.

6.1.3.4 Role extension

Role extension involves adding processes and responsibilities to a role, or moving

responsibility from one role to a different role. An example of role extension, applied

to the PE role, is to make the PE maintain all manuals related to development tools

that reside in the team workspace (in effect this involves moving some of the

responsibility of the WA, who was initially tasked to maintain the team workspace,

over to the PE).

Role extension occurred in Experiment 2 (see Section 5.8.2). Project P2-1 included a

number of successful instances of role extension, such as when the PE relieved the

DS from the responsibility of acquiring data knowledge relating to tools, which then

enabled the DS to give additional support to the IE.

 6-8

Project P2-2 included some examples of less effective role extension. For instance,

Section 5.5.6 indicated a case where the IE took over most of the PE’s duties, which

resulted in misdirected effort and weakened the overall effectiveness of the team.

Based on the role extensions observed in Experiment 2, limits clearly need to be

imposed on role extensions to ensure that no team member is burdened with too

many responsibilities. The TL, possibly in consultation with the CKO, should approve

role extensions to ensure that responsibilities are shared fairly and suitably (as is

emphasised in the project management literature, such as Turner et al. [2008]).

6.1.4 Upgrading of support tools

Experiment 2 participants found that a number of the ESAOA tools were beneficial to

their development projects and KM needs, whereas others were infrequently used or

not known about (Section 5.6 summarises the results of the relevant evaluations).

Shortcomings, such as lacking tool support and having ineffective tools, were also

identified. The provision and operation of ESAOA version 2 support tools have thus

been modified to address many of these limitations. The extent of these modifications

was restricted by the time limits of this research project; therefore, not all of the tool

design changes have been implemented at the time of writing this thesis. Section 6.4

details the tool design changes, and includes screen captures to illustrate the parts of

their implementation that have been completed.

6.1.5 Improving ESAOA documentation

Participants in Experiment 2 found the ESAOA tools had a number of shortcomings

in terms of documentation and access to documentation. ESAOA KMS version 2

addresses these shortcomings by improving the help integrated into the ESAOA

support tools, in addition to the provision of a comprehensive user manual. Section

6.4 highlights additions made to the documentation.

6.2 ESAOA knowledge ontology

A KMS typically incorporates a knowledge ontology in addition to roles, processes

and artefacts. The concept of an ontology for facilitating the reuse and exchange of

technical knowledge was discussed in Section 2.8.3.2. As mentioned in Section

4.6.3, the term ESAOA knowledge ontology refers to a specialised terminology

structure used to specify the ESAOA KMS. The knowledge ontology for ESAOA KMS

version 2 has the same structure as that of version 1 (see Section 4.6.3). This

 6-9

section begins by describing additions incorporated into the second version of the

ESAOA knowledge ontology, and then explains how the ontology evolved.

6.2.1 Additions to the ESAOA knowledge ontology

ESAOA KMS version 2 contains additional terms to those found in version 1. Two

additional top-level terms were added, namely:

• Classifications: this refers to the way in which an artefact is categorised.

Types of classifications include form classifications, functionality

classifications, workspace classifications, and maintainer classifications.

• Episode: this refers to a sequence of related chronologically close activities,

within a larger sequence of activities, leading to a final development solution.

The UML model depicted in Figure 6.2 visualizes part of the higher level ESAOA

knowledge ontology. The figure shows that an episode is essentially an aggregation

of activities. An artefact classification is a specialised type of classification applied to

soft artefacts within an ESAOA workspace, and it is used to identify artefacts.

Artefact Space*

Hard Artefact Workspace

*
Workstation

computer

Soft Artefact

performs

adaption or
organisation

Workstation

Code
file

RoleActivityEpisode *

*

decides

Classification

Artefact
Classification

identifies

Figure 6.2: UML model for part of the high level ESAOA knowledge ontology.

The complete list of terms used in the ontology, their definitions, and how they fit into

the ontology itself, is detailed in Appendix C.1 (additions for version 2 are highlighted

by asterisks).

 6-10

6.2.2 Evolving the ESAOA knowledge ontology

The ESAOA knowledge ontology is separated into two parts: a higher level and a

lower level. The lower level is adjusted depending on project needs, whereas the

higher level remains largely the same between different teams and projects. The

higher and lower parts of the ontology are maintained using separate procedures: the

higher level is represented as a Microsoft Word document that is edited manually,

whereas the lower level is in the form of metafiles used to classify soft artefacts in

workspaces.

6.2.2.1 Maintaining the lower level of the knowledge ontology

The lower level is by using the fclass program (one of the ESAOA tools). Experiment

2 participants found that fclass was an effective means to maintain artefact

classifications; consequently, an upgraded version of the same tools is used for

maintaining file classifications in version 2 of the ESAOA KMS.

Experiment 2 participants did not suggest changes to the operation of the fclass tool,

but they did ask for the documentation to be improved. In order to address this

request, online help has been added (both help messages are displayed by the

program and a PDF help document). The new version of fclass is described in

Section 6.4.1.

6.2.2.2 Maintaining the upper level of the knowledge ontology

Participants were dissatisfied with the cumbersome way in which the higher-level part

of the ontology was maintained using text documents. Consequently, version 2 of the

KMS is designed to use a custom CGI web-based program to manage the high level

part of the knowledge ontology. The tool is referred to as the ESAOA Ontology

Manager (or OM tool). Figure 6.3 provides a screenshot of the tool. It shows the main

page of the online OM tool, which users use to specify their team, and thereafter

choose to view or add terms to their team’s ontology.

 6-11

Figure 6.3: Screenshots from ESAOA ontology manager.

The OM tool is currently in the form of a limited functionality prototype system that

has been used in a pilot project to test the OM tool1 [Winberg, 2009]. This pilot test

involved a small development team that tested the planned OM tool. The results

showed that the OM tool is likely to be less effective than simply using a text

document to maintain the ontology. The developers that experimented with the

prototype reported it was “too time consuming to use...”, “...had too much clicking

through menus” and commented that “documentation [is] minimal” [Winberg, 2009,

1 The prototype OM tool has no security features, implying that any user can view and modify
a different team’s ontology. There is also no search facility, but this limitation can be
overcome by requesting a list of all categories.

 6-12

pg. 5]. These participants suggested using Excel document instead, especially as

this tool can be set to check spelling, and auto-complete words typed in – however,

considering that Microsoft Word provides the same features mentioned by the

participants, the researcher has decided that there is little point in changing the

format of the files used to store the high level ontology. Consequently, for version 2

of the KMS, the higher level terms will continue to be stored in Microsoft Word files.

6.3 ESAOA version 2 workspaces

ESAOA workspaces unite the aspects (i.e., roles, processes and artefacts aspects)

of the ESAOA KMS in order to present knowledge workers with a defined and usable

system. Users of the ESAOA KMS access ESAOA workspaces via ESAOA

workstations. ESAOA KMS version 2 uses an extended version of the ESAOA

version 1 workspace design – the most significant addition is the refinement made to

the integrated knowledge base.

This section begins by recapping the definition of ESAOA workspaces and

workstations. The subsections that follow elaborate on the design and

implementation of ESAOA KMS version 2 workspaces and workstations.

6.3.1 Definition of an ESAOA workspace

An ESAOA workspace is a digital, computer-based work area that comprises the

following parts:

1. A shell environment (an extended version of the Bash shell [Bash, 2009]);

2. Soft artefacts (i.e., computer files) organised into an ESAOA directory structure

(following a specific layout and classification schema);

3. An integrated knowledge base;

4. ESAOA support tools; and

5. A related collection of externally stored and maintained development tools (e.g.,

compilers and CAD software).

Multiple workspaces are implemented in the ESAOA KMS as a means to facilitate

sharing between teams, by having the same access, organisation and classification

systems operating at the different levels of access. This scheme also avoids

inadvertent sharing of artefacts between teams by having procedures in place for

releasing artefacts to all teams, or to a particular individual’s own team. In both

 6-13

versions 1 and 2 of the ESAOA KMS, there are three types of ESAOA workspaces to

accommodate this sharing approach; these are summarised below:

• Communal workspace: contains soft artefacts accessible to any team

members. There is only one communal workspace in the ESAOA KMS. The

CKO and CKS are responsible for maintaining it.

• Team workspace: each team has a team workspace that is accessible only to

members of that particular team. The team workspace contains master

versions of soft artefacts worked on by a team, and it is used to share

artefacts among team members. The WA is responsible for maintaining the

consistency and placement of artefacts in team workspaces.

• Personal workspace: each user of the ESAOA KMS has a personal

workspace. The personal workspace of a team member tends to be a copy of

the member’s team workspace. The CKO and CKS are likely to modify the

communal workspace directly, when arranging items or naming files – but

each of these roles also has a personal workspace for working on soft

artefacts taken from, or destined for, the communal workspace. Each team

member (in collaboration with the WA) is responsible for maintaining the

consistency of artefacts that they are working on.

6.3.2 Definition of an ESAOA workstation

The term ESAOA workstation refers to the combination of a computer system

(termed the workstation computer), which provides the human/computer interface to

an ESAOA workspace, together with the surrounding physical artefacts that

developers use during the development of an ES (e.g., datasheet printouts, books,

and the ES prototype being worked on). Essentially, an ESAOA workstation is much

the same as any normal work area with a computer that is used during ES

development. The term ESAOA workstation is used in relation to the ESAOA KMS

simply to emphasise that a particular workstation is intended for use with an ESAOA

workspace. Section 4.6.2.2 provides further detail and illustrations of ESAOA

workstations.

Only minor changes were made to the structure of ESAOA workstations between

versions 1 and 2 of the ESAOA KMS. The most significant changes includes the

provision of workstation-side scripts (described in Section 6.4.5) and the facility to

use a web browser to access the Ontology Manager (see Section 6.2.2.2) to change

the communal ontology.

 6-14

6.3.3 ESAOA workspaces implementation and access levels

Each workspace, be it a communal, team or personal workspace, has the same top-

level part structure as described in Section 6.3.1. The UML model shown in Figure

6.4 models the composition of an ESAOA workspace. As the model shows, it

comprises a directory structure that contains the soft artefacts of a project.

Development tools, such as cross-compilers and integrated development

environments, and other software tools used during development are not stored

within the ESAOA directory structure; rather, these programs (which tend to take up

a large amount of disk space) are stored and maintained externally (note that the

Bash shell itself, on which the ESAOA environment depends, is categorised as

external software). ESAOA support tools (described in Section 4.6.7.1) are stored

within the ESAOA directory structure.

ESAOA
Workspace

ESAOA
directory
structure

External development tools
and software

BASH
Shell

Project soft
artefacts

ESAOA support
tools * *

Integrated
knowledge base

Interacts
with

ESAOA Bash
Environment

ESAOA
Workstation

Figure 6.4: Model showing composition of an ESAOA workspace.

The ESAOA Bash environment (detailed in Section 4.6.2.1) involves starting a Bash

shell that automatically configures various environment variables to modify the

behaviour of the shell. The shell is configured to work with the different workspaces,

and to facilitate use of the ESAOA KMS and access to ESAOA tools. As Figure 6.4

shows, the integrated knowledge base of an ESAOA workspace is stored within the

ESAOA directory structure. This knowledge base is composed of the soft artefacts in

the workspace, the soft artefact classifications and other ‘metadata’ [Kitamura et al.,

2005], maintained or viewed by ESAOA tools. The metadata is stored in comma

separated value (CSV) files in the workspaces (see Section 6.4.1). ESAOA tools,

such as the flcass and esaoa-find tool, provide the interface to the knowledge base.

 6-15

Personal workspaces can have links to team workspaces, and similarly, team

workspaces can have links to the communal workspace. Personal workspaces are

synchronized with team workspaces, either using version control tools or supplied

ESAOA scripts. Only certain sections of a team workspace are synchronized with a

communal workspace – these synchronization activities are done manually.

The model in Figure 6.5 illustrates which roles generally perform the maintenance of

artefacts in the different workspaces. As shown in the figure, the CKO and CKS

generally work on the communal workspace. The WA checks and corrects the

consistency of artefacts in his or her team workspace. The other roles generally work

on artefacts in their own personal workspace.

Figure 6.5: The three types of ESAOA workspace.

The different types of workspace can also be considered as being at different access

levels. Three access levels are defined, namely: a) communal level; b) team level;

and c) personal level. Communal level access defines the file access permissions a

user places on artefacts in the communal workspace. Similarly, team level and

 Team artefact

Using team
workspace

Communal
Artefact

 COMMUNAL WORKSPACE

TEAM WORKSPACE

Processes and artefacts of communal
workspace are used by all roles in team
workspace.

CKO and CKS
support team

members

CKO

CKS

WA

PERSONAL WORKSPACE

Personal artefact
TM

Communal knowledge
steward works chiefly in the
communal workspace and
adapts communal artefacts.

Workspace administrator
(WA) is responsible for maintaining
the integrity of the team
wo kspace. r

 6-16

personal level relate to file access permissions for team and personal workspaces

respectively.

All users of the ESAOA KMS are by default given communal level read only access

(i.e., they can read any file in the communal workspace, but cannot modify, delete or

move any files in the workspace). The CKO and CKS are given full communal level

access (i.e., they can read, write, delete and move files in the communal workspace).

Each team member is by default given full team level access, as well as full personal

level access to his or her own personal workspace. The WA, in collaboration with

fellow team members, may decide to impose certain team level restrictions (e.g., to

avoid important documents being inadvertently deleted). A new ESAOA support

script, called esaoa-access, has been added to facilitate the WA’s responsibility of

specifying team level access (the script is intended only for Linux-based systems).

6.3.4 Installing workspaces using ESAOA distributions

ESAOA workspaces are put in place using ESAOA distributions. These distributions

are compressed archives that include soft artefacts organised into an ESAOA

directory structure (Section 4.6.8 gives more detail). ESAOA version 1 had three

distributions: 1) a workstation distribution (intended as a convenient collection of feely

available software programs that are installed on a workspace computer); 2) a team

distribution; and 3) a communal distribution. ESAOA version 2 has the same three

types of distribution, and an additional personal workspace distribution.

While the installation of distributions for version 1 was mainly done manually (with

only the team distribution having an installation script), version 2 has automated

installation scripts for each distribution. These installation scripts automatically

perform operations to configure the Bash shell, to create ESAOA baseline directory

structures, and to copy files to the appropriate destination folders. These automated

installation scripts are intended to make it much easier to install and use ESAOA

workspaces; these additions were made to address the installation difficulties

reported in Section 5.8.1.

The four types of ESAOA distribution are summarised in Table 6.1. ESAOA support

tools are provided only in the communal distribution – the other workspaces

automatically inherit all ESAOA tools and scripts in the communal workspace (this is

achieved using the PATH environment variable). Additional tools and scripts can be

added to workspaces by placing them into relevant locations of a workspace. All the

 6-17

baseline ESAOA support tools are in the form of either Bash scripts or compiled

executable programs (implemented using the Standard C library [GNU, 2008a] and

the KIT API [Winberg, 2006a] – the KIT API is described in Appendix C.4). Team

members can implement additional support tools using other languages or libraries

(e.g., Python scripts [Lutz, 2006]) – but doing so can make the tools less portable

between ESAOA workspaces.

Each ESAOA workspace distribution contains template files, an initial workspace

knowledge base, ESAOA scripts and ESAOA tools that form a baseline workspace.

Baseline workspaces on their own cannot be used to construct design artefacts and

compile code – the workspaces depend on a variety of software applications, termed

external tools, which are not included in the ESAOA distributions, namely: the Bash

command shell, GNU bintools [GNU, 2005], and appropriately configured cross-

compilers (e.g., [Kegel, 2007]), which are needed to compile embedded software. All

these external tools need to be installed on the computers that host an ESAOA

workspace (Bash and GNU bintools need to be installed prior to installing

workspaces; but the cross-compilers, IDEs and other external software can be

installed later). Similarly, software needs to be installed on the workstation computers

in order to access ESAOA workspaces.

Table 6.1: ESAOA version 2 distributions.
ESAOA Distribution Archive file Contents
ESAOA communal
workspace distribution

ESAOA-communal-
2.0.tar.gz

Baseline for communal distribution
and templates of communal soft
artefacts.

ESAOA team workspace
distribution

ESAOA-team-2.0.tar.gz A baseline collection of soft
artefacts provides a starting point
for developer teams.

ESAOA personal
workspace distribution

ESAOA-personal-2.0.tar.gz A small collection of soft artefacts,
and an installation script to assist
the user in connecting to a team
workspace.

ESAOA workstation
distribution

ESAOA-workstation-
2.0.tar.gz

A convenient collection of freely
available software applications
that facilitate access to ESAOA
workspaces and are likely to be
used during development.

6.3.5 GUI installation tool for ESAOA personal workspaces

The installation scripts for the ESAOA workspaces are in the form of Bash scripts

[Bash, 2009]. Since the personal workspaces install scripts are likely to be the most

commonly used (i.e., run by each team member), a graphic user interface (GUI)

script was designed to facilitate installation of personal workspaces. The Tk/Tcl

 6-18

scripting and GUI toolkit [Tcl Developer Site, 2007] was used to do so. A Tcl script

was built that calls the personal workspace installation Bash script using suitable

command line parameters. Figure 6.6 shows a screen shot of running the GUI

personal workstation installation script using ActiveTcl [ActiveState, 2007].

Figure 6.6: Screenshot of prototype personal workstation installation program.

6.3.6 ESAOA version 2 distribution support documentation

During Experiment 2, some of team members favoured a decentralised approach in

which they independently installed and maintained ESAOA distributions on their own

computers. The GUI installation tool described in Section 6.3.5 is intended to assist

with the process of installing ESAOA workspaces (but this tool does not provide

support for installing workstation programs, nor is it guaranteed to work on all Linux

distributions). The following additions to the ESAOA version 2 documentation are

planned (these are based on the survey results of Section 5.6.2):

• ESAOA workspace quick start guide: a short step-by-step guide for installing

the team workspace distribution with an introduction to using the ESAOA

workspace and its integrated knowledge base.

• ESAOA script writers guide: a document (mainly for the PE) that explains the

structure of ESAOA scripts and simple steps for writing scripts.

 6-19

• ESAOA workspace maintenance methods: a document that details the

administration of ESAOA workspaces, describing organisational layouts and

how to administer the knowledge base stored within these workspaces.

• ESAOA workspace developer’s guide: a document to facilitate modification and

development of ESAOA workspaces and ESAOA support tools.

6.3.7 ESAOA version 2 workspace directory structures

The directory structures of the ESAOA version 2 workspaces, which are put in place

using the ESAOA distributions, remained largely the same as in the first version (see

Section 4.6.5.4). Most of the changes were made to the directory structure of the

team workspace (and additional documentation and template artefacts were added to

the communal workspace). Changes to the team distribution are described below.

In Experiment 2, many teams added data files that captured test cases or test

procedures (e.g., data files and scripts that automated regression tests); in some

cases, these testing files were placed in a separate directory. Consequently, version

2 of the baseline team workspace provides test cases for the sample applications

included (specifically, test cases were added to the sample application called

‘SimpleApp’). Two additional sample applications were included in the team

distribution, namely: ‘BitBanger’ and ‘HostSer’. The BitBanger application (taken from

Vibynet, Project P2-3) is a more elaborate example than SimpleApp (which was the

only sample application in version 1 of the team workspace). The HostSer application

executes on a PC, and implements simple serial communications (HostSer is a

refined version of the ‘PCControl’ application initially developed by the HAS team,

Project P2-5). Furthermore, additional platform deployment modules (PDM modules)

were added to the team workspace (these modules provide some commonly used

software/hardware interfacing routines). Figure 6.7 shows the revised directory

structure of the team workspace (asterisks in the figure mark additions to the

structure in comparison to the first version).

 6-20

+-ProjectX/ (ProjectX initial team workspace ver2) project root
 +-Software/ Root for software artefacts
 | +-Templates/ Templates directory
 | +-Communal/ Soft link to communal templates
 | +-Team/ Templates produced by team
 | +-Applications/ Application code modules
 | | +-SimpleApp/ Application code directory containing code for SimpleApp
 | | | +-Testing/ Test cases / descriptions for testing SimpleApp *
 | | +-BitBanger/ Application code directory containing code for BitBanger *
 | | | +-Testing/ Test cases / descriptions for testing BitBanger *
 | | +-HostSer/ Application code directory for host-side serial comms.*
 | | +-Testing/ Test cases / descriptions for testing HostSer *
 | +-Utils/ Directory for utility code modules
 | +-CCW/ Directory “common component wrappers” (CCWs)
 | +-PDM/ Directory “platform deployment modules” (PDMs)
 | | +-CSB337/ Directory containing PDMs for CSB337 platform
 | | | +-MicroMonitor/ PDMs for MicroMonitor variant of CSB337 platform
 | | | +-uCLinux/ PDMs for uCLinux variant of CSB337 platform
 | | +-PC/ Directory containing PDMs for PC architecture *
 | | +-Linux/ Platform deployment modules for PC version of Linux *
 | +-Documentation/ Software documentation
 | +-Communal/ Soft link to communal software documentation
 | +-MicroMonitor/ Documentation for the MicroMonitor O/S
 | +-uCLinux/ Documentation for the uCLinux O/S
 | | +-MemDevInfo/ and related tools / drivers
 | +-gnu-assembler/ Documentation for the Gnu assembler
 | +-Team/ Supplementary documentation obtained by team
 +-Tools/ Supplementary tools developed by team
 | +-Scripts/ Supplementary ESAOA Bash scripts
 | +-Programs/ Supplementary ESAOA C++ programs
 +-Hardware/ root for artefacts most strongly related to hardware
 | +-Documentation Hardware documentation
 | +-Communal/ Communal hardware documentation
 | +-Datasheets/ Component datasheets
 | | +-CSB337/ Directory for specific component uses the component’s ID
 | | +-AT91RM9200/
 | | +-Peripherals/ Directory for various peripherals (subdirectories not shown)
 | | +-ARM_920/
 | +-Overview/ Product overview sheets / brochures
 | +-QuickRef/ Quick reference manuals (ESAOA docs moved; see below)*
 | +-Team/ Team hardware documentation
 | +-Datasheets/ Component datasheets obtained by team
 +-Copyright/ Copyright / licensing information for the project
 +-Documentation/ Product / other documentation
 +-Communal Communal documentation
 +-ESAOA/ Documentation for ESAOA (includes ESAOA quickref) *
 +-Forum/ Documentation about using the forum
 +-Team Team’s product documentation
 +-Templates/ Other templates

Figure 6.7: ESAOA version 2 team distribution directory structure.

 6-21

6.3.8 The knowledge base within ESAOA workspaces

A knowledge base exists within an ESAOA workspace (as modelled in Figure 6.4). A

knowledge base generally comprises a collection of interrelated concepts used to

convert forms of tacit knowledge into explicit knowledge in order to archive and share

this explicit knowledge [Krishna, 1992]. A common method of implementing a

knowledge base involves using a database system to capture the information used in

an organisation [Krishna, 1992]. This point is corroborated by Hahn & Subramani

[2000], who describes a knowledge base as a system that typically provides

specialised classification and archiving facilities, together with a search engine, and

that is often used as an aid in problem-solving tasks.

The knowledge base used in the ESAOA KMS is similar to the type described by

Krishna [1992], in that the ESAOA knowledge base differs from those more

commonly associated with expert systems and artificial intelligence. The ESAOA

knowledge base should thus be considered a “system that supports at the conceptual

level structures for representing knowledge, while providing, in addition, all the

services we have come to expect from a database system” [Krishna, 1992, pg. 18].

The knowledge base in an ESAOA workspace is focused on storing explicit

knowledge relating to the adaptation and organisation of ES artefacts (as opposed to

the broader range of organisation-wide knowledge). The ESAOA knowledge base

comprises a collection of knowledge artefacts interwoven with (or in the form of) soft

artefacts stored in ESAOA workspaces. Both the first and second versions of the

ESAOA support tools provided means of searching, viewing and manipulating the

knowledge base within an ESAOA workspace (e.g., by accessing file meta-data and

searching code comments). For example, the fclass tool doubles as a knowledge

base management tool, in that it can be used to search for files with particular

artefact classifications, and the ESAOA find tool can be used to search for text in

either all files or a restricted subset of files within an ESAOA workspace. However,

the support tools have limited functionality; for instance, there is no facility to combine

their results or to automate updates to knowledge artefacts based on query results

(i.e., if the fclass and find tools supported SQL commands, each would only support

the ‘SELECT’ command applied to one table at a time). Nevertheless, the ESAOA

tools do produce text output that can be combined and they do allow automated

updates to be performed using text-processing tools such as grep [GNU, 2009]. Later

 6-22

versions of the ESAOA KMS are expected to support more complex knowledge base

querying and administration.

A scenario is presented in Figure 6.8 that demonstrates how the knowledge base

within a workspace can be accessed. The scenario begins with the user applying

knowledge by editing a device driver file that is stored in an ESAOA workspace.

Next, the user issues a command that links classification keywords to the file that

records the type of knowledge applied to the file. The third command issued links a

description to the file that was edited (the ‘desc’ feature of fclass allows all

descriptions maintained in this way to be searched in a uniform manner regardless of

the type of file concerned)2. Later, the user executes queries of the knowledge base

(again using the fclass tool to access file metadata – in the example, both queries

return the same file name, namely the file ‘rs232.c’).

Command issued Narration
$> vim rs232.c User edits a file to apply knowledge learned

about controlling a hardware device

$> fclass rs232.c + driver + serial User adds classifications of ‘driver’ and ‘serial’

to the file edited.

$> fclass rs232.c desc \

 “serial port driver for csb337 port0”

User adds description to record what the file

relates to, in this case indicating the platform

and specific hardware component concerned.

$> fclass . qclass serial

rs232.c

User queries the workspace (using the –f find

option of fclass) for all files with classification

‘serial’ applied.

$> fclass . -qdesc csb337

rs232.c

User runs query to find all files with the word

‘csb337’ in its fclass description field.

Figure 6.8: Scenario showing access to integrated knowledge base using fclass.

6.4 ESAOA support tools

This section describes how ESAOA support tools for version 1 of the ESAOA KMS

were adapted, removed or added to in the course of developing version 2 of the

2 Generally, a detailed description of code file is easier, and more natural, to maintain within
the file itself using comments. The ‘desc’ option of fclass is applicable to maintaining short
descriptions that are edited or searched in the same way, regardless of the file type.

 6-23

KMS. The fclass tool, used in classifying and tagging files in an ESAOA workspace,

was changed significantly from the earlier version; Section 6.4.1 provides detail on

these changes and explains the addition of the PEP service used to optimise

performance of fclass. Section 6.4.2 focuses on the hsl hotspot logging tool, which

supplements fclass by providing additional file tagging facilities. Improvements to the

esaoa-project tool, which is used for maintaining project information, are described in

Section 6.4.3. The addition of esaoa-checkin and esaoa-checkout scripts, which are

used for synchronizing workspaces, are summarised in Section 6.4.4. Lastly,

workstation-side scripts, and the associated WSS and WSC programs developed to

activate these scripts, are described in Section 6.4.5. Refer to Appendix C.3.4 for the

full list of ESAOA version 2 support tools and scripts. Detail concerning testing of

individual ESAOA support tools is not in the scope of this thesis, as this issue would

distract from the focus of this work.

6.4.1 The ESAOA file classification (fclass) tool

The ESAOA command line file classification tool (named fclass) was initially used in

the first version of the ESAOA KMS. Participants of Experiment 2 found the tool

suitable, but poorly documented. For this reason, an upgraded version of fclass is

included in the second version of the KMS. The fclass tool is a command line

program that is executed from within the ESAOA environment of an ESAOA

workspace (Figure 6.9 shows a screenshot of the fclass tool).

Figure 6.9: Screenshot of fclass version 2.

 6-24

It was noted (in Section 5.6.2.2) that the CSV file format used by fclass to maintain

file classifications was difficult to understand. For this reason, the operation of the

revised fclass was designed to be closer to that of a database system. An initial

prototype for fclass was developed that utilised a mysql database [MySQL, 2009] via

the mysql C API [Vaswani, 2004]. A lengthy development process followed, which led

to the implementation of a mysql-based fclass program. The program worked within

personal workspaces; but attempts to synchronize the file metadata with the team

workspace, or to copy it to different workspaces, as requested during testing of

version 1, were unsuccessful. Furthermore, difficulties were experienced with

moving and renaming files – a design decision, which could not easily be changed,

was a major cause for this problem, namely, the fact that the mysql database tables

used absolute path names to associate files with their classifications. Since it was

taking too long to remedy this difficulty, it was decided to discard the initial, mysql-

based revision to fclass, and to revert instead to the simpler and more portable

strategy of using CSV files. The next subsection recaps the design of fclass version

1, which then leads into the revised design for version 2 of the tool.

6.4.1.1 Review of version 1 of fclass

CSV files of version 1 of the flcass program made use of two types of files: the file

classification lookup file (FCL) and the file classification index (FCI) file. All the file

classifications used in an ESAOA workspace are listed in a single FCI file that is

named ‘.fci’ and that is stored in the root directory of the active workspace (examples

of the file classifications used in an ESAOA workspace are listed in Section 4.6.5.2).

Each directory in an ESAOA workspace has one FCL file, named ‘.fcl’. This ‘,fcl’ file

is a CSV file used to associate one or more of the classifications (recorded in the

workspace’s .fci file) with files in the same directory as the one in which the ‘.fcl’ file is

located. Each row in the ‘.fci’ CSV file (which corresponds to a classification

association) has three columns, respectively titled ‘code’, ‘description’ and ‘inherit’.

The ‘code’ column is a code value that refers to a particular classification (these code

values are assigned automatically by the fclass program according to the description

given). The ‘description’ column contains one or more words, which describe the

classification. The ‘inherit’ column is effectively a list of zero or more code values,

which indicate the super-classes of the classification concerned (i.e., they indicate

which existing classifications the new classification inherits). Table 6.2 gives an

excerpt from an .fci file in the form of a table (Figure 4.15 in Chapter 4 shows the

actual contents of the file).

 6-25

In order to understand the structure of the .fci file illustrated in Table 6.2, begin by

considering the second row of the table (i.e., the line reflecting the value ‘ACM’ in the

code column). This row indicates the classification, where the code value ‘ACM’ is

described as an ‘application code module’, and it inherits the higher level

classification with code value ‘C’. Further investigation of the table shows that

classification code ‘C’ is described as a ‘Code’ artefact, so clearly an application code

module is a type of code artefact.

Table 6.2: A tabular view of a .fci file in an ESAOA personal workspace.
Code Description Inherit
ACM Application code module C
BE Binary executable S
C Code S
CMF Code map file S
CD Concept drawing D

The FCL file is used to link files to the classifications described in the workspace’s

FCI file. Each row in the ‘.fcl’ CSV file has two columns titled ‘filename’ and ‘function’.

The ‘filename’ column corresponds to the name of a file that is within the same

directory as the .fcl file itself. The ‘function’ column includes one or more code values

(i.e., listed in the .fci file), which indicate the particular classification or classifications

to which a file is assigned (if more than one classification is assigned, the code

values are separated by spaces). One problem with the .fcl file is that it is necessary

to access the ‘.fci’ file in order to determine the description of a classification. Another

problem is that role classifications are not effectively separated out in the ‘.fci’ and

‘.fcl’ files – there is no way of telling whether a classification is a functionality

classification or a role classification (the ‘function’ column is inappropriately named).

Table 6.3 provides an excerpt from an ‘.fcl’ file in the form of a table (Figure 4.15 in

Chapter 4 shows the contents of the actual CSV file). In order to understand the

operation of fclass and ‘.fcl’ files, consider the second row of the table (i.e., the line

starting with filename ‘Basic.c’): this row indicates that the file named ‘Basic.c’ has

been assigned the ACM classification (by looking in the workspace’s ‘.fci’ file, this

‘ACM’ code translates into the description ‘application code module’).

Table 6.3: A tabular view of a .fcl file in an ESAOA personal workspace.
Filename Function
Basic.c ACM
Basic.cm.elf BE
Basic.cm.map CMF

 6-26

The first version of fclass (described in Section 4.6.5.2) was unable to send file

classifications automatically from a personal workspace to the communal workspace,

unless a code version control tool (e.g., CVS [Grune, 2007] or Subversion [Collins-

Sussman, 2002]) was used to synchronize the workspaces – in such cases, the

relevant files containing metadata would be automatically updated. In cases where a

version control tool was not used, team members had to edit the ‘.fci’ and ‘.fcl’ files

manually – but often this manual introversion was neglected, leading to artefacts

classifications being lost when files were moved between workspaces.

Another drawback of the first version of fclass was that the workspace’s ‘.fci’ file had

to be loaded (and the terminology hierarchy built up in memory) each time the fclass

tool was executed. As a result, fclass had poor scalability, as it would run more

slowly as the number of rows in the ‘.fci’ file increased – this behaviour was

especially problematic when copying many files because fclass would run for each

file copied.

6.4.1.2 Version 2 of fclass and addition of the PEP service

The synchronization mechanism between personal workspaces and team

workspaces (including file classification information) has been remedied in the design

of ESAOA KMS version 2. Synchronization of team and personal workspaces is

designed around using versioning control tools (such as Subversion [Collins-

Sussman, 2002]) or the esaoa-checkin and esaoa-checkout scripts (Section 6.4.4

details these scripts). These revised synchronization mechanisms avoid the time-

consuming manual procedures need to copy and edit .fci and .fcl files maintained by

the fclass program.

Due to the way in which the communal workspace is used, synchronization tools are

not used with the communal workspace (since teams do not necessarily want to send

all their project artefacts to the communal workspaces). Consequently, to reduce the

manual overhead of editing.fci and .fcl files, the revised version of fclass has been

made aware of workspace boundaries (this was done by adding ESAOA

environments variables and comparing source and destination paths of the esaoa-mv

and esaoa-cp commands). The fclass program now makes use of the

ESAOA_ROOT environment variable, which stores the path of the currently active

workspace (usually the user’s own personal workspace), and uses the

ESAOA_TEAM environment variable, which stores the path of the team workspace.

The ESAOA_COMMUNAL environment variable stores the path to the communal

 6-27

workspace (provided it is available on a network drive – otherwise the variable is set

to an empty string). Whenever files are copied using esaoa-cp (which is called from

the esaoa-checkin and esaoa-checkout scripts), the fclass program is invoked by the

esaoa-cp command to copy file classifications for the file as well as the file specified.

6.4.1.3 Speeding-up the operation of fclass using the PEP service

The previous implementation of fclass was rather slow. Most of the code used in the

fcs program (fcs is described in Section 4.6.7.1) was duplicated in fclass version 1.

Each time fclass loaded, the program used fcs methods to read the entirety of the .fci

file for the workspace (even if it was not needed for the operations issued). In

addition, the program also read, and if necessary wrote, all the .fcl files related to the

files whose metadata was manipulated. In order to make fclass version 2 more

responsive than its predecessor, the program was redesigned to use inter-process

communication (IPC) [Allen, 2000] to make calls to a separate program, called the

Personal Expert Program (PEP), which runs as a daemon or background program3.

This PEP service maintains the .fci file containing the classification indexes for the

active workspace. Figure 6.10 uses UML to visually describe these relations between

fclass, PEP and other files in a workspace.

ESAOA
program

ESAOA
folder

Copy of file
classification

Hierarchy
in memory

ESAOA
workspace

maintainsmaintains

*

* 1..3

*

.fcl file

1

1..3

1

ESAOA
workstation
root folder

.fci file

PEPIPC messagesfclass

Figure 6.10: UML model of relationships between fclass, PEP and related files.

3 Background programs, or ‘daemons’ as they are sometimes termed, run without user
interaction and provide services to other programs [Enderunix.org, 2008].

 6-28

PEP is started when the user enters the ESAOA environment (i.e., by issuing the

esaoa-enter command). PEP replaces the functionality classification index manager

(i.e., the fim tool) mentioned in Section 4.6.7.1.

An overview of the software design for the fclass tool is shown in Figure 6.11; the

diagram uses standard UML 2.0 stereotypes (which are explained by Kroll &

Kruchten [2003]). The fclass tool was implemented in C++, and its design comprises

five main classes. The fclass command line interface provides the human/computer

interface; most of this class involves parsing the command line arguments sent to the

fclass program. The FCS (for ‘File Classification System’) class contains a collection

of methods that use the FCL and FCI classes to access classifications associated

with files. The FCL class is used to manage .fcl CSV files in an ESAOA workspace.

The FCI class is an abstract interface class, and it has two concrete subclasses,

namely: the FCI Manager and the FCIClient. The FCI Manager accesses a

workspace’s .fci file directly, via the KitCSVFile class, to manipulate the file

classification index of an ESAOA workspace (FCI files are described in Section

6.4.1.1). The FCI Client implements IPC messaging, which sends requests to the

PEP service to access or modify .fci classification records. By default, FCI Client is

used to manage FCI information; however, a command line parameter can be set

that makes fclass use FCM Manager instead (e.g., if IPC messaging fails).

KitCSVFile and KitFile are both part of the KIT toolkit (see Section 4.6.7.2).

KitCSVFile provides reusable methods for reading and writing CSV files, and KITFile

implements methods for listing files in a directory and for accessing file attributes.

fclass command
line interface

KitCSVFile

FCI

FCL

FCS

KitFile

save/load
.fcl file

FCI Manager

FCI Client

access
classification
indices

invoke
operations

list files

access
classification

indices

Figure 6.11: UML diagram showing software design of the fclass program.

 6-29

6.4.1.4 Operation of the PEP service

The first thing that the PEP program does, when launched by enter-esaoa, is to load

the active workspace’s .fci file, which it then keeps in memory. Whenever fclass

needs to perform an operation on the .fci classification index (e.g., to look up a

classification code), the PEP program is requested to perform the operation via an

IPC message.

The scenario in Figure 6.12 demonstrates the interaction between fclass and PEP

(the sequence of events starts from the top left of the figure, namely the invocation of

enter-esaoa). As illustrated in the figure, the PEP service is started when the enter-

esaoa script is called. The PEP service immediately loads in the .fci file, which stores

the classification index for the current workspace. The user then enters a fclass

command to request the classifications applied to a file named ‘Basic.c’. The fclass

program is executed, and starts by reading in the .fcl file, which links classifications to

file names. The program searches through the .fcl file to find all classifications codes

linked to the file named ‘Basic.c’. Once the list of classification codes applied to

‘Basic.c’ has been determined, fclass then uses IPC messages to request the PEP

program to convert the classification codes into their full classicisation names. Fclass

ends by printing out these classification names. Appendix C.3 lists PEP IPC

messages, together with more detail about its operation.

The PEP program can be started in standalone mode, in order to change .fci file

settings directly, and to perform other operations, such as testing and debugging. In

standalone mode, the user interacts with PEP via a text-based menu structure.

6.4.1.5 Improvements to the CSV files for storing file metadata

The CSV format of the .fci and .fcl files was changed. As mentioned previously, role

and functionality classifications were mixed up in these files in the first version of the

fclass program. In addition, the content of these CSV files was largely unreadable to

a human user as each entry in the .fcl file used classification codes that were stored

in the workspace’s .fci file. At the cost of some data duplication, a ‘description’

column was added to the .fcl file (i.e., a third column). The description column

defaults to a verbatim copy of the description column found in the workspace’s .fci

file. A fourth column was added to the .fcl file to keep track of role classifications.

Furthermore, as a result of having only one description column, and to make it easier

to link descriptions to either roles or classifications, each row in a .fcl file has data in

either the ‘function’ or the ‘role’ column, not both.

 6-30

Figure 6.12: Scenario demonstrating interaction between fclass and PEP.

ESAOA$> fclass Basic.c ‐l

Bash terminal

$> enter‐aoa
ESAOA Version 2.0
…
Starting PEP

Bash terminal

PEP background service

folder

PEP loads .fci file in
personal workspace

PEP Memory:
Code Desc. Inherit
ACM Application code

module
C

BE Binary executable S
…

Enter‐aoa script
starts PEP service

fclass program
Loads .fcl file in target directory.
Requests PEP service to perform
classification index look‐ups.
Performs operation (in the case of
the –l operation used in the
example, this simply lists
classifications applied to the Basic.c
file in the current directory).

Enter‐aoa script starts ESAOA
Bash environment

User enters runs fclass program

fclass uses IPC message to
request classification index
information from PEP service.

ESAOA$> fclass Basic.c ‐l
Basic.c Application Code
module

Bash terminal

fclass displays information
on console

Local
workspace

Altogether, the changes to the .fci and .fcl files mean that the structure of these files

is closer to that of tables in a database. Table 6.4 illustrates this point by using a

tabular view of a .fcl file. The table shows how an additional row, with the same file

name as another row, is needed to add both a functionality and a role classification to

an artefact (in this case to a file named ‘Basic.c’).

Table 6.4: Tabular view of a second version ‘.fcl’ file.
Filename Description Function Role
Basic.c Application code module ACM
Basic.c Process engineer PE
Basic.cm.elf Binary executable BE
Basic.cm.map Code map file CMF

The new version of fclass can keep track of URLs related to information used in

constructing an artefact and can also record from which workspace the artefact

originated. This is done using another CSV named ‘.fos’ (for ‘file origin and sources’).

The ‘.fos’ file resides in the same directory as the files to which it refers. The fclass

program provides a set of command line parameters to access and modify .fos files.

For instance, the ‘-src’ parameter is used to specify the originating workspace of a

 6-31

file, and the ‘-url’ parameter is used to specific a source in the from of a URL. Table

6.5 presents an example .fos file. The .fos file shown in Table 6.5 can be generated

using the following sequence of commands: 1) the command ‘fclass Basic.c -src

communal’ adds the ‘communal’ entry in the first row; 2) the command ‘fclass Basic.c

-url http://www.cforum.com’ adds the URL entry in the first lineof the file; and 3) finally

‘fclass Test.dat -src Team1’ adds the second line in the file. Appendix C.3.2 provides

more detail concerning the use of these fclass parameters and ‘.fos’ files.

Table 6.5: Tabular view of a second version ‘.fos’ file.
Filename src url
Basic.c communal http://www.cforum.com
Test.dat Team1

6.4.1.6 The fclass HTML generator mode

Thus far, the fclass tool has only been shown to produce unformatted text output; this

approach was maintained, as it makes it easier to pipe output from the fclass tool to

other programs (e.g., to use the GNU grep utility to filter the output produced by

fclass). An option (namely the ‘–h’ parameter) has been added to fclass to generate

HTML output for classification queries and description queries (i.e., the ‘–h’ option

can be used prior to either the –qclass or –qdesc parameters to generate HTML

output). By default, when the –h option is used, a file named ‘out.html’ is created in

the root directory of the user’s personal workspace to hold the query results. It is

intended that the user will keep the out.html file open in a web browser and hit the

update button whenever a fclass query is issued. The ‘–hd’ option can be used

instead of –h to force the HTML output of fclass to be output to the console (thus

allowing the output to be redirected elsewhere). Figure 6.13 shows a screenshot of

the out.html file when viewed in a web browser.

 6-32

Figure 6.13: Screenshot showing sample HTML output of fclass.

6.4.2 Addition of the hotspot logging (hsl) tool

The term knowledge hotspot (or just hotspot, as listed in the ESAOA knowledge

ontology in Appendix C.1) demarcates a section of a soft artefact. Illustrations of

hotspots taken from Project P2-2 in Experiment 2 are shown in Figure 6.14. As the

figure demonstrates, a hotspot may include, among other things, a critical paragraph

of a datasheet or a block of code in a code module. These hotspots typically relate to

important information that a developers needs to read and understand in order to

comprehend and communicate a certain body of technical knowledge that is related

to a particular artefact. An additional support tool has been added to ESAOA KMS

version 2 to assist in maintaining these hotspots; the program concerned is the hsl

tool (or HotSpot Logging tool).

The hsl tool is designed to operate in a similar way to the fclass tool, in that it stores

file metadata in CSV files. The tool uses a file named ‘.fhl’ (an acronym for ‘file

hotspot log’) to store metadata. A prototyped hsl is added to ESAOA KMS version 2,

but it has limited functionality (it has no visualization features and cannot copy

hotspot information between workspaces). Although a way of visually highlighting

hotspots would make the hsl tool more usable (e.g., showing highlighted hotspots in

text editors or PDF readers), the prototyped hsl has no such facility as yet (such

features may be added to the program if it is found useful in future pilot projects).

 6-33

Figure 6.14: Examples of hotspots taken from Project P2-2.

Table 6.6 provides an example showing how the .fhl file would record hotspot

information; the entries in Table 6.6 correspond to the highlighting shown graphically

in Figure 6.14. It is important to note that all the files referred to in a .fhl file need to

be in the same directory as the .fhl file.

Table 6.6: Examples of a .fhl file corresponding to Figure 6.14.
Filename Postype Start End Link Description
ICD GPS-RS232C.pdf 2 2 21 2 25 Communications protocol

settings for GPS receiver
csb337-usermanual.pdf 2 17 19 17 22 How to configure UART
GPS.c 1 231 237 Configure comms protocol

A .fhl file has five columns, as is shown in Table 6.6. These columns are summarised

in sequence below:

• Filename: name of the file to which the hotspot relates.

• Postype: how the starting and ending location of the hotspot is represented

(the title ‘postype’ is short for ‘position type’). This column contains the value

0, 1 or 2, used to specify what the ‘start’ and ‘end’ columns represent. The

values are interpreted as follows: 0 indicates ‘start’ and ‘end’ refers to

character offsets in the file; 1 means ‘start’ and ‘end’ are the line numbers;

 6-34

and 2 implies that the two columns refer to a page number followed by a line

number on that page.

• Start and end: these columns respectively refer to the starting and ending

position in the file that corresponds to the hotspot (see above point

concerning ‘postype’).

• Link: used to link to another file that describes the hotspot in detail (this

column contains either a URL or the name of a text document that resides in

the current directory).

• Description: text that briefly describes the hotshot (e.g., a reason for it being

marked – this information can be elaborated by using the ‘link’ column).

Many popular programs used for reading documents (e.g., Adobe PDF Reader and

Microsoft Word) support annotation features such as highlighting text and adding

comments that could be used to identify hotspots. However, the implementation of

the hsl tool has not been integrated with these popular software tools because there

was only limited time available to prototype the hsl tool, and the same hotspot

recording system needs to be utilised with a variety of file types.

The UML diagram in Figure 6.15 gives an overview of the software design for the

HSL tool. The diagram shows that the HSL tool is composed of three parts, each of

which is implemented as a C++ class. The HSL command line interface class

provides the human/computer interface to the user, which invokes methods within the

HSL Manager to carry out operations requested by the user. The HSL Manager

implements the main functionality of the HSL tool, such as adding or removing a

hotspot description. The KitCSVFile is used to maintain a .fhl CSV file, and is the

same class as used in the design of fclass and PEP (see Section 6.4.1).

HSL command
line interface

Figure 6.15: UML diagram showing overview of the HSL tool’s software design.

specify operations

save/load
data

HSL Manager KitCSVFile

 6-35

6.4.3 Improvement to the esaoa-project tool

Additional features were added to the esaoa-project tool, the tool used to keep track

of keywords and general information related to a project folder within an ESAOA

workspace. Project information records have been added to the data kept in memory

by the PEP service. These records include the full name of the active project, its

acronyms and team member names (Appendix C.3 lists the relevant IPC messages).

6.4.4 Tools for synchronizing team and personal workspaces

The esaoa-checkin and esaoa-checkout scripts are provided in the ESAOA

communal distribution to facilitate the process of synchronizing team and personal

workspaces. Note that these scripts should not be used if version control software is

used to synchronize the workspaces.

The esaoa-checkin script overwrites files in the team workspace that have been

changed in the personal workspace – if the original version was changed by the

same user (i.e., if the owner attribute [Von Hagen, 2007] in a Linux file systems is

unchanged). If the esaoa-checkin script encounters a file that has been changed by a

different user, then the user performing the synchronization is prompted to do one of

the following operations: 1) overwrite the file; 2) skip the file, or 3) make a backup

copy of the file before overwriting the file. Generally, it is expected that these prompts

will occur infrequently if teamwork is suitably partitioned, and if the team as a whole

has made appropriate file ownership decisions.

The esaoa-checkout script operates in the opposite direction to esaoa-checkin (i.e., it

copies files from the team workspace to the personal workspace). This scripts also

prompt the user before overwriting files that have been changed by a different user.

The esaoa-checkin and esaoa-checkout scripts are designed to work on ext2 or ext3

[Von Hagen, 2007] file systems (including Cygwin simulations of these). This allows

the scripts to be portable, without needing additional tools to be compiled or installed

(besides the fclass tool which is used by both of these scripts). A potential drawback

to these scripts is that they can only write whole files at a time; they cannot do

patches (e.g., using the GNU patch tool [MacKenzie et al., 2003]) to synchronize

changes to a particular files.

 6-36

6.4.5 Workstation-side scripts

Workstation-side scripts are scripts that reside on the user’s workstation computer,

and are activated remotely from an ESAOA workspace that may reside on a

networked server machine. Workstation-side scripts allow debugging software tools,

code loaders and other tools that run on the workstation computer to be automatically

started from scripts running in the user’s personal workspace (note that the personal

workspace could reside on a remote machine). The incorporation of workstation-side

scripts is a response to an inconvenience noted by developers: all the developers

had to manually repeat many of the same sequences of activities on their workstation

computers (e.g., downloading a compile executable to the workstation, and then

writing the file into flash on the ES platform). Workstation-side scripts allow many

aspects of these mechanical procedures to be automated.

Workstation-side scripts are implemented via a custom-built TCP/IP socket program;

there are two parts to the design: a WSS service (workstation-side server

application), and a WSC (workstation-side client application). Both Microsoft

Windows and Linux implementations of the WSS were developed. The WSS can be

started either manually by the user, or it can be configured to start when the

operating system loads. The WSS invokes either BASH or Windows BAT scripts,

which are placed in the WSS directory (by default, this is set to directory ‘~/WSS’ on

Linux, or ‘C:\WSS’ on Windows). The WSC program is called from within the ESAOA

environment, and it uses a socket connection to involve one of the scripts in the WSS

directory on the workstation computer. By default, the WSC program reads the

workstation computer’s IP number from a file named ~/.wsc in the user’s home

directory (alternatively, the –ip command line parameter can be used to override the

IP address used).

The prototyped WSS and WSC programs have certain limitations, particularly in

terms of security. The main problem is that when a user changes from one computer

to another, and has not updated the ~/.wsc file, server-side scripts on the previously

used computer (i.e., that the user using before) can be inadvertently activated. Future

versions of the WSS and WSC applications will need to be able to synchronize their

IP addresses to avoid the problem of invoking scripts on the wrong workstation.

 6-37

6.5 ESAOA roles

The roles of ESAOA KMS version 2 are structured on the basis that they have

equivalent levels of importance, without any one role dominating the others. This

restructuring of the roles, as mentioned in Section 6.1.1, was also done to facilitate

innovation, while avoiding the risks of neglecting other factors of development that

could result in poor quality results (see Section 6.1.2.1). In addition, the revised roles

improved the correspondence between the described role procedures and the actual

role behaviours that were carried out in practice during the ES prototyping projects of

Experiment 2 (and as per the research delimitations described in Section 1.6).

ESAOA KMS version 2 thus has seven knowledge worker roles, which are

summarised in Table 6.7. The team member (TM) role, which is shown in Table 6.7,

is used to abstract, and collectively refer to, the TL, CR, PE and IE roles by a single

name. Knowledge is transferred between all roles, however specific flows of

knowledge are emphasised in the ESAOA KMS. For instance, a large portion of the

knowledge related to components would be exchanged between the CR and other

roles; similarly, much of the transfer of process knowledge would occur between the

PE and other roles.

Table 6.7: Roles of ESAOA KMS version 2.
Role name AcronymDescription
Chief knowledge officer CKO The CKO is responsible for guiding users of the ESAOA

KMS, implementing or preparing new communal ESAOA
artefacts and procedures for distribution and for
maintaining the communal ESAOA workspace.

Communal knowledge
steward

CKS The CKS assists the CKO, helping to maintain the
communal ESAOA workspace, and guiding users in
procedures and workspace maintenance.

Team leader TL The TL is responsible for managerial aspects of the team,
such as ensuring that team members are performing. The
TL is also responsible for taking minutes during meetings,
and ensuring that tasks are performed by one of the other
team members.

Component researcher CR The CR obtains and produces data artefacts (such as
datasheets), reads them, and places them in the ESAOA
team workspace. The DS is responsible for maintaining the
organisational structure of the ESAOA team workspace
and for supporting the PE.

Workspace administrator WA The WA is responsible for maintaining the consistency of a
team workspace. This task involves ensuring that files are
suitably named and placed in a shared directory structure.
The WA acts partly as a librarian for the project.

Process engineer PE The PE experiments with processes using the data
knowledge and support provided by the CR and the WA.
The PE is responsible for creating process artefacts and
for supporting the IE.

Innovation engineer IE The IE applies processes to test ideas and to produce
innovations. The IE is supported by the PE and WA.

 6-38

In the new set of roles, the IE remains focused on testing innovative design ideas (as

per the previous version of this role). The objectives of the CR and PE differ from

those of the DS and PE of the first version. The CR and the PE have two main

objectives: 1) to achieve expertise in producing and managing a specific form of

knowledge; and 2) to anticipate and distribute innovative ideas. The role of WA was

added to ensure that someone was assigned the responsibility of checking that the

team workspace is kept in a functional state. The subsections that follow provide

further details about the roles outlined above.

In ESAOA KMS version 2, each artefact within an ESAOA workspace can be

assigned a role classification using the fclass tool. These role classifications can be

used to indicate which role is responsible for maintaining the quality and consistency

of a particular artefact4 (Table 6.8 provides examples of role classifications).

Table 6.8: Examples of artefacts and role classification.

Artefact Description Role classification
Component datasheets, e.g. datasheet for a microcontroller
or analogue to digital converter device.

D artefact

Manuals for a development tools (e.g., GCC user manual) PE artefact
Concept diagrams or concept sketches of the prototype IE artefact
Status reports TL artefact
Sample code, experimental code files used for testing
components and interconnections

PE artefact

Data files (e.g., images, saved signal samples) D artefact

6.5.1 The WA and CR roles

As mentioned in Section 6.1.3.1, the WA and CR roles have replaced the DS role,

having been added to address limitations of the ESAOA KMS version 1 roles.

Activities related to researching components have been assigned to the CR role. The

CR role is tasked with maintaining D artefacts (see Table 6.8 for examples of D

artefacts). The CR performs activities such as searching for datasheets and

investigating which components are suited to filling particular project requirements.

The WA is expected to support other team members in terms of organising and

finding artefacts, and assisting in the placement of new artefacts into personal or

team workspaces. The WA is also assigned the responsibility of inspecting the

4 A file’s owner attribute could be used for this purpose; however, role classifications are used
in ESAOA workspaces because different users could fill the same role at different times.

 6-39

quality of artefacts; this responsibility was added in response to the findings of

Section 5.5.2, which showed that teams with successful design reviews and good

quality artefacts tended to complete product requirement more successfully. This

responsibility of inspecting artefacts is focused on the presentation and structure of

the artefacts, rather than their construction, because it is expected to be impractical

for the WA to achieve a detailed understanding of all team artefacts (hence, the

intention is to allow roles to offload some of their artefact administration to the WA, so

as to focus on building knowledge in their knowledge areas). Figure 6.16 models the

processes for which the WA is responsible.

TM

Producing
Artefacts

Locating
Artefacts

WA

Organizing
Artefacts

Quality
inspection of
Artefacts

Figure 6.16: Role support provided by the WA.

The WA role is likely to be performed by one of the other roles (e.g., the PE may also

be the WA). This needs to be accounted for during development, so that the WA role

is assigned appropriately. For example, assigning the WA and IE roles to the same

person may be pointless if, as is shown in Experiment 2, production of innovation

knowledge is likely to reach its peak towards the end of a project. Such a situation

may lead to the artefacts becoming disorganised and inconsistent towards the end of

the project, thereby obstructing, instead of facilitating, the final critical phases of a

development project.

6.5.2 Chain of command

In terms of team management, the roles are non-hierarchical, with the exception of

the TL. All team members are expected to report to the TL as per typical project

management practice. The CKO is in charge of the overall operation of the ESAOA

KMS, and for making sure not only that it is used, but also that it meets the

requirements of its users. The CKO is also responsible for maintaining the

 6-40

consistency and quality of the communal workspace, and to ensure that all team

members have access to it. The WA oversees the consistency of the team

workspace and is assisted and mentored by the CKO and CKS. An organogram for

the chain of command for the roles is provided in Figure 6.17.

reports to reports to reports
to

CKO

reports to

TL

CKS

reports to

PE WACR IE

reports
to

Figure 6.17: Chain of command for ESAOA KMS roles.

6.5.3 Role responsibilities

The ESAOA KMS follows an approach in which most ESAOA knowledge work is

performed independently. For example, most of the ESAOA activities performed by

the CR, such as finding and reading datasheets for components, are done

exclusively by that individual. Knowledge is shared through face-to-face meetings, in

which the roles who share knowledge are physically present, and it is accomplished

with the use of boundary artefacts. For instance, the CR shows the PE how to

configure a hardware device by physically interacting with the device and the soft

artefacts related to its configuration.

In the early stage of a project, team members need to be assigned roles, and the

responsibilities of these roles need to be made clear. The ESAOA KMS provides

guidelines for allocating role responsibilities and corresponding processes and inter-

role relations (Section 6.6 describes the processes performed by the various roles

and the interactions between these roles; Section 6.7 elaborates on the artefacts

used and maintained by the roles). The specific responsibilities of a particular role

are dependent on the project concerned. For example, if the product to be built relies

on GPS, then the CR could be tasked with reading about GPS modules and selecting

an appropriate one, and later the PE would be tasked with establishing procedures to

connect to the module and control it from software.

 6-41

At a high level, the CR, PE and IE are each independently responsible for a particular

form of knowledge form, and for contributing innovation suggestions during the

production and maintenance of this knowledge form. Table 6.9 describes the forms of

knowledge that each of these roles focus on, together with general types of

innovation ideas that they are likely to discover or suggest while producing and

managing this knowledge.

Table 6.9: Team member specialisations.

Role Knowledge form speciality Innovative ideas
Component researcher
(CR)

• Data knowledge related to
components (i.e., hardware
components and software
components used to
develop embedded
systems)

• Data knowledge regarding
interfaces available on the
embedded platform used

• Process knowledge related
to configuring components

• Suggesting well-
documented and
versatile components for
inclusion into the project

• Components likely to
satisfy product
requirements

• Components that may
prove effective for testing
concepts

Process engineer (PE) • Data knowledge related to
development tools (e.g.,
compilers, IDEs)

• Process knowledge
relating to the use of tools,
components, operating
system calls and
middleware

• Understanding device
driver code

• Use of hardware interfaces

• Suggesting tools to use
• Recommending interface

standards (based on
expertise and code
currently available)

Innovation engineer (IE) • Innovation knowledge
• Design concepts
• Methods to test design

concepts
• The degree of success for

particular design concepts

• Concept design ideas
• High-level ideas

Workspace administrator
(WA)

• Organisation of artefacts
• Forms of data knowledge
• Team workspace structure

• Improvements to the
structure of the team
workspace and team
artefacts

As described in Table 6.9, the CR produces knowledge relating to the selection and

configuration of pre-existing or purchased software and hardware components. The

CR focuses in particular on hardware components such as integrated circuits

available on the embedded platform (e.g., digital to analogue converter). The PE

focuses on learning about development tools and producing development procedures

that make use of these tools. The IE is not directly responsible for producing or

 6-42

maintaining data knowledge or process knowledge, but rather focuses on learning

and then using highly focused data knowledge, and pre-tested process knowledge,

which is prepared and taught by the CR and PE. Figure 6.18 models the way in

which these three roles interact. The model also indicates that the CR contributes

innovative ideas (or design concepts) related to components, while the PE suggests

ideas related to development procedures. The figure shows that the IE is performs

the processes ‘invent concepts’ and ‘test concepts’, and collaborates with the TL on

which concepts should be tested (since many ideas may be had, but there is only

limited capacity available for testing the ideas).

Components

Tools & Procedures

CR’s Ideas Innovation

PE’s Ideas

CR

Effective
concepts

Ineffective
concepts

Test concept

Invent concepts TL

Decide which
concepts to test

IE

PE

Primary objective

Figure 6.18: Team members and their knowledge specialisations.

In this approach to allocating responsibilities, it may appear that the CR and PE are

assigned more routine tasks and fewer problem-solving activities than those of the

IE. In practice, however, such a situation is unlikely because all team members are

required to solve problems and to think creatively. The CR and PE are both involved

in getting elements of the product to work, which is likely to involve a significant

amount of problem solving. Moreover, from a project management perspective, the

effort in terms of component research and process development becomes more

visible, thus allowing the TL and higher-level management to obtain a broader view

of the project, instead of seeing progress only on the final product.

 6-43

The IE has a share of routine tasks, similar to those encountered by the PE, in which

small changes to design concepts are made, and then tested and retested. The work

of the IE may be slower-paced than that of the PE because the PE focuses on

developing procedures to use existing products (for which a wide range of support is

often available, such as online forums and chat groups). Thus, the PE may produce

solutions in a matter of hours. The IE, in contrast, needs to create solutions for a new

product, which may take days or weeks, and this is likely to be largely reliant on that

individual’s ability and perseverance. Many of the projects in Experiment 2 showed

instances in which this situation occurred. Project P2-6 provides a clear example in

which the IE performed meticulous work over a long time (months) for each

innovation occurrence5. In the same project, the PE produced process solutions

comparatively quickly, spending a few days producing one solution and then moving

on to the next problem. In the case of Project P2-6, the PE may well have had a less

routine experience than that of the IE.

Furthermore, given that the ESAOA KMS is designed around teams of two to four

members (see delimitations in Section 3.2.2.3), the TL and the WA roles are likely to

be assigned to at least one of the other team member roles (i.e., CR, PE or IE).

The WA ensures the consistency and quality of artefacts in the team workspace,

while assisting other team members in the location and organisation of these

artefacts. The WA is likely to be pleased when the other team members find that the

organisation of artefacts in the workspace is both effective and accessible.

The TL is in charge of managing the members of a team and for liaising with the

CKO to ensure that the ESAOA KMS is useful to the team. The TL role therefore

involves mainly administrative aspects, such as provisioning resources, and ensuring

that team members are capable of, and fully understand, the role they are assigned.

The CKO is responsible for the smooth operation of the ESAOA KMS as a whole,

and this responsibility includes ensuring that aspects of the system, from role level to

the communal level, are effective and that they meet the needs of the knowledge

workers. The CKO is also in charge of the communal workspace, and for negotiating

with the relevant TL for the transferral of artefacts and processes from a team

5 Each occurrence of productive innovation knowledge is the successful implementation of a
significant design concept, which the IE is likely to experience as an accomplishment.

 6-44

workspace to the communal workspace. The CKO needs to perform knowledge

audits, to determine the degree to which the KMS is being used, and whether it

meets the needs of the users. The CKO also directs and trains the CKS’s.

Each CKS is allocated tasks by the CKO. Generally, the CKS assists in maintenance

of the communal workspace and incorporating elements from a team workspace into

the communal workspace. The CKS and WA have many tasks in common.

6.5.4 Division of labour in development team

The ESAOA KMS focuses on development teams comprising two to four developers

(as per the delimitations set out in Section 3.2.2.3). The choice of roles is intended to

separate out the ESAOA activities, allowing portions of the project work to be done in

parallel, thereby speeding up overall development. This section provides guidelines

for the TL to share the workload of a team between its members (note that the CKO

is responsible for supervising the workload of the CKS). Specifics of the various role

responsibilities are elaborated upon in Section 6.5.

Roles need to be allocated near the start of a project: this approach was followed in

all Experiment 2 projects, and it is recommended by the project management

literature [Kliem & Ludin, 1998; Humphrey et al., 1999; Addison & Vallabh, 2002].

Assigning the roles (i.e., PE, CR and IE) early on prevents team members becoming

confused as to what they are expected to do. This occurred in Project P2-2, where

high portions of non-productive knowledge were produced early in the project partly

because individuals were unclear of their assigned responsibilities.

Each task (be it workspace administration, team management and so on) may

involve different amounts of time to perform, and may differ significantly between

projects. For example, one project may involve a small number of complex artefacts

that are easy for the WA to keep organised within a team workspace; but a different

project may have many artefacts that take longer to organise.

Figure 6.19 presents a recommended strategy for the workload breakdown of a

development team of three members. This allocation of tasks is based on Experiment

2 finding, where each team had three members. Each block in the figure indicates a

major task performed by each team member, while the height of a block indicates the

duration for the task. Reasoning for this allocation of tasks is given below. Note that

projects are not all expected to work in precisely the same way, as emphasised

 6-45

previously. Thusly, this task allocation is given as a recommended starting point for

new projects using the ESAOA KMS, and can be adapted as the project proceeds.

Study of tools

Workspace
administration

Study of
Components

Study of
components

Study of
Tools

Study of
components

Process
development
(using tools

and
components)

Component
researcher

Process
engineer

Innovation
engineer

Testing
concept
ideas

(applying
process &
component
knowledge)

Workspace
administrator

Study of tools

Team
management

Team
leader

+ +

Team
Member 1

Team
Member 2

Team
Member 3

ROLES ASSIGNED

Figure 6.19: A potential scenario providing a fair division of labour (each block
represents a task and the height of each block indicates the duration).

The arrangement of blocks in Figure 6.19 indicates an allocation of responsibility, in

which the first team member fills both roles of CR and WA. The second team

member performs only the role of PE, and the third member is both the IE and the

TL. Depending on the specific project involved, it may be more effective to assign the

roles differently. Experiment 2 showed that the production of knowledge could be

divided between roles to some extent; however, this division of knowledge production

could not be done to a high degree of precision (see results in Section 5.7.7). For

example, while developing process knowledge, the PE is likely to encounter the need

for additional data knowledge related to components and, depending on the problem

concerned, it may be faster for the PE to pursue the needed knowledge himself or

herself instead of requesting a different role to assist in obtaining the needed

knowledge. For this reason, the TL should expect a particular roles is likely to

produces much of, but not all, of a particular knowledge type. Correspondingly,

Figure 6.19 shows that a particular team member centres on producing a certain

form of knowledge, but also accounts for the production of other knowledge forms.

 6-46

In Section 5.5.8, it was shown that 35 percent of knowledge occurrences on average

involved ESAOA activities related to tools, while 65 percent of the occurrences

related to components. This finding indicates an approximate ratio of 1:2 for the

workload of studying tools to researching components, therefore the block

representing study of components in Figure 6.19 is twice as high as the block for

studying tools. Team management activities, as were discussed in Section 5.5.9, are

likely to take considerably less time than ESAOA activities that involve studying

components or producing development methods; for this reason, the team

management block in Figure 6.19 is rather short. As Experiment 2 demonstrated, the

development of process knowledge, and experimentation to produce innovative

knowledge, takes significant effort. Consequently, blocks representing these tasks

are tall. Workspace administration is expected to be less time-consuming; therefore

the workspace administration block is of intermediate height.

6.5.5 Role interrelations and workspaces

In the ESAOA KMS, a role interrelation concerns the exchange of knowledge or the

transfer of techniques between roles. ESAOA KMS version 2 has five categories of

role interrelations: 1) relations between team members, 2) relations between team

members and the TL, 3) relations between the CKS and a team member, 4) relations

between the CKO and a team member, and 5) relations between the CKO and CKS.

In the ESAOA conceptual modelling language, a role interrelation corresponds to a

connection drawn between two role atoms (see Section 3.11.2.1).

Role interrelations are carried out in three main ways using the ESAOA KMS, namely

through: 1) face-to-face meetings, 2) online collaboration (e.g., email and forums),

and 3) examination and adaptation of workspace artefacts. Role interrelations can

occur in other forms too, such as telephone conversations. Role interrelations

described in the ESAOA KMS are carried out by modifying, or using, boundary

artefacts (boundary artefacts are defined in Section 4.6.3.3). Interrelations between

roles involve access or changes to boundary artefacts. Many role interactions

associated with the CKO or CKS are likely to involve artefacts in the communal

workspace (e.g., updating or adding to the collection of communal artefacts).

Role support structures are realised by using role interrelations. The term role

support structure relates to the means by which one role is assisted by another role,

or how one role can delegate duties to a second role. In ESAOA KMS version 2, the

CKO and CKS support team members. Section 6.1.3 discussed the role support

 6-47

structure of ESAOA KMS version 2, and cited the reasons for changing the role

support structures of version 1. Figure 6.20 models the role support structure and

outlines the role interactions for the KMS. A role support relation is shown as a line

that links two roles, and is terminated by a solid dot on the role that is supported. As

shown in the model, the CKO and CKS operate mainly in the communal workspace,

while the CR, PE, IE and WA operate chiefly in their own team workspace, although

they also use the communal workspace. The model also indicates that all team

members report to the TL for supervision of KM strategies, and that the CKO is

available to the TL for consultation on KM techniques.

The role support structure shown in Figure 6.20 accommodates a process flow in

which the CR starts by researching components, while the PE then builds process

knowledge with support of the CR. Finally, the IE carries out experiments using

process knowledge and component knowledge produced by the previous two roles.

These associations are elaborated in Section 6.6 in terms of ESAOA processes.

Innovating and testing
design concepts

Producing process
knowledge to adapt
components using tools

Producing data knowledge
related to ES components,
and process knowledge
related to configuring
components

Communal
processes

Communal
artefacts

COMMUNAL WORKSPACE

TEAM WORKSPACE

Managing the team
members, ensuring the
ESAOA framework is of
use to each role

IE

PE

Producing data and
process knowledge to
configure and use tools CR

CKS

CKO

consults

TL

Figure 6.20: Role support structure for ESAOA version 2. The shaded arrows indicate
how innovation builds on knowledge and procedures developed by the PE and CR.

 6-48

6.6 ESAOA Processes

This section provides details on the ESAOA processes that occur in ESAOA KMS

version 2. The processes are grouped according to the role that predominantly

performs them. Role interrelations, which typically involve a transfer of knowledge

between two different roles, are shown in the models for both roles.

6.6.1 Processes of the chief knowledge officer (CKO)

The duties of the CKO for ESAOA KMS version 2 are largely the same as those

described for version 1 (see Section 4.6.6), but some refinements, based on the

results of Experiment 2, have been made. The CKO is responsible for managing the

KMS at a high level, ensuring that it addresses the needs of the knowledge workers

who use it. The CKO should have computer engineering skills, be a good trainer,

have experience in software engineering, and be able to program in ANSI C, C++

and Bash scripts. The CKO also requires an understanding of KM theories. The CKO

influences the operation of the KMS in the following ways:

1. Guiding developers in effective KM practices within the specialised area of ES

development;

2. Proactively ensuring that knowledge workers using the system are satisfied

with the system, and following up requests for changes to the system;

3. Taking note of, and recording, important KM strategies used by team

members;

4. Keeping track of the roles, artefacts and processes involved in effective KM

strategies (and earmarking elements of team workspaces for incorporation

into the communal workspace of the KMS); and

5. Maintaining the overall operation and structure of the ESAOA KMS, ensuring

processes are applied consistently and support structures (i.e., CKS, ESAOA

workspaces and associated computing infrastructure) are functional (this

activity may include updating DAN and RSD models describing the KMS).

The processes performed by the CKO and role interrelations involving the CKO are

modelled in Figure 6.21. A principal duty of the CKO is to ensure that users of the

ESAOA KMS understand their designated roles and associated processes. Section

5.5.3 showed positive correlations between certain types of knowledge production

and effective design reviews; for this reason, it may be beneficial for a development

team to have the CKO present during design reviews to provide expert advice on KM

 6-49

strategies in order to enhance productive knowledge production and improve the

success of future design reviews. The model also indicates that the CKO needs to be

able to manage knowledge related to components and tools, as these activities are

necessary for maintaining the communal workspace.

Generally, the CKS supports the CKO in maintaining ESAOA workspaces once team

members have been trained in their roles. However, the CKO is responsible for

maintaining the integrity and quality of the communal workspace (as is shown by the

process maintenance flow from the CKO to the workspace maintenance process

atom). The figure also shows that the CKS can act as a CKO proxy, handling some

of the requests submitted by team members.

The CKO is responsible for a number of administrative tasks related to the running of

the ESAOA KMS, such as managing the CKSs, liaising with team leaders, and

ensuring that the computing infrastructure of the KMS is functional. The CKO needs

to ensure that communal artefacts and support structures are being properly

maintained and extended. Liaison between the CKO and project teams is largely

informal, for example, team members email requests to the CKO or inform the CKO

of problems related to the use of the KMS. For the sake of efficiency, the CKO should

have full access to ESAOA workspaces to make changes remotely (provided this is

permitted by the security requirements for the development team concerned).

The CKO is responsible for training the CKS. This training ensures that the CKS is, in

turn, able to train team members in performing the roles that have been assigned to

them. In Experiment 2, there was one CKS, and he was trained by observing how the

CKO assisted the first couple of teams in learning their roles.

 6-50

CKS

workspace
maintenance

TM
TL

Minutes

Code & design
review meeting

CKO

- Knowledge management

- Computer engineering
- Software engineering
- ANSI C, C++ programming
- Bash scripting

Data knowledge
management

Innovation knowledge
management

CKS
training

CKO / Team
liaison

Components used,
remembering procedures,
where to find tutorials, howto
guides, etc.

Specifying components, writing
code, capturing routine chores
as scripts, understanding
sample code. Describing
complex development
problems, willingness to post &
answer forum questions.

Process knowledge
management

Artefacts containing innovations; ideas
tested, concepts that worked and did
not work, further design issues that
need to be investigated.

Requesting process knowledge.
Keeping track of innovation knowledge
produced. Prioritizing ideas to test.

Which artefacts are D
artefacts, records/minutes
relating to decisions,
knowledge production
tasks assignments

Logging useful search
results, tracking
component ids, reading
and organizing data
artefacts (datasheets,
sample code, etc).

Component
knowledge
management

Tool
knowledge
management

Computing
infrastructure
maintenance

DAN

KMS supervision
& maintenance

CKO

RSD

Figure 6.21: Processes performed and maintained by the CKS.

6.6.2 Processes of the communal knowledge steward (CKS)

The CKS performs a number of important duties in transferring knowledge produced

in one team to other teams; these duties include maintaining the communal

workspace, assisting in the training of knowledge worker roles, and capturing

knowledge produced by a team in the form of communal knowledge artefacts. The

CKS acts as a proxy and assistant to the CKO, being involved in training team

members, helping the CKO to organise artefacts in the communal workspace and

transforming team artefacts into communal artefacts (with the permission of the TL

concerned).

The responsibility of the CKS starts with training team members to perform the roles

they have been assigned. Once the team members have been trained, the CKS

changes focus to support the CKO and team leaders in respectively maintaining the

communal workspace and the team workspaces. The CKO depends on the CKS to

check that teams are making use of the ESAOA KMS; the CKO also relies on the

CKS to help with the creation and organisation of communal artefacts. Figure 6.22

models the processes performed by the CKS. In the first version of the KMS, the

CKO was responsible for maintaining team to communal artefact conversion, but this

responsibility is better allocated to the CKS, with assistance from the CKO.

 6-51

Communal
artefact

CR training

CKS
training

PE training IE training
Team
workspace
maintenance

TM

Team
artefact

CKO

WA training

CKS

Team to communal
Artefact conversion

Figure 6.22: Processes maintained and carried out by the CKS.

Using common KM terminology, the CKS can be said to act partly as a “knowledge

broker” and partly as a “knowledge steward” [Davenport, 2002] [Brazelton & Gorry,

2003]. The most important skills required by the CKS are tracking and classifying

explicit knowledge (i.e., knowledge artefacts such as code modules), in addition to

keeping records.

6.6.3 Processes of the team leader (TL)

The main processes of the TL include managing the team, ensuring that each

member contributes to the project, and liaising with the CKO (or CKS) with regard to

the use of the ESAOA KMS. Each project team should have only one TL, who is

expected to fill at least one of the other team member roles. Section 6.5.4 provides

guidelines for combining the TL role with another role.

In the first version of the ESAOA KMS, the TL was not assigned any procedures to

be maintained as part of the KMS. However, based on the Experiment 2 projects, it

was found that the TL was involved in various responsibilities relating to team

members performing ESAOA activities. Figure 6.23 shows processes of the TL.

The code and design review procedure and team management procedures are

shown as external procedures (drawn using dashed lines) in Figure 6.23 because

these procedures are considered to exist at a level outside the ESAOA KMS.

 6-52

<<manage>>

Team management
(not part of ESAOA)

Team
workspace
inspections

<<consults>>

CKO

Code and design reviews
(not part of ESAOA)

WA

Team
artefact

B
General KM
strategies

KM
methods

TM

Role
Knowledge

Logistics
Knowledge

Tracking and
management of
role knowledge

Role
responsibilities

B

Task
assignments

B

Tracking and
management
of role
knowledge

Role
extension

Knowledge
audits

TL

Figure 6.23: Processes performed and maintained by the TL.

The TL role for the ESAOA KMS is not equivalent to that of a TL role defined in a

more generalised software development process. Rather, the ESAOA TL role

describes duties that are performed by a team member who is leading a team in the

use of the ESAOA KMS. The TL’s role described in ESAOA KMS version 1 has been

expanded to include additional process; these procedures are described below and

modelled in Figure 6.24.

The TL is responsible for performing knowledge audits, which includes tasks such as

ensuring that knowledge is suitably captured by the team; the WA assists in this task.

The TL in turn assists the WA in performing team workspace inspections (which are

usually part of a knowledge audit). The TL is also responsible for ensuring that

workspace inspections are performed, and he or she is likely to delegate a large

portion of this work to the WA. As shown in Figure 6.24, the CKO is available to the

TL for consultation concerning the organisation of the team’s workspace. The TL also

needs to learn general principles of good KM strategies in order to assist members of

the team on this issue; similarly, the CKO needs to be available to the TL to assist in

recommending KM strategies to team members. The responsibility for tracking and

managing logistics and role knowledge related to ESAOA activities are added to the

responsibilities of the TL.

 6-53

The TL is accountable for role assignment, for the clarification of role responsibilities,

and for ensuring that duties are allocated fairly. Figure 6.24 models these processes.

The TL plays a supervisory role in tailoring and expressing ESAOA processes for a

team, whereas the CKO advises the TL on these tasks. The TL assesses role

extension requests (i.e., additions or reallocations of role responsibilities, as

discussed in Section 6.1.3.4), and administers the implementation of these requests.

Boundary artefacts used in the capture and dissemination of role knowledge include

the responsibilities artefact and the role allocation list. The role responsibilities

artefact is in the form of an organogram or simply a textual list that indicates which

responsibilities are allocated to each role in the KMS. The role allocation list indicates

which ESAOA KMS roles are assigned to the team members.

Role knowledge

CR

PE

IE

Role
responsibilities

Bt

Role assignment

TL

CKO
Decide Role
assignments

Role
allocation list

c

WA

Figure 6.24: Decision and allocation of roles.

As described in Section 6.1.2, roles besides the IE may discover innovations, or

strategies to test a particular innovation, which may significantly enhance the

production of innovation knowledge. In ESAOA KMS version 2, the IE remains the

one responsible for testing innovations, but allowance is made for the other roles to

suggest ideas, which are then carried out, if approved by the IE in agreement from

the TL. Notice that the IE remains the ultimate decision maker in deciding which

ideas to test – the TL’s involvement in this issue is to ensure that ideas from other

team members, especially suggestions that could be tested quickly due to a team

member’s insights, are considered. This aspect is modelled in Figure 6.24.

 6-54

6.6.4 Processes of the component researcher (CR)

The CR is mainly responsible for researching hardware and software components for

use in the development project. The duties of the CR include finding, reviewing and

organising the documentation and sample code related to components. The CR is

generally expected to produce the most data knowledge in a project (since

Experiment 2 show that most of the projects produced more data knowledge related

to components than related to tools; see Section 5.7.8). The PE and IE will rely on

the CR to do a large amount of the groundwork related to knowledge of components,

such as investigating the suitability of a specific component6. The CR assists the PE

by providing component knowledge that is highly focused on the particular product

being built. Figure 6.25 models the processes performed by the CR, indicating

artefacts that are most commonly used and maintained by this role.

As is the case for all roles, the first process performed by the CR is training – this is

modelled in Figure 6.26. During training, the CKS or CKO introduces the CR to the

production and management of data knowledge.

*

D artefact

*

Documentation

Software
artefact Software

Data knowledge
Knowledge of search tools,
websites, component
manufacturers, faqs, how to
sites, journals / magazines.

Effective use of keywords,
adapting DS artefacts.
Assisting PE to find sample
code, datasheets, other
information sources.

AOD B

Component
Datasheets

K

Component
Manual

K

Documentation K

Sample
code

B

Search log K

Focused component
knowledge
IC control pins to use,
compatible o/s’s, drivers

Relevant howto manuals for
problem concerned. Sections
of sample code to use.

Connectivity list B

Location and study of
components
- Component datasheets
- Component manuals
- Sample code

Hardware
interface list

B

IE

PE

CR

Figure 6.25: Processes of the CR.

6 This task is often not straightforward, as it often involves checking the availability of the
components, finding and downloading their datasheets and determining if the components
have operating system support, among other tasks.

 6-55

CR Training

Data knowledge
management
Which artefacts are DS
artefacts, records/minutes
relating to decisions,
knowledge production
tasks assignments

Logging useful search
results, tracking
component ids, reading
and organizing data
artefacts (datasheets,
sample code, etc).

CKS

CKO

D artefact

CR

Tool listB Tool manualB

PE artefactB

Hardware
interface
list

B

Connectivity listB

Sample
source code

B

Figure 6.26: CR training process.

As indicated in Figure 6.26, the CKO maintains and documents the CR training

process and teaches this process to the CKS. The CKS provides support for the CR

for using the processes learned during training. Much of this training is tacit, in which

the CKS shows the CR effective strategies for web searches, methods to log search

text and URLs, and how and where to save datasheets and other information

documents to the team workspace. The CKS also demonstrates the ESAOA tools

and types of artefacts that a CR is likely to find and use during a project.

Skills required by the CR include effective search strategies (such as the use of

search engine keywords) and knowledge of useful information sources (such as

books and online forums) from which data knowledge can be acquired rapidly.

6.6.5 Processes of the process engineer (PE)

The PE constructs development procedures, for example, determining configuration

settings for an operating system, or the steps needed to control a specific hardware

component from software. ESAOA version 1 intended to shift production and

management of data knowledge away from the PE to the DS. However, Experiment

2 results showed that this approach was ineffective because the PE ultimately still

had to acquire large portions of a project’s data knowledge7 (see Section 5.7.7).

When investigating the knowledge produced by the DS and PE in Experiment 2, it

was found that the DS generally acquired data knowledge related to components,

whereas the PE typically obtained data knowledge related to tools. For this reason,

7 It is likely that the PE would find that it takes longer to explain to the DS what data
knowledge is needed than simply searching for the necessary information in person.

 6-56

the PE role in ESAOA KMS version 2 includes aspects of producing and managing

data knowledge related to tools.

Figure 6.27 models the main processes of the PE, showing related roles and

artefacts. As is shown in the model, the PE manages both hardware and software

components of an ES, and he or she produces and captures process knowledge

using a variety of techniques, including scripts, device drivers, sample code, how-to

guides, and key steps, which are then used to transfer process knowledge to the IE.

The PE is responsible for obtaining most of the process knowledge used in a project,

and is further responsible for acquiring and managing knowledge related to

development tools. The CR provides the PE with highly focused component

knowledge. The WA assists the PE and DS in managing data knowledge.

The first process in which the PE is involved is PE training (see Figure 6.28). During

this training, the CKO and/or CKS instruct the PE, using mainly a tutorial-based

approach, on effective means of creating and managing process knowledge, as well

as how to acquire and manage knowledge related to development tools.

Sample
code

Device
drivers

How to
guide

PE artefact

Managing hardware and
software components Producing PE

artefacts
Process knowledge
Components controlled.
Artefacts involved in a
development processes.
Data sources. Individuals
who contributed process
knowledge.
Methods to control
components, how to adapt
artefacts.

Routine procedures
Configuration steps. Sequences.

Sequence of steps to compile code for
a particular processor. Series of
procedures / tool invocations to be
repeated precisely.

Scripts

Scripting

Key steps

B

Tool knowledge
Functions available in
menus, compiler
command line arguments

Methods to configure
tools, which menu items to
use to produce code for
the embedded platform.

PE

Component knowledge
Functions of IC pins
Where and how relevant application
related information is available

D artefact
B

CR

WA

Figure 6.27: Main processes carried out by the PE.

 6-57

PE Training

PE

D artefact PE artefact

describe describe

PE Process

describe

Process knowledge
management
Remembering components used,
procedures to use them. Knowing
where to find good resources (tutorials,
howto guides) to assist in development
procedures (e.g., forums)

Specifying components, writing code,
capturing routine chores using scripts.
Reading sample code. Describe
complex development problems,
explain solutions, willingness to
interact with fellow engineers (or
component manufacturers) using
forums and email.

CKS

CKO

Management of tool
knowledge
Types of compilers, commonly used
embedded operating systems, tool
search keywords, etc.

Effective artefact location and
organization strategies, creation of
scripts and makefiles that automate
use of tools, etc.

CKO

PE

CKS

Figure 6.28: The PE training process.

The IE uses procedures created by the PE in order to test design concepts. Both the

PE and IE are involved in experimentation. However, the difference between their

experiments is that the PE attempts to determine methods to configure and control

components and tools that will be used in the system prototype, whereas the IE

focuses on testing design ideas by using processes provided by the PE and making

little additional effort in terms of developing methods to configure tools or interface

components. The PE requires expertise in designing and testing development

methods, as well as being able to keep memory joggers and component lists that will

help the PE or IE to repeat these processes at a future time. Figure 6.29 models the

way in which process knowledge is transferred from the PE to the IE, with the

possible inclusion of PE artefacts into the communal workspace.

 6-58

Development
Tool T

Bt

Bt

IE

Device X Bt
Key steps
to control
device X

CKS

 c

PE

Development
method

Process knowledge

Key steps for
development
method

Bt

Figure 6.29: Processes involved in the interaction between the PE and IE.

6.6.6 Processes of the workspace administrator (WA)

The WA is responsible for ensuring the overall integrity and consistency of the team

workspace. The WA organises and keeps track of (but does not adapt) most files

related to data knowledge (e.g., datasheets and data files used for regression

testing). Other roles pass D artefacts on to the WA to place into the workspace, and

possibly “polish” these (i.e., add metadata, neaten layouts and update the AOD). The

WA notifies the CKS of potentially useful artefacts for transfer into the communal

workspace, and, if this transfer is approved by the TL, the WA works with the CKS on

transferring these artefacts (other team members may need to assist with this

process). Figure 6.30 models processes and role interactions concerning the WA.

The WA assists mainly the CR and PE roles in the organisation and location of

artefacts in the team workplace. The WA performs quality inspection of artefacts, to

ensure that they are sufficiently readable and that metadata related to them (e.g.,

author details and file dependencies) are suitable. The WA inspects artefacts mainly

at a superficial level, as it would be counterproductive for this role to undergo the

learning curves of both the CR and PE roles. The WA is responsible for setting up

project directories in the team workspace, and for assisting the TL in performing

knowledge audits.

 6-59

Maintain team
workspace consistency
and integrity

Bt D artefact t Organization of
D artefacts

TEAM WORKSPACE

TM

Location of D
artefacts

COMMUNAL WORKSPACE

Bt D artefact c
CKS

Team to
communal artefact
transfer

Team workspace
inspections

Knowledge audit

TL

Bt AOD t
WA

Figure 6.30: Processes and role interactions concerning the WA.

The WA should be competent in keeping records and taking notes at meetings so

that important knowledge produced by the team is made explicit and retained.

Consequently, the CKS and WA perform similar tasks, but for different workspaces.

6.6.7 Processes of the innovation engineer (IE)

The IE is responsible for performing experiments in which concepts are tested and

innovation occurs. The PE and IE are likely to spend a significant amount of time

working side-by-side, with the PE explaining development methods to the IE, and the

IE identifying additional development methods (e.g., how to control a new type of

component) and modifications to existing processes (e.g., optimising the control of a

certain component). Most interaction between the PE and IE is likely to be rapid and

face-to-face; this form of interchange is difficult to capture and record. For this

reason, the PE is involved in capturing solution strategies and memory joggers that

will assist in recovering or remembering development strategies. Similarly, the IE

records successful solutions and key points regarding strategies used, in addition to

maintaining versions of operational designs and prototypes. Figure 6.31 models the

main procedures and role interactions of the IE.

 6-60

Prototype
circuits

IE artefact

Managing IE artefacts

Innovation knowledge
Design concepts to test, components and
artefacts needed to test concepts, artefacts
produced through innovation. Which
development procedures (provided by the
PE) to use in certain experiments.

Experimentation method, explaining
innovation goals, requesting and
describing development procedures
needed. Planning experiments to do.

Sample input /
output

IE

Concept
sketch

It

Code
modules

It Application
code

It

It

PE

PE artefact

Innovation
key points

It

D artefact CR

Experimentation
to test concepts

Producing IE
artefacts

Concept
drawing

It

Figure 6.31: Processes and artefacts used and managed by the IE.

Figure 6.31 shows that the IE generally learns development strategies from the PE.

However, the IE seldom needs to obtain the detailed process knowledge learned by

the PE, such as how exactly a specific development procedure was constructed. The

objective of the IE / PE relation is that the IE simply learns from the PE which scripts

and configuration files to use, and which tool commands (or keystroke sequences)

are relevant in the circumstances, in order to speed up the innovation process.

Innovation depends on many factors, such as an individual’s prior experiences,

working environment, resources, collaborators, and independence, to name a few.

Consequently, the IE is the most challenging of roles to train because innovation (as

discussed in Chapter 2 Section 2.5.6) is highly dependent on many complex issues.

It is thus difficult to characterise explicitly or structure in the form of processes and

interactions. In terms of the ESAOA KMS, the IE is trained on the broad categories,

and use, of innovation artefacts (e.g., recording key points to capture design

solutions), accessing and maintaining these artefacts in the ESAOA workspace, and

the use of concept diagrams and other innovation artefacts to assist in knowledge

exchange between the IE and other team members. The CKO is likely to perform

most of the IE training (as shown in Figure 6.32); the CKS could assist the CKO and

provide additional support to the IE during this training process.

 6-61

Innovation knowledge
management
Artefacts containing innovations;
ideas tested, concepts that
worked and did not work, further
design issues that need to be
investigated.

Requesting process knowledge.
Keeping track of innovation
knowledge produced. Prioritizing
ideas to test. IE artefact

CKO

IE Processes IE

CKS
PE artefact

IE Training

Figure 6.32: Training the IE.

The principal qualities of the IE are creativity, expressiveness and experimentation

skills. The IE needs a willingness to test design ideas, coupled with the ability to

explain experiment designs to the PE, who will help to establish practical

development procedures needed to carry out experiments.

6.7 Artefacts

The types of artefacts used in the second version of the ESAOA KMS are

summarised in Table 6.10. The first column of each row names the artefact. The

second column indicates the classification of the artefact (e.g., a D artefact or a PE

artefact). The third column indicates the role or roles responsible for maintaining the

artefact, while the fourth column lists the roles that use it. The fifth column further

designates the artefact as a boundary (B) artefact or a knowledge (K) artefact (this

column is left blank if the artefact concerned is neither a boundary nor a knowledge

artefact). The sixth column provides a brief description of the artefacts and, where

applicable, includes a reference to an example of the artefact.

Table 6.10: Artefacts of the EMASO KMS.

Artefact Name Classification Main-
tainer

Use by
roles

B or K
artefact

Description

Role
responsibility list

T D artefact TL ALL B General (on-going) responsibilities for a
role (e.g., WA does quality inspection of
the team workspace each month)

Task
assignment list

T D artefact TL ALL B A list of tasks assigned to a role

CKS
responsibilities

C artefact CKO CKS,
CKO

B General (on-going) responsibilities of
the CKS, e.g., maintaining communal
artefacts.

CKS task C artefact CKO CKO, B A specific task (or tasks) assigned to

 6-62

assignment CKS the CKS.
KMS request
form

C D artefact CKO ALL B Formal request indicating changes to be
made to the KMS

KM report C D artefact CKS CKO B Recommendations for managing a
certain type of knowledge

Artefact list D artefact CKS,
WA

ALL K A list of artefacts contained in a
workspace or workstation

Infrastructure
control list

C D artefact CKO CKO K Keeping track of information
technology, computers, software tools,
and other resources used in general for
ESAOA activities by the organisation

Code & design
review report

D artefact CKO,
TL

CKO,
TL

B Log of relevant issues observed during
a code and design review that affect
management of ESAOA knowledge

Components list D artefact CR TM B A list of components used by the team
(or suggested for use by the CR)

Interface control
document

D artefact PE TM K The PE’s (or CR’s) own description of a
component interface, or a description of
the embedded product’s interfaces

Source code T P or I
artefact

PE /
IE

IE B Part of the embedded software for the
product under development

Sample code P artefact PE PE,IE B Either downloaded sample source code
or code developed by the PE and used
as part of a development process

Script P artefact PE PE,IE B A store of automatable process
knowledge

Training script P artefact CKO CKS B Steps to carry out training
Tutorial P artefact CKO CKO,

CKS
B Slides or screenshots used in training

the CR and PE roles (tutorials are not
used in IE training)

Concept brief I artefact IE ALL B A short textual (e.g., one paragraph)
description of a concept design to test).
Usually produced before a concept
model or concept design

Concept model I artefact IE ALL B A model of an idea to test
Concept design I artefact IE ALL B A document or diagram describing a

strategy to implement a concept
Concept
drawing

I artefact IE ALL B A diagram that expresses the overall
concept of a product being built

Concept sketch I artefact IE ALL B A rough or working version of a concept
drawing

Concept cartoon I artefact IE ALL B Describes the operation of a concept
using a sequence of rough drawings

Member contact
list

T D artefact TL TM B A list of all the team members and their
contact information

Meeting agenda T D artefact TL TM B Agenda for a team meeting
Meeting minutes T D artefact TL TM B Minutes from a team meeting
Timetable T D artefact TL TM B Timetable to plan when and where

ESAOA activities will be performed
Component list D artefact CR ALL B List of components used by the team
Component
datasheet

D artefact CR ALL K Datasheet for a component (e.g., a
microcontroller datasheet)

Component key
points

D artefact CR ALL B Crucial, application specific, issues
related to a component

Hardware
interface list

D artefact PE ALL B List of hardware interfaces supported by
a certain embedded platform

Connectivity list D artefact PE ALL B List of software interfaces or standards
supported by a platform

Tool list P artefact PE ALL B List of tools (or equipment) needed for a

 6-63

 6-64

development process; or a list of tools
used by a team

Tool manual D artefact PE ALL K A manual for a tool or lab equipment
Key steps P artefact PE ALL B Important steps of a process
Process tutorial P artefact PE IE B Used by PE to capture a process and to

teach the IE how to perform the process
Howtos P artefact PE ALL B Either downloaded step-by-step

instructions for solving a problem, or a
document developed by the PE and
used to explain a process to the IE

Audit report D artefact TL CKO,
TL

B Summarises the result of a knowledge
audit

Sample files D artefact CR,
WA

ALL K Files used in regression testing, or
sample input/output data file

Workspace plan D artefact WA,
CKS

ALL K A rough layout for an ESAOA
workspace

AOD D artefact WA,
CKS

ALL B A schematic describing an ESAOA
workspace and directory structure. An
example is provided in Figure 4.21

RSD D artefact TL,
CKO

ALL B A role support drawing (RSD) shows
how roles in the KMS are supported by
other roles (Figure 6.1 is an example)

Day plan T D artefact TL TM B Important activities to perform on a
single day

Todo list T D artefact TL TM B List of important tasks that the team
needs to complete

This chapter presented the second version of the ESAOA KMS, and highlighted the

changes, as well as the reasons behind these changes, which were made to the first

version of the KMS in constructing the second version. The next chapter (Chapter 7)

provides the conclusion for this thesis, in which the research question and

hypotheses that directed this project are analysed, the contributions made by the

thesis are highlighted, and plans for further work are discussed.

Chapter 7:

Conclusions and Future Work

This thesis has focused on the construction, evaluation and evolution of an

experimental knowledge management system (KMS), namely the ESAOA KMS, with

the intention of determining an effective structure for implementing such a KMS. As

emphasised in Section 1.3, the ESAOA KMS is intended for use during ESAOA

activities within the context of ES product prototyping projects carried out by novice

ES engineers.

ESAOA activities (defined in Section 1.1.7) concern a subset of meso level KM

activities that take place in ES development projects. As explained in Section 1.2.4,

organisational activities occur at the macro, meso, and micro level [House et al.,

1995]. Rousseau & House [1994] describe meso level tasks as involving the

integration of macro and micro processes; in an ES development context, this type of

KM involves facilitating the way in which developers experiment with code, organise

data and files, and learn how to modify components.

The rationale for this thesis (detailed in Section 1.2) can be expressed in two main

reasons. The first reason is that the research literature concerning KM at the meso

level is comparatively sparse compared to the literature that covers KM at the macro

and micro levels of software development. Thus, this thesis was pursued to

contribute to meso level KM research related to ES implementation tasks. The

second reason for this thesis is to develop the ESAOA KMS as a possible approach

to facilitating knowledge production during ES implementation tasks, thereby

promoting the successful completion of ES projects (this can be viewed as a

response to the general challenges of ES development discussed in Section 1.2,

such as the fact that ES projects are often late and over budget).

The research activities concerning this thesis involved studying KM methods used by

novice ES engineers and incrementally refining these methods to develop an

increasingly more visible and better refined KMS that can be applied consistently by

 7-1

subsequent teams of novice ES engineers. The research design involved empirical

research methods, which followed an incremental approach to developing a testing

the ESAOA KMS using two experiments, namely Experiment 1 and Experiment 2.

Experiment 1 involved two teams using their own ad hoc KM techniques. Data

obtained from this experiment were first used in a preliminary study, while

establishing analysis methods that built on theories from the research literature.

These analysis methods were used in the KMS Analysis phase of the research

design. The KMS Analysis phase was applied to the Experiment 1 data, and this was

followed by the first iteration of the Framework Construction phase (during which

version 1 of the ESAOA KMS was developed).

Experiment 2 involved 13 development teams, each of which used ESAOA KMS

version 1 during ESAOA activities in their projects. The second application of the

KMS Analysis phase was applied to data obtained from this experiment. The results

were used to identify refinements to ESAOA KMS version 1, which were then

incorporated into the design of ESAOA KMS version 2 (and presented in Chapter 6).

The preceding text has provided a brief synopsis of this thesis. The remainder of this

chapter proceeds as follows. Section 7.1 reviews the research questions and sub-

problems that guided this thesis. Section 7.2 reflects on the research findings in

response to the research questions and the sub-problems. Section 7.3 summarises

the main contributions of this thesis. Section 7.4 ends the chapter with plans and

suggestions for future work.

7.1 Response to research questions and sub-problems

The overarching research question (as formulated in Section 1.4), which guided the

research for this thesis, is reproduced below:

Research question:
What is an effective structure for the ESAOA KMS (i.e., the roles, activities,

artefacts, etc.) that will contribute to the successful completion of ES

implementation tasks?

This research question was broken down into a collection of sub-problems, which

were used to investigate the research question from different perspectives. The sub-

 7-2

problems are summarised below (Section 3.4.2 gives more detail for each one). The

sub-sections that follow respond to each of these sub-problems.

1. Identify different forms of ESAOA knowledge. Some ESAOA activities may

make heavier use of a certain types of knowledge than others do; insights into

this problem can be used to create specialised KM approaches for particular

kinds of ESAOA activities.

2. Determine the relative complexity of different ESAOA KM tasks. Identify the

relative difficulty of KM tasks and highlight areas to be optimised.

3. Establish the relative difficulty of ESAOA knowledge production associated

with different ESAOA knowledge forms. Centring on providing support for

forms of knowledge that are more difficult to produce could help in optimising

the ESAOA KMS design.

4. Investigate how the time taken to complete different ESAOA activities may

vary, and what factors may contribute to these variations. Identify activities

that are more complex, and that take longer to complete, in order to optimise

scheduling of tasks in the KMS design.

5. Evaluate the relative frequency of different types of problem/solution

occurrences in which ESAOA knowledge is used. Insight into the more

commonly occurring KM tasks and objectives may help in planning KM tasks.

6. Determine the proportion of ESAOA activities that are incomplete or that have

been abandoned. These findings may indicate aspects of the KMS still to be

optimised.

7. Establish how the structure of a general KMS is refined to become an ESAOA

KMS. This will be used in refining the roles, groups, activities and other

aspects of the ESAOA KMS design.

8. Determine implementation tasks that benefit the most from an ESAOA KMS.

General types of implementation tasks can be identified in order to produce

higher-level guides to use in building a KMS.

7.1.1 Sub-problem 1 response: Different forms of ESAOA knowledge
were identified

Experiment 1 showed that multiple forms of ESAOA knowledge occurred, specifically

the broad categories of non-productive and productive knowledge. Each category

was divided into the three types, namely: data, process, and innovation knowledge

(see Section 4.2.7). Experiment 2 confirmed this finding, and further identified the

 7-3

need for additional knowledge categories (detailed in Section 5.7.2). Data knowledge

was separated into component knowledge (produced by the CR) and tool knowledge

(produced by the PE). Process knowledge was divided into role knowledge

(managed mainly by the TL), logistics knowledge (also maintained by the TL) and

other process knowledge (mostly development methods maintained by the PE).

7.1.2 Sub-problem 2 response: The relative complexities of ESAOA KM
tasks were found to differ

The KM tasks performed by the project teams were found to vary in complexity. For

instance, managing data knowledge generally involved simple routines, such as

placing a datasheet in an appropriate location in an ESAOA workspace and

annotating the file with suitable metadata. Management of process knowledge was

generally more difficult. For example, capturing automatable process knowledge in

the form of an executable script involved coding the script, placing the script in a

suitable location and perhaps adding classification metadata to assist in recording

the purpose of the script.

7.1.3 Sub-problem 3 response: Difficulty of producing different forms of
ESAOA knowledge varied

In all the Experiment 2 projects (as discussed in Section 5.2 with regard to the

individual projects), the production of innovation knowledge usually involved the IE

setting up a complex experiment (such as the experiments of Project P2-1 to test a

GPS module, and Project P2-3 to test wireless communication). During these

experiments, the IE applied both process knowledge and data knowledge in order to

test possible design options and to create innovation knowledge. Process knowledge

was also commonly obtained from doing experiments, but these experiments were

usually simpler and more clearly focused than the experiments done to obtain

innovation knowledge.

Furthermore, innovation experiments tended to integrate a variety of development

methods and data knowledge, which drew on prior learning done earlier in the

project, whereas experiments to obtain process knowledge tended to depend less on

prior learning. Consequently, activities performed by the IE to complete experiments

needed to obtain innovation knowledge were among the most challenging and time-

consuming activities performed in the projects studied. In comparison to innovation

knowledge production, process knowledge was produced more easily and through

less complex experiments and related activities. Data knowledge tended to be

 7-4

simpler to obtain than process knowledge, in that it mainly involved reading

documents (as per the data knowledge definition given in Section 4.2.7) to obtain

specific information needed by the PE or IE.

In most Experiment 2 projects, innovation knowledge occurrences tended to occur

more frequently towards the end of the project. This was generally not because it

became easier to complete innovation experiments, but rather because the teams

had changed focus towards achieving a prototype that was as complete as they

could manage by using process and data knowledge already accumulated (and if

necessary, sacrificing features and performance due to lacking the required know-

how). An example of this situation was seen in Experiment 2, when (at event chain

80) the Project P2-2 team attempted to optimise their development methods (thus

building more process knowledge); however this attempt was soon abandoned

because much of the prototype functionality was missing and time was running out.

The relative complexity for different types of knowledge production found in

Experiment 2 can be generalised as follows:

• Innovation knowledge production activities were generally more complex than

those for producing process knowledge (requiring inventive experimentation

that drew widely on process and data knowledge obtained earlier in projects).

• Process knowledge production was generally more complex than data

knowledge production (involving experiments that drew on both process and

data knowledge, but not integrating as much prior knowledge as experiments

for innovation knowledge production did).

• Data knowledge production usually involved the easiest types of knowledge

production activities (mostly reading text and not requiring any experiments).

But productive data knowledge was not necessarily always the easiest

knowledge to obtain; as Section 5.3 indicates, Experiment 2 projects on

average produced the highest portion of non-productive data knowledge.

Note that the points above are generalisations based on Experiment 2 results. The

results did not demonstrate that each point above was always the case. Moreover,

there were numerous situations where these points were invalid. For instance,

activities to produce innovation knowledge were sometimes easier than activities to

produce process knowledge – one such example occurred in Project P2-1, where the

team were engaged in challenging experiments to learn to use uCLinux ramdisks

 7-5

(i.e., process knowledge), but once this had been accomplished, they proceeded with

a sequence of comparatively simple experiments to build innovation knowledge.

The response to this third sub-problem can be summarised as follows: there is

variation in the difficulty of producing different forms of ESAOA knowledge.

Innovation knowledge production frequently involved more complex activities than did

the other types of knowledge, and similarly, activities to obtain process knowledge

were usually more difficult than those required for producing data knowledge. But this

was not consistently the case; there were many counter examples. Generally, more

innovation knowledge was produced towards the end of projects, but this did not

imply that it had become easier to produce this type of knowledge. Furthermore, no

evidence was found to show that activities for data or process knowledge production

became easier during the course of a project. It was found that teams often changed

tactics towards the end of a project to focus on producing innovation knowledge,

using only the process and data knowledge they already had, without starting new

activities to obtain more process and data knowledge (this is probably due to teams

realising that these activities did not necessarily become easier as the project

progressed, and thus deciding they did not have enough time to complete new

activities in the last days of a project).

7.1.4 Sub-problem 4 response: the time to complete ESAOA activities
depends on their complexity, their dependence on other activities
and the provision and understanding of KMS support

Experiments 1 and 2 showed that ESAOA activities typically occur as part of an

event chain, in which the completion of one activity may depend on the successful

completion of multiple other activities. In the projects studied, it was commonly seen

that to complete a particular ESAOA activity, the engineer working on the activity

often needs to recall or reconstruct knowledge produced in other, previously

completed event chains.

In Section 4.2.4, the terms trivial solution cycles and non-trivial solution cycles were

introduced. For the purpose of this argument, the complexity of an ESAOA activity is

expressed in relation to the types of solution cycles involved in the activities

concerned. Activities at a low level of complexity (or simple activities) involve only

trivial solution cycles; these activities are largely mechanical, need little creativity,

and do not require the knowledge worker to bring together knowledge obtained from

a wide range of prior learning done earlier in the project (examples are reading

 7-6

through documentation to find particular facts). Activities at a high level of complexity

(or complex activities) are the antithesis of simple activities. Complex activities

include non-trivial solution cycles, and require some proactive and intuitive work that

brings together knowledge from a wide range of prior learning done in the project.

This classification of activities builds on Section 4.2.4 and is based on research

related to the classification of problem-solving tasks, specifically following techniques

of classifying computer interactions in a similar manner to phases ranging from

‘phase one’ actions based on prior knowledge (closely corresponding to the notion of

simple activities) to ‘phase four’ actions, where new knowledge is obtained and

existing knowledge is “… reorganised to incorporate compound plans” [Sternberg &

Frensch, 1991, pg 323]. Additionally, these classifications were influenced by

deconstructing “complex problem solving in electronics” [Sternberg & Frensch, 1991,

pg 287] and by Silvestro et al.’s [1992] categorisation of service processes.

In Experiment 2, the successful completion of ESAOA activities, and the knowledge

resulting from them, was found to be strongly dependent on the level of complexity of

the activities and their interrelatedness. Simple activities (involving less knowledge

events) were generally completed more quickly than complex activities. Simple

activities usually did not directly cause dead-ends – these activities were therefore

commonly considered as productive when viewed in isolation (although they could

later be reclassified as non-productive in relation to changes in higher-level

objectives). Complex activities, in contrast, usually involved many knowledge events

(and took longer to complete) than simple activities. Dead-ends, which resulted in

event chains being classified as non-productive, were commonly caused by

developers being unable to complete complex activities, often due to time limitations.

Section 5.2 regularly noted the abandonment of project objectives (causing event

chains to become dead-ends), such as Project P2-8 members trying to use a

Bluetooth module and then abandoning it, and Project P2-11 developers being

unsuccessful in sending messages from a T10 cell phone and later exchanging it for

an alternate component.

Developers encountered a variety of difficulties while using the ESAOA KMS

(detailed in Section 5.4.2.1), these included: 1) difficulties in learning the directory

structure of ESAOA workspaces, 2) problems in understanding how to compile

programs in a workspace, 3) uncertainty about adding and placing files in

workspaces, and 4) ESAOA support tools taking too long to learn, which in some

cases resulted in team members ignoring some of the tools supplied, and either

 7-7

making their own equivalents or resorting to manual solutions. These problems

resulted in the KMS being applied ineffectively in some cases, sometimes causing

ESAOA activities to be abandoned or taking a long time to complete. In some

situations, the ESAOA KMS made the developers’ work more difficult, even

distracting them from critical work. In Section 5.6.2.1, examples of this kind of

distraction were given; one such example was the case when a team member spent

valuable time deciphering and responding to cryptic error messages reported by an

ESAOA support tool, before being able to proceed with implementation tasks.

In Project P2-2, a difficulty was noted where team members did not understand the

ESAOA KMS role responsibilities that they had been assigned. During the first part of

this project, the team members were unsure of what to do, which led to poor

coordination of teamwork and duplication of ESAOA activities. During this period, the

team also decided not to use most of the ESAOA support tools or to adhere to the

ESAOA workspace directory structure: instead, they kept all their project files in one

folder (although they did later reorganise their files into the requisite directory

structure). In effect, this team was unable to use the ESAOA KMS effectively in the

first part of their project. Section 5.2.2 reported that this team had a high occurrence

of non-productive data knowledge compared to the other teams studied in

Experiment 2. The data knowledge occurrence graph for Project P2-2 showed that

much of this non-productive data knowledge happened early in the project, which

closely corresponds to the period when the team experienced role responsibility

problems and were making little use of the ESAOA KMS.

In Section 5.7.5, concerning variables that influenced knowledge production in

Experiment 2, it was observed that simple activities are likely to produce little

innovation knowledge, and that leadership and understanding of assigned roles

improves the proportion of productive knowledge produced by a team.

Based on the preceding argument, the response to sub-problem 4 can be

summarised as follows (in respect to the context of Experiment 2): 1) complex

ESAOA activities tend to take longer to complete than simple ones; 2) ESAOA

activities that are highly dependent on knowledge obtained previously in the project

(i.e., during earlier knowledge-producing ESAOA activities) are more likely to take

longer to complete, result in higher proportions of non-productive knowledge, and

end unsuccessfully, than ESAOA activities that are less dependent on prior

knowledge; and 3) ineffective use of the ESAOA KMS and difficulty in using its

 7-8

support tools and underlying workspace structure can lead to higher proportions of

non-productive knowledge.

7.1.5 Sub-problem 5 response: developers encounter similar types of
ESAOA KM problems and solutions in different projects

In both Experiments 1 and 2, the different teams dealt with similar KM problems, for

which comparable solutions were applied. Section 5.4.2.2 presented results from

questions concerning knowledge production methods (described in Section 3.8.1)

that had been asked of Experiment 2 teams during design review 2.

Almost all Experiment 2 project teams (except Project P2-6, which was the least

innovative) started by acquiring data knowledge related to components and tools.

This was seen in knowledge occurrence graphs and the discussion of individual

projects given in Section 5.2, as well as in the reflections presented in Section 5.7.4

concerning the ‘progression towards innovation’. It was found that all teams used

similar methods and information sources to produce data knowledge; as listed in

Section 5.4.1.2 (and also discussed in Section 5.7.4), common techniques included:

web searches, reading datasheets, using manufacturers’ and retailers’ websites, and

online forms. The teams used many of the same methods to organise and adapt

artefacts, such as saving downloaded files and web pages into a shared folder,

adding comments to downloaded files, using bookmarks, highlighting sections of

documents and renaming/relocating files.

In both Experiment 1 (Sections 4.4 and 4.6.4) and Experiment 2 (Sections 5.7.4.3

and 5.5.5), it was found that process knowledge typically built on data knowledge,

and that process knowledge decided most data knowledge needs. Different teams

used similar approaches to manage process knowledge, such as adding comments

and constants values to record settings and parameter options in code files, noting

key steps in text files or logbooks, and creating scripts to record settings (Section

5.4.1.2 lists other methods used).

Managing innovation knowledge involved a more varied range of techniques between

different teams. The methods listed in Section 5.4.1.2 for innovation knowledge

production show that most teams produced innovation knowledge through

experimental approaches that involved applying previously learned process and data

knowledge. Techniques to capture this knowledge varied; for example, some teams

established their own methods, such as using concept cartoons, installation diagrams

 7-9

and types of diagrams (examples of which were included in Section 5.2). At a higher

level, the innovation knowledge was produced in similar manners, such as: using

rough notes or drawings (e.g., concept cartoon) to express a plan; performing

experiments (usually trying multiple approaches before deciding on a suitable

solution); preparing sample input/output files; and recording key steps of innovation

knowledge.

In summary, similar types of techniques were used by the development teams to

manage their knowledge. Across the different types of knowledge categories, some

of the most common KM methods included: editing code files, making rough

sketches, adding comments, adding notes in logbooks and highlighting documents.

While ESAOA support tools (e.g. fclass and esaoa-find) were used to some extent,

they were used less frequently than conventional methods (e.g., editing code files).

The design of ESAOA KMS version 2 is guided by these similarities observed in KM

problems and in the solution methods used by the teams.

7.1.6 Sub-problem 6 response: although dead-ends did occur in ESAOA
knowledge production, their number was reduced

Experiment 2 included cases of event chains that resulted in a dead-end (and that

were therefore classified as producing non-productive knowledge). In Experiment 2,

75% of knowledge occurrences were on average productive (see Section 5.3 for

averaged results). In comparison, and using the same analysis technique, only 36%

of knowledge occurrences in Experiment 1 were on average productive (see Section

4.5.3.1). This comparison shows an overall reduction in non-productive knowledge

occurrences (i.e., event chains ending in dead-ends) in Experiment 1 compared to

Experiment 2.

7.1.7 Sub-problem 7 response: the degree to which the ESAOA KMS is
used depends on the complexity of ESAOA activities concerned

Teams that generally found the solution of an ESAOA activity simple, or even trivial,

made little or no use of the ESAOA KMS for managing knowledge produced during

that activity. For example, the process engineer in Project P2-1 found that sending

characters to the embedded Linux console was trivial and therefore did not apply any

KM methods to handle this process knowledge. The ESAOA KMS was used more

frequently while solving complex ESAOA activities, especially with regard to

managing innovation knowledge. For instance, Project P2-1 used the KMS

 7-10

extensively during the final stages of the project to facilitate the transfer of process

knowledge related to a GPS device, from the PE to the IE.

Artefacts provided in baseline ESAOA workspaces were used extensively by

Experiment 2 teams, and many teams modified or added their own scripts related to

process knowledge (this was noted in Sections 5.8.1 and 5.4.1.3 respectively in

terms of teams using ESAOA support tools and adding to these). The ESAOA

workspaces, ESAOA support tools, and the integrated knowledgebase were used

largely implicitly (rather than consciously following step-by-step procedures in the

ESAOA manual) while solving problems during ESAOA activities. The ESAOA KMS

was also used during meetings between the researcher and team members, and in

meetings between the CKO and CKS.

7.1.8 Sub-problem 8 response: benefit of the ESAOA KMS depends on
the complexity, difficulty and duration of the activities performed

As discussed in relation to sub-problems 4 and 7, the completion of an ESAOA

activity depends on the complexity of the activity and the ease of using the KMS

during that activity. It was found that many of the simple ESAOA activities (that were

either trivial or completed quickly) made little use of the ESAOA KMS role structures

and processes, apart from perfunctory use of ESAOA workspaces (in which all the

files were stored) and basic ESAOA support tools (especially the use of esaoa-mm to

update makefiles automatically, fclass to change metadata, and esaoa-cp and

esaoa-mv to copy and move files together with their metadata). Longer and more

complex activities often made wider use of the ESAOA KMS design aspects. For

example, Project P2-1 team members used the KMS during the development of

control code for the GPS device, and during the division of work according to roles,

and in particular the transfer of process knowledge (using scripts and logs) and

innovation knowledge (using diagrams and sketched models). Generally, the more

complex ESAOA activities benefited from more structured approaches (and wider

use of the ESAOA KMS) as they helped to reduce the level of confusion and avoid

misplacement of knowledge artefacts.

While the sub-problems for this thesis have been addressed, there are a number of

issues related to the conditions referred to above, and considerations raised by the

experiments, that require further study. These are discussed in the next section.

 7-11

7.2 Reflection of research findings and resolution of research
question

The responses to the sub-problems generally highlighted areas in which the ESAOA

KMS was found to be beneficial, as well as conditions where the KMS was of little

use or where it may even have added to the difficulty of completing ESAOA activities

and related implementation tasks. Generally, the ESAOA KMS was of the least use

during simple activities (i.e., where the needed knowledge was either trivial or was

produced following easily remembered or routine procedures). No refinements were

therefore implemented in ESAOA KMS version 2 to give additional support for these

types of activities. However, teams did make extensive use of the ESAOA KMS when

seeking to accomplish complex activities that involved complicated knowledge-based

work that drew on a wide range of knowledge developed during prior solution

strategies done in the project. The ESAOA KMS was found to be beneficial in such

contexts, in particular, with regard to the following: improved conformity of artefact

location and classification by means of the ESAOA workspaces, use of ESAOA

support tools, role assignments to assist with allocating team member

responsibilities, division of knowledge work, and guiding knowledge production.

Without the underlying workspace-based framework of artefacts and tools provided

with the ESAOA KMS, the set of roles and role responsibilities, and the training

programme and documentation, it is unlikely that the ESAOA KMS would be used

effectively (and teams would probably revert to establishing their own ad hoc

techniques due to a lack of understanding how to use the KMS).

Overall, and in response to the main research question that guided this thesis, the

study has demonstrated that the ESAOA KMS comprised an effective structure

(detailed in Section 4.6) that was shown to facilitate knowledge production performed

by novice engineers during ESAOA activities, and thereby aided in the successful

completion of ES implementation tasks in Experiment 2. Specifically, an effective

structure for the ESAOA KMS was found to comprise the following components:

• An ESAOA workspace (separated into personal, team and communal parts)

that presents a consistently organised collection of artefacts, which are

accessed and worked on by team members that each use a similar ESAOA

workstation that comprises a similar collection of ‘external’ development tools

(i.e., tools that are not stored in an ESAOA workspace). Each workspace

 7-12

incorporates a searchable knowledge base composed of metadata (filenames

and file classifications stored in CSV files), code comments, and other CSV

files containing recorded keywords and descriptions.

• ESAOA support tools, comprising Bash scripts and C++ programs (built

around the KIT API descried in Section 6.3.4) facilitate use of files in the

workspaces (these support tools are stored in the ESAOA workspaces).

• A baseline collection of digital artefacts (i.e. files such as documentation and

template files) for each ESAOA workspace, which are consistently arranged

into the same (documented) directory structure.

• A set of roles with clearly defined responsibilities.

• A description of ESAOA KM processes, which provide strategies that are

intended to guide the roles, and to suggest role interactions, to facilitate

managing and producing knowledge in ESAOA activities.

• A knowledge ontology that describes specialised terms related to the KMS,

and that defines artefact classifications used to classify files in ESAOA

workspaces. A team can build a customised version of this ontology, which is

stored in the team workspace.

• A conceptual modelling language that visually documents and explains

aspects of the KMS and KM strategies.

Findings from the application of the ESAOS KMS in Experiment 2 and conclusions

discussed in Sections 5.7 and 5.8 suggest a number of strategies that could be

followed and built upon in future research projects. These included the use of

proportions of knowledge occurrences to asses the effect of KM in projects,

categorisation of productive and non-productive knowledge to asses knowledge

work, and the ‘progression to process’ and ‘progression to innovation’ (see Section

5.7.4.3) as measurement of the trajectory for the success of a project. Evaluation of

projects based on proportions of innovation, process and data knowledge produced,

which can show performance in terms of knowledge production, gives a perspective

related to ‘knowledge deliverables’ [Drove, 1999] that could supplement the

necessary perspective on ‘product deliverables’.

Refinements that are expected to provide an improved design for the ESAOA KMS

are detailed in Chapter 6.

 7-13

7.3 Summary of contributions

This thesis focused on integrating a KMS into ES product development projects to

manage ESAOA knowledge. In order to accomplish this objective, the knowledge

needs of ES engineers in the context of ESAOA activities were investigated

[Winberg, 2006d] and an in-depth study of the application and production of ESAOA

knowledge was performed. Unique contributions made by this thesis include:

1. Development of a KMS to assist implementation aspects of ES engineering;

2. A methodology for researching and evolving a KMS for ES engineering

Winberg & Schach, 2007];

3. Identification of ES engineering tasks that involve significant amounts of

knowledge acquisition and that are likely to benefit from KM methods

[Winberg et al., 2008];

4. Contribution of an in-depth understanding of the knowledge economy within

the particular sector of ES engineering in terms of defining knowledge work

processes, knowledge bases, and methods for managing knowledge in ES

product development.

5. Identifying the values of evolving a KMS for ES engineering.

7.4 Future work

Implications for future work are discussed in the subsections below. In some cases

these ‘gaps’ were evident in the literature, while in other cases, they were raised by

the study itself.

7.4.1 Testing ESAOA KMS version 2

A framework for ESAOA KMS version 2 was developed based on the results of

Experiment 2. This revised version of the KMS needs to be tested with another set of

ES product development projects. Furthermore, the evaluation strategy used in this

future testing could incorporate broader issues related to team member opinions and

effects on organisations as a whole. For example, the happiness of knowledge

workers [Rahe & Morales, 2005] using the KMS could be measured and contrasted

with individuals using only ad hoc KM methods and no formalised KMS.

7.4.2 Testing ESAOS KMS on different type of ES engineering

Different types of ES engineering projects are each likely to require a specialised

KMS: for example, a KMS for a product development project would probably differ

 7-14

from that of a KMS for a prototyping project. Customer support systems for an ES

development company may need a suitably adapted KMS that is not identical to the

one used by developers in the company (e.g., KMS that provides a means for

supporting staff to access technical engineering knowledge in order to assist clients

in solving problems). ES-related services, such as chip manufacturers and

embedded operating system vendors, may benefit from another customised KMS.

7.4.3 Phasing in a KMS within existing/ongoing projects

The ESAOA KMS was trialled under laboratory conditions. In a commercial context, a

KMS would need to be phased in with minimal disruption to existing work. Further

research should be done to understand how a comprehensive KMS could be

effectively phased into an ongoing development project.

7.4.4 Broadening the context for the ESAOA KMS

In both experiments, the KMS was studied in the context of the implementation

phase of ES product development projects. Additional testing is needed in which the

KMS is extended to other phases (e.g., the requirements phase and the maintenance

phase) of product development.

7.4.5 A KMS that allows for future software and hardware developments

A KMS for ES needs flexibility and adaptability to cope with expected further

advancements in hardware and software technologies (with regard to Moore’s law).

This aspect could be considered during construction of ESAOA KMS version 3.

7.4.6 Need for further research into KM in ES development

The literature review identified a general lack of knowledge strategies focused on ES

development projects. This finding motivates the need for further research in this

area of engineering.

7.4.7 Focus on ES innovation knowledge

Where the literature did address KM related to ES development, the focus tended to

be on roles, data, information, the identification of needs, and systems to manage

processes. Notably missing from the literature was the area of innovation knowledge

and the management of innovation systems. Innovation knowledge emerged in this

study as particularly important for ES product development, and this is clearly an

area, which requires further research.

 7-15

 7-16

References

Aamodt, A. & Plaza, E. [1994]. “Case-based reasoning: foundational issues, methodological

variations, and system approaches.” AI Communications, 7: 39-59.

Abell, A. & Oxbrow, N. [1999]. “Make knowledge management work: CKO, CKT, or KT?” In
Liebowitz, J. (ed.) Knowledge management handbook. New York, NY.: CRC Press:
4.1-4.17.

Abrahamson, P., Warsta, J., Siponen, M., Ronkainen, J. [2003]. “New directions on agile
methods: a comparative analysis.” Proceedings of the 25th international conference
on Software Engineering (ISCE’03). Portland, OR. 3-10 May 2003: 244-254.

ActiveState. [2007]. ActiveTcl: the industry-standard Tcl distribution. Available at
http://www.activestate.com/activetcl/ (Accessed 4 Apr 2007).

Addison, T. & Vallabh, S. [2002]. “Controlling software project risks: an empirical study of
methods used by experienced project managers”. Proceedings of the 2002 annual
research conference of the South African institute of computer scientists and
information technologists on Enablement through Technology (SAICSIT '02). Port
Elizabeth, South Africa 16-18 Sep 2002: 128-140.

Alavi, M. & Leidner, D. [1999]. “Knowledge management systems: issues, challenges, and
benefits.” Communications of AIS, 1(2): 2-36.

Alavi, M. & Leidner, D. [2001]. “Review: knowledge management and knowledge
management systems: conceptual foundations and research issues.” MIS Quarterly,
25 (1): 107-136.

Allee, V. [1997]. The knowledge evolution. Boston, MA.: Butterworth-Heinemann.

Allen, M. [2000]. “Linux inter-process communication”. In The CTDP Linux programmer's
guide version 0.3.0. Available at http://www.comptechdoc.org/os/linux/
programming/linux_pgcomm.html (Accessed 5 Mar 2007).

Althoff, K., Birk, A., Hartkopf, S., Muller, W., Nick, M., Surmann, D. & Tautz, C. [1999].
“Managing software engineering experience for comprehensive reuse.” 11th
international conference on software engineering and knowledge engineering
(SEKE'99). Kaiserslautern, Germany 17-19 Jun 1999: 25-50.

Altshuller, G. [2004]. (trans L. Shulyak). And suddenly the inventor appeared: TRIZ, the
theory of inventive problem solving (6th edition). Worcester, MA.: Technical
Innovation Center, Inc.

Altshuller, G. [1998]. (trans A. Williams). Creativity as an exact science: the theory of the
solution of inventive problems (4th edition). New York, NY.: Gordon and
Breach Science Publishers.

Aman, H., Okazaki, H. & Yamada, H. [2006] “An effect of comment statements on code
corrective maintenance”. In Tyugu, E. & Yamaguchi, E. (eds.) Knowledge-based
software engineering: proceedings of the 7th Joint Conference on knowledge-based
software engineering. Amsterdam, The Netherlands: IOS Pres: 135-138.

Andersen, E. [1996]. “Warning: activity planning is hazardous to your project’s health!”
International Journal of Project Management, 14: 89-94.

 R-1

http://www.activestate.com/activetcl/
http://www.comptechdoc.org/os/linux/%20programming/linux_pgcomm.html
http://www.comptechdoc.org/os/linux/%20programming/linux_pgcomm.html

Anderson, J. & Bower, G. [1980]. Human associative memory: a brief edition. Hillsdale, NJ.:
Lawrence Erlbaum.

Apple. [2009]. Apple iPhone features. Available at http://www.apple.com/ph/iphone/
(Accessed 10 Jan 2009).

Apshvalka, D. & Grundspenkis, J. [2005]. “Personal knowledge management and intelligent
agent perspective.” In Nilsson, A.G. (ed.) Proceedings of the 14th international
conference on information systems development, Pre-Conference-ISD 2005.
Karlstad, Sweden 14-17 Aug 2005: 219–230.

Argote, L. & Ingram, P. [2000]. “Knowledge transfer: a basis for competitive advantage in
firms.” Organizational Behavior and Human Decision Processes, 82(1): 150-169.

Arias, E. & Fischer, G. [2000]. “Boundary objects: their role in articulating the task at hand
and making information relevant to it.” Proceedings of the International ICSC
Symposium on Interactive and Collaborative Computing (ICC'2000). Sydney,
Australia 11-15 Dec 2000. Wetaskiwin, ICSC Academic Press: 567-574. Available at
http://13d.cs.colorado.edu/gerhard/papers/icsc2000.pdf (Accessed 06 Feb 2010).

Arlow, J. [2005]. UML 2 and the unified process: practical object-oriented analysis and
design. Upper Saddle River, NJ.: Addison-Wesley.

ATMEL. [2005]. AT91RM9200 Microcontroller. Available at
http://www.atmel.com/dyn/products/product_card.asp?part_id=2983. (Accessed 20
Mar 2005).

Aurum, A., Handzic, M., Wohlin, C. & Jeffery, R. [2003]. Managing software engineering
knowledge. Berlin, Germany: Springer.

Bakshi, A., Prasanna, V.K. & Ledeczi, A. [2001]. ”MILAN: a model based integrated
simulation framework for design of embedded systems.” Proceedings of the 2001
ACM SIGPLAN workshop on Optimization of middleware and distributed systems,
Snow Bird, Utah 22-23 Jun 2001: 82-93.

Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A. & Schmidt, D.C. [2005].
“A platform-dependent component modeling language for distributed real-time and
embedded systems.” Proceedings of the 11th IEEE Real-time on Embedded
Technology and Applications Symposium, San Francisco, CA.: 07-10 Mar 2005: 190-
199.

Ball, S. [2002]. Embedded microprocessor systems: real world design. Boston, M.A.:
Newnes.

Barr, M. [1999]. Programming embedded systems in C and C++. Sebastopol, CA.: O'Reilly.

BASH. [2009]. BASH - GNU Project. Available at http://www.gnu.org/software/bash/.
(Accessed 12 Mar 2009).

Basili, V.R., Caldiera, G. & Rombach, H. [1994]. “The experience factory.” In Marciniak, J.
(ed.) Encyclopedia of software engineering. New York NY.: John Wiley: 469-476.

Baskiyar, S. & Meghanathan, N. [2005]. “A survey of contemporary real-time operating
systems.” Informatica, 29: 233-240.

Beck, K. [1999]. “Embracing change with extreme programming.” Computer, 32(10): 70-77.

Bellinger, G. [2000]. Knowledge management: emerging perspectives. Available at
http://www.outsights.com/systems/kmgmt/kmgmt.htm. (Accessed 12 Dec 2007).

Bendix, L. [1993]. Programming-in-the-large versus programming-in-the-many. Informatik
Berichte Nr. 93-05, Fachgruppe Informatik, Universität-GH-Siegen, Germany.

 R-2

http://www.apple.com/ph/iphone/
http://13d.cs.colorado.edu/gerhard/papers/icsc2000.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=2983
http://www.gnu.org/software/bash/
http://www.outsights.com/systems/kmgmt/kmgmt.htm

Available at http://www.cs.lth.se/home/Lars_Bendix/Publications/
Papers/siegen.ps.gz (Accessed 06 Feb 2010).

Bennet, A. & Bennet, D. [2004]. Organizational survival in the New World: the intelligent
complex adaptive system. Boston, MA.: Butterworth-Heinemann.

Berbers, Y. [1999]. “A component-oriented approach for building complex embedded
systems”. Proceedings of the 7th International conference on engineering of modern
electric systems. Oradea, Romania 27-29 May 1999: 205-210.

Berger, A. [2002]. Embedded systems design: an introduction to processes, tools and
techniques. New York, NY: CMP Books.

Bergeron, B. [2003]. Essentials of knowledge management. New York: NY: John Wiley &
Sons Inc.

Berghel, H. [1997]. “Cyberspace 2000: dealing with information overload.” Communications
of the ACM, 40(2): 19-24.

Bergmann, R., Althoff, K-D., Breen, S., Göker, M., Manago, M., Traphöner, R. & Wess, S.
[2003]. Developing industrial case-based reasoning applications: the INRECA
methodology (2nd edition). Berlin, Germany: Springer.

Bhave, R. & Narendra, N. [2000]. “An innovative strategy for organizational learning.”
Proceedings of the world congress on total quality (WCTQ 2000). Mumbai, India.
Available at http://resources.bnet.com/topic/total+quality+management+concept.html
(Accessed 12 Mar 2008).

Binney, D. [2001]. “The knowledge management spectrum: understanding the KM
landscape.” Journal of Knowledge Management, 5(1): 33-42.

Birk, A. & Tautz, C. [1998]. “Knowledge management of software engineering lessons
Learned.” Proceedings of the 10th international conference on software engineering
and knowledge engineering (SEKE'98). San Francisco, CA. 18-20 Jun 1998.
http://publica.fraunhofer.de/documents/PX-51617.html (Accessed 10 Jul 2010).

Birk, A., Surmann, D. & Althoff, K. [1999]. Applications of Knowledge Acquisition in
Experimental Software Engineering. Knowledge Acquisition, Modeling and
Management: Proceedings of the 11th European Workshop (EKAW’99). Dagstuhl
Castle, Germany May 26-29 1999: 67-84.

Blackburn, J., Scudder, G. & Van Wassenhove, L. [1996]. “Improving speed and productivity
of software development: a global survey of software developers.” IEEE Transactions
on Software Engineering, 22(12): 875-885.

Blessing, L. [1993]. A process-based approach to computer supported engineering design.
Unpublished Ph.D. Thesis, University of Twente, The Netherlands.

Bloom, B., Mesia, B. & Krathwohl, D. [1964]. Taxonomy of educational objectives. New York,
NY.: David McKay.

Blosiu, J. [1999]. “Use of synectics as an idea seeding technique to enhance design
creativity.” IEEE International Conference on Systems, Man, and Cybernetics 1999,
Toyko, Japan 12-15 Oct 1999, 3: 1001-1006.

Boehm, B. [1988]. “A spiral model of software development and enhancement.” Computer,
21(5): 61-72.

Bonner, D. [2000]. “The knowledge management challenge: new roles and responsibilities
for chief knowledge officers and chief learning officers”. In Phillips, J. & Bonner, D.
(eds.). Leading knowledge management and learning. Alexandria, VA.: American
Society for Training & Development: 3-19.

Borghoff, U. & Pareschi, R. [1998]. Information technology for knowledge management.

 R-3

http://www.cs.lth.se/home/Lars_Bendix/Publications/%20Papers/siegen.ps.gz
http://www.cs.lth.se/home/Lars_Bendix/Publications/%20Papers/siegen.ps.gz
http://resources.bnet.com/topic/total+quality+management+concept.html
http://publica.fraunhofer.de/documents/PX-51617.html
http://www.springerlink.com/content/m3h45fy6mj57/?p=d388c52126354b35a40cf4ee64f2e497&pi=0
http://www.springerlink.com/content/m3h45fy6mj57/?p=d388c52126354b35a40cf4ee64f2e497&pi=0

Berlin: Springer.

Bouthillier, F. & Shearer, K. [2002]. “Understanding knowledge management and information
management: the need for an empirical perspective.” Information Research, 8 (1):
141.

Brazelton, J. & Gorry, G. [2003]. “On site: creating a knowledge-sharing community: if you
build it, will they come?” Communications of the ACM, 46(2): 23-25.

Brennan, L. & Gupta, S.M. [1993]. “A structured analysis of material requirements planning
systems under combined demand and supply uncertainty.” International Journal of
Production Research, 31: 1689-1707.

Briggs, J. [1992]. “Group Projects in Software Engineering at York.” SIGCSE Bulletin, 23: 48-
50.

Brinkkemper, S., Lyytinen, K. & Welke, R. [1996]. Method Engineering. London: Chapman &
Hall.

Broomé, M. & Runeson, P. [1999]. “Technical requirements for the implementation of an
experience base.” Proceedings of the international conference on Software
Engineering and Knowledge Engineering (SEKE'99), Kaiserslautern, Germany 17-19
Jun 1999: 119-123.

Brown, C. [1999]. Human-computer interface design guidelines. Exeter: Intellect Books.

Brown, J. & Duguid, P. [1991]. “Organizational Learning and Communities-of-Practise:
Toward a Unified View of Working, Learning and Innovation.” Organizational
Science, 2(1): 40-57.

Browning, T. [1999]. Modeling and analyzing complex system development: cost, schedule,
and performance. Unpublished PhD Thesis, Massachusetts Institute of Technology,
A&A Department.

Bűchel, B. & Raub, S. [2002]. “Building knowledge-creating value networks.” European
Management Journal, 20 (6): 587-596.

Capra, R., Marchionini, G., Oh, J., Stutzman, F. & Zhang, Y. [2007]. “Effects of structure and
interaction style on distinct search tasks.” Proceedings of the 2007 conference on
Digital libraries: Vancouver, Canada 17-23 Jun 2007. New York, NY.: ACM Press:
442-451.

Capshaw, S. [1999]. Whaddya know: Find out with a knowledge audit the first step towards
knowledge management. Available at http://www.aiim.org/inform/july99/p16.html.
(Accessed 15 Jan 2006).

Carlsen, S., Johnsen, S., Jǿrgensen, H., Coll, G, Mǽhle, Ǻ., Carlsen, A. & Hatling, M.
[1999]. “Knowledge re-activation mediated through knowledge carriers”. Proceedings
of the international conference on Management of Information and Communication
Technology 1999 (MICT 99). Copenhagen, Denmark: 15-16 Sep 1999. Available at
http://www.kunne.no/upload/
Gamle%20publikasjoner/Særtrykk/S0299%20Knowledge%20Re-
Activation%20Mediated%20through%20Knowledge%20Carriers%20%20.pdf
(Accessed 6 Feb 2010).

Carneiro, A. [2000]. “How does knowledge management influence innovation and
competitiveness?” Journal of Knowledge Management, 4(2): 87-98.

Caspi, P., Sangiovanni-Vincentelli, A., Almeida, I., Benveniste, A., Bouyssounouse, B.,
Buttazzo, G., Crnkovic, I., Damm, W., Engblom, J., Folher, G., Garcia-Valls, M.,
Kopetz, H., Lakhnech, Y., Laroussinie, F., Lavagno, L., Lipari, G., Maraninchi, F.,
Peti, P. H., de la Puente, J., Scaife, N., Sifakis, J., de Simone, R., Torngren, M.,
Ver´issimo, P., Wellings, A. J., Wilhelm, R., Willemse, T. & Yi, W. [2005]. “Guidelines

 R-4

http://www.aiim.org/inform/july99/p16.html
http://www.kunne.no/upload/%20Gamle%20publikasjoner/S%C3%A6rtrykk/S0299%20Knowledge%20Re-Activation%20Mediated%20through%20Knowledge%20Carriers%20%20.pdf
http://www.kunne.no/upload/%20Gamle%20publikasjoner/S%C3%A6rtrykk/S0299%20Knowledge%20Re-Activation%20Mediated%20through%20Knowledge%20Carriers%20%20.pdf
http://www.kunne.no/upload/%20Gamle%20publikasjoner/S%C3%A6rtrykk/S0299%20Knowledge%20Re-Activation%20Mediated%20through%20Knowledge%20Carriers%20%20.pdf

for a Graduate Curriculum on Embedded Software and Systems.” ACM Transactions
on Embedded Computing Systems, 4(3): 587-611.

Castells, M. [1996]. The information age: economy, society and culture. Oxford: Blackwell.

Catsoulis, J. [2002]. Designing embedded hardware. Sebastopol, CA.: O'Reilly.

Chan, J. & Yu, K. [2004]. “TRIZ-aided technology mapping for information system
implementation.” Proceedings of the IEEE international conference on engineering
management: innovation and entrepreneurship for sustainable development.
Singapore 18-21 Oct 2004,1: 239-243.

Charette, R. [2005]. “Why software fails.” IEEE Spectrum, 42(9): 36.

Cherry, S. [2004]. “Telecom: Edholm's law of bandwidth.” IEEE Spectrum, 41(7): 58-60.

Chikofsky, E. & Cross, J. [1990]. “Reverse engineering and design recovery: a taxonomy.”
IEEE Software, 7(1): 13-17.

Child, J. [2001]. “Survey finds embedded efforts lagging, lacking.” EE Times, 250(18): 967-
989.

Chiodo, M., Giusto, P., Jurecska, A., Hsieh, H., Sangiovanni-Vincentelli, A., Lavagno, L. &
Marelli, M. [1994]. “Hardware-software co-design of embedded systems.” Micro
IEEE, 14(4): 26-36.

Coates, C., Arden, B., Bartee, T., Bell, C., Kuo, F., McCluskey, E. & Surber, W. [1971]. “An
undergraduate computer engineering option for electrical engineering.” Proceedings
of the IEEE, 59(6): 854-860.

Cogent Computers. [2005]. CSB337 Atmel AT91RM9200 based SBC. Available at
http://www.cogcomp.com/csb_csb337.htm. (Accessed 14 Feb 2005).

Collins-Sussman, B. [2002]. “The subversion project: building a better CVS.” Linux Journal,
94: 3.

Conradi, R. & Dingsǿyr, T. [2000]. “Software experience bases: a consolidated evaluation
and status report.” Proceedings of the 2nd international conference on product
focused software process improvement (PROFES, 2000). Oulu, Finland 20-22 Jun
2000: 391-406.

Conradi, H. & Fuggetta, A. [2002]. “Improving software process improvement.” IEEE
Software, 19(4): 92-99.

Coombs, R. & Hull, R. [1998]. “Knowledge management practices and path-dependency in
innovation.” Research Policy, 27(3): 237-253.

Cordeiro, L., Barreto, R., Barcelos, R., Oliveira, M., Lucena, V. & Maciel, P. [2007]. “Agile
development methodology for embedded systems: a platform-based design
approach.” 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS'07). Tucson, AZ. 26-29 Mar 2007:
195-202.

Cortada, J. & Woods, J. [1999]. The knowledge management yearbook: 1999-2000.
Woburn: MA: Butterworth-Heinemann.

Counsell, S., Phalp, K., Mendes, E. & Geddes, S. [2005]. “What formal models cannot show
us: people issues people issues during the prototyping process.” In Bomarius, F &
Komi-Sirviö, S. (eds.) Proceedings of the 6th International: product-focused software
process improvement conference (PROFES 2005). Oulu, Finland 13-15 Jun 2005: 3-
15.

 R-5

http://www.cogcomp.com/csb_csb337.htm

Counsell, J., Porter, I. Dawson, D. & Duffy, M. [1999]. “Schemebuilder: computer aided
knowledge based design of mechatronic systems.” Assembly Automation, 19(2):
129-38.

Covin, J. & Slevin, D. [1989]. “Strategic management of small firms in hostile and benign
environments.” Strategic Management Journal,10(1): 75-87.

Cross, N. [1990]. “The nature and nurture of design ability.” Design Studies, 11(3): 127-140.

Cross, N. [1994]. Engineering design methods: strategies for product design (2nd edition).
Chichester: John Wiley.

Cross, N. [2000]. Engineering design methods: strategies for product design (3rd edition).
Chichester: John Wiley.

Cross, N. [2004]. “Expertise in design: an overview.” Design Studies, 25(5): 427-441.

Cross, N., Christiaans, H. & Dorst, K. (eds.) [1996]. Analysing Design Activity. Chichester:
John Wiley.

Cross, N., Naughton, J. & Walker, D. [1981]. “Design method and scientific method.” Design
Studies, 2(4): 195-201.

Crowston, K. & Howison, J. [2005]. “The social structure of free and open source software
development.” First Monday,10 (2): 2-7.

Cummings J. & Teng B. [2003]. “Transferring R&D knowledge: The Key Factors Affecting
Knowledge Transfer Success.” Journal of Engineering and Technology Management,
20: 39-68.

Curtis, B, Krasner, H. & Iscoe, N. [1988]. “A field study of the software design process for
large systems”. Communications of the ACM, 31(11): 1268-1287.

Cushman, A., Fleming, M., Rosser, B., Hunter, R. & Harris, K. [1999]. The knowledge
management scenario: trends and directions for 1998-2003. Available at
http://gartner6.gartnerweb.com/ggbin/ggtoc (Accessed 12 Dec 2007).

Cygwin. [2008]. Cygwin Information and Installation. Available at http://www.cygwin.com/
(Accessed 18 Nov 2008).

Dalkir, K. [2005]. Knowledge management in theory and practice. Burlington, Canada:
Elsevier Butterworth-Heinemann.

Davenport, T. [2002]. “Knowledge management case study.” Knowledge Management at
Microsoft. Available at ftp://ftp.unibocconi.it/pub/corsi/strut738/wop/EY.htm.
(Accessed 14 Feb 2007).

Davenport, T. & Klahr, P. [1998]. “Managing customer support knowledge”. California
Management Review, 40(3): 195-208.

Davenport, T. & Prusak, L. [1998]. Working knowledge: how organizations manage what
they know. Cambridge, MA: Harvard Business School Press.

Davenport, T. & Prusak, L. [2000]. “Working knowledge: How organizations manage what
they know.” Ubiquity, 1(24): 2.

Davenport, T., Long, D. & Beers, M. [1998]. “Successful knowledge management projects.”
Massachusetts Institute of Technology Sloan Management Review, 40 (2): 43-57.

Davies, R. [1998]. “An evolutionary approach to organisational learning: an experiment by an
NGO in Bangladesh”. In Mosse, D., Farrington, J. & Rew, A. (eds.) Development as
Process: Concepts and Methods for Working with Complexity. London: Routledge:
68-83.

 R-6

http://www.nationalpost.com/artslife.asp?s2=canadianbusiness&s3=news&f=981216/2106618.html
http://www.cygwin.com/
ftp://ftp.unibocconi.it/pub/corsi/strut738/wop/EY.htm

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G.,
Ledeboer, G., Reynolds, P. & Sitaram, P. [1993]. “Identifying and measuring quality
in a software requirements specification.” Proceedings of the First International
Software Metrics Symposium. Baltimore, MD. 21-22 May1993:141-152.

Davis, L. [2008]. SPI integrated circuits bus. Available at
http://www.interfacebus.com/SPI_Bus.html (Accessed 23 Nov 2008).

De Meyer, A., Loch, C. & Pich, M. [2002]. “Managing project uncertainty: from variation to
chaos.” Massachusetts Institute of Technology Sloan Management Review, 44 (2):
60-67.

Desouza, K. & Evaristo, R. [2003]. “Global knowledge management strategies.” European
Management Journal, 21(1): 62-67.

Dhanaraj, C., Lyles, M., Steensma, H. & Tihanyi, L. [2004]. “Managing tacit and explicit
knowledge transfer in IJVs: the role of relational embeddedness and the impact on
performance.” Journal of International Business Studies, 35(5): 428-442.

Dhont, S. [2003]. Knowledge management, innovation and creativity. TNO report
018.30201.50. Available at http://www.ukwon.net/files/kdb/
bb41c78da9bb0c4f4888fd47beb6e799.pdf (Accessed 10 Feb 2010).

Dignum, V. [2006]. “An overview of agents in knowledge management.” Lecture Notes in
Computer Science, 4369: 175.

Dingsøyr, T. [2003]. “Knowledge management in medium-sized software consulting
companies.” Empirical Software Engineering, 7(4): 383-386.

Dingsøyr, T. & Conradi, R. [2002]. “A survey of case studies of the use of knowledge
management in software engineering.” International Journal of Software Engineering
and Knowledge Engineering, 12(4): 391-414.

Dionne, S., Yammarino, F., Atwater, L. & Spangler, W [2004]. “Transformational leadership
and team performance”. Journal of Organizational Change Management, 17(2): 177-
193.

Doolittle, L. & Nelson, J. [2006]. Boa Webserver. Available at http://www.boa.org/ (Accessed
20 May 2006).

Douglass, B. [1999]. Doing hard time: developing real-time systems with UML, objects,
frameworks, and patterns. Reading, MA.: Addison Wesley Longman.

Douglass, B. [2000]. Real-Time UML (2nd edition). Reading, MA.: Addison Wesley Longman.

Dove, R. [1999]. “Knowledge management, response ability, and the agile enterprise.”
Journal of Knowledge Management. 3(1): 18-35.

Drucker, P. [1998]. “The coming of the new organization.” In Drucker, P. F., Garvin, D.,
Leonard, D., Straus, S. & Brown, J. (Eds.) Harvard Business Review on Knowledge
Management. Boston, MA: Harvard Business School Press: 1-20.

Drucker, P. [2000]. “Managing knowledge means managing oneself.” Leader to Leader, 16:
1-4.

Drucker, P., Garvin, D., Leonard, D., Straus, S. & Brown, J. [1998]. Harvard Business
Review on Knowledge Management. Boston, MA.: Harvard Business School Press.

Earl, M. [2001]. “Knowledge Management Strategies; Towards a Taxonomy”. Journal of
Management Information Systems, 18(1): 215-233.

Easterby-Smith, M. & Lyles, M. [2005]. The Blackwell handbook of organizational learning
and knowledge management. Oxford: Blackwell.

Edvinsson, L. & Malone, M. [1997]. Intellectual Capital: Realizing Your Company's True

 R-7

http://www.interfacebus.com/SPI_Bus.html
http://www.ukwon.net/files/kdb/%20bb41c78da9bb0c4f4888fd47beb6e799.pdf
http://www.ukwon.net/files/kdb/%20bb41c78da9bb0c4f4888fd47beb6e799.pdf
http://www.boa.org/

Value by Finding Its Hidden Brainpower. New York, NY: HarperCollins.

Edwards, S., Lavagno, L. & Lee, E. [1997]. “Design of embedded systems: formal models,
validation, and synthesis.” Proceedings of the IEEE, 85(3): 366-390.

Elliott, J. [1999]. “Making evidence-based practice educational.” British Educational
Research Journal, 27: 555-574.

Ellis C. & Wainer J. [2002]. “Groupware and computer supported cooperative work.” In:
Waiss G. (Ed.) Multiagent systems: a modern approach to distributed artificial
intelligence. Boston, MA: Massachusetts Institute of Technology Press: 425-458.

emDebian. [2007]. The embedded Debian project. Available at http://www.emdebian.org/.
(Accessed 12 Aug 2007).

Enderunix.org [2008]. Unix Daemon server programming. Available at
http://www.enderunix.org/docs/eng/daemon.php (Accessed 18 Mar 2008).

English, L. [1999]. Improving data warehouse and business information quality. New York,
NY: Wiley Computer Publishing.

Eppinger, S., Nukala, M. & Whitney, D. [1997]. “Generalized models of design iteration using
signal flow graphs.” Research in Engineering Design, 9(2): 112-123.

Eppinger, S., Whitney, D., Smith, R. & Gebala, D. [1994]. “A model-based method for
organizing tasks in product development.” Research in Engineering Design, 6(1): 1-
13.

Eraut, M. [2000]. “Non-formal learning, implicit learning and tacit knowledge in professional
work.” In Coffield, F. (ed.) The necessity of informal learning. Bristol: Policy Press:
12-31.

Erdogmus, H. [2002]. Advances in software engineering: comprehension, evaluation, and
evolution. Berlin, Germany: Springer.

Ernst, D. & Kim, L. [2002]. “Global production networks, knowledge diffusion, and local
capability formation.” Research Policy, 31(8-9): 1417-1429.

Espinosa, A., Harnden, R. & Walker, J. [2007]. “Beyond hierarchy: a complexity
management perspective.” Kybernetes, 36(3/4): 333-347.

Fayad, M., Schmidt, D. & Johnson, R. [1999]. Building application frameworks: object-
oriented foundations of framework design. Chichester, NY.: John Wiley.

Feldmann, R. [1999]. “Developing a tailored reuse repository structure: experience and first
results”. Proceedings of the Workshop on Learning Software Organisations
(SEKE'99). Kaiserslautern, Germany, 17-19 Jun 1999: 119-123.

Feltus, A. [1995]. “Exploding the myths of benchmarking”. Continuous Journey, 19 (4).
Available at http://www.apqc.org/topics/articles/bench02.htm (Accessed 1 Jul 2007).

Finger, R. [1992]. “AES3-1992: the revised two-channel digital audio interface.” Journal of
the Audio Engineering Society, 40(3): 107-116.

Fischer, M. [2001]. Knowledge, complexity and innovation systems. Berlin, Germany:
Springer.

Fischer, G. & Schneider, M. [1984]. “Knowledge-based communication processes in
software engineering”. IEEE Software, 34(5): 34-49.

Floyd, C. [1984]. “A systematic look at prototyping.” In Budde, R. (ed.) Approaches
to prototyping. Berlin, Germany: Springer: 1-18.

 R-8

http://www.emdebian.org/
http://www.enderunix.org/docs/eng/daemon.php
http://www.apqc.org/topics/articles/bench02.htm

Ford, D. [1995]. The dynamics of project management: an investigation of the impacts of
project process and coordination on performance. Boston, MA.: Massachusetts
Institute of Technology Press.

Forsberg, K., Mooz, H. & Cotterman, H. [2000]. Visualizing project management: a model for
business and technical success. New York, NY.: John Wiley.

Fowler, K. [2007]. What every engineer should know about developing real-time embedded
products. New York, NY.: CRC Press.

Freeman, G. & Schach, S. [2004]. “The task-dependent nature of the maintenance of object-
oriented programs.” The Journal of Systems and Software, 76: 195-206.

French, W. & Bell, C. [1990]. Organisational development. New York, NY.: Prentice-Hall.

Fuggetta, A. [2000]. “Software process: a roadmap.” Proceedings of the 22nd international
conference on software engineering: future of software engineering track (ICSE
2000), Limerick, Ireland 4-11Jun 2000: 25-34.

Fuld, L. [1994]. The new competitor intelligence: the complete resource for finding,
analyzing, and using information about your competitors. New York, NY.: John Wiley.

Galliers, R. & Newell, S. [2001]. “Back to the future: from knowledge management to data
management.” In Smithson, S. (ed.) Proceedings of the 9th european conference on
information systems. Bled, Slovenia 27-29 Jun 2001: 609-615.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. [1997]. Design Patterns. Boston, MA.:
Addison-Wesley.

Ganssle, J. [1999] The art of designing embedded systems. Boston, MA.: Newnes.

Ganssle, J. [2007]. Embedded systems. Boston, MA.: Newnes.

Gao, S., Zhang, Z. & Hawryszkiewycz, I. [2005]. “Managing collaborative business
processes in knowledge-intensive environments.” Proceedings of the IEEE
international conference on services computing (SCC'05), Orlando, FL.: 11-15 Jul
2005, 2: 107-114.

Gehrmann, B., Tennis, C. & Pol, B. [2004]. KDevelop User Manual. Available at
http://docs.kde.org/kde3/en/kdevelop/kdevelop/ (Accessed 8 Mar 2004).

German, D. & Hindle, A. [2006]. “Visualizing the evolution of software using softchange.”
International Journal of Software Engineering, 16(1): 5-21.

Gibbons, M., Nowotny, H., Limoges, C., Trow, M., Schwartzman, S. & Scott, P. [1994]. The
new production of knowledge: the dynamics of science and research in contemporary
societies. London: Sage.

Glass, R. [1999]. “The realities of software technology pay-offs.” Communications of the
ACM, 42(2): 74-79.

GNU [2005]. GNU Binutils. Available at http://www.gnu.org/software/binutils/ (Accessed 12
Nov 2005).

GNU. [2008a]. The GNU C library. Available at http://www.gnu.org/software/libc/manual/
(Accessed 24 Apr 2008).

GNU. [2008b]. Findutils - GNU project. Available at http://www.gnu.org/software/findutils.
(Accessed 12 Apr 2008).

GNU [2009]. Grep. Available at http://www.gnu.org/software/grep/ (Accessed 23 Nov 2009).

Gold, A., Malhotra, A. & Segarset, A. [2001]. “Knowledge management: an organizational
capabilities perspective.” Journal of Management Information Systems 18(1): 185-
214.

 R-9

http://docs.kde.org/kde3/en/kdevelop/kdevelop/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/libc/manual/
http://www.gnu.org/software/findutils
http://www.gnu.org/software/grep/

Gopalswamy, S., Kinikar, J. & Sivashankar, S. [2004]. “Practical considerations for the
implementation of model based control system development processes.”
Proceedings of the IEEE Conference on control applications (CCA 2004). Taipei,
Taiwan 1-4 Sep 2004, 2: 1425-1430.

Goossens, G., Van Praet, J., Lanneer, D., Geurts, W., Kifli, A., Liem, C. & Paulin, P. G.
[1997]. “Embedded software in real-time signal processing systems: design
technologies.” Proceedings of the IEEE, 85 (3): 436-454.

Graaf, B., Lormans, M. & Toetenel, H. [2003]. “Embedded software engineering: the state of
the practice”. IEEE Software, 20: 61-69.

Graham, A. [2008]. Statistics. New York, NY: McGraw-Hill.

Grant, R. [1996]. “Prospering in dynamically competitive environments: organizational
capabilities as knowledge integration.” Organizational Science, 7(4): 375-387.

Grenning, J., Peeters, J. & Behring, C. [2004]. “Agile Development for Embedded Software.”
Lecture Notes in Computer Science, 3134: 194-195.

Greenfield, J., Short, K. Cook, S., Kent, S. & Crupi, J. [2007]. Software factories: assembling
applications with patterns, models, frameworks, and tools. New York, NY.: John
Wiley.

Grimheden, M. & Törngren, M. [2005]. “What is embedded systems and how should it be
taught? – results from a didactic analysis.” ACM Transactions on Embedded
Computing Systems (TECS), 4(3): 651.

Groff, T. & Jones, T. [2003]. Introduction to knowledge management: KM in business.
Amsterdam, The Netherlands: Butterworth-Heinemann.

Gruber, T. [1993]. “A translation approach to portable ontologies.” Knowledge Acquisition,
5(2): 199-220.

Grundspenkis, J. [2007]. “Agent-based approach for organization and personal knowledge
modelling: knowledge management perspective.” Journal of Intelligent
Manufacturing, 18(4): 451-457.

Grundspenkis, J. & Kirikova, M. [2005]. “Impact of the intelligent agent paradigm on
knowledge management.” In Leondes, C. (ed.) Intelligent knowledge-based systems,
Volume 1: Knowledge-based systems. Boston, MA: Kluwer.

Grune, D. [2007]. Concurrent versions system CVS. Available at http://www.nongnu.org/cvs
(Accessed 5 Mar 2007).

Guthrie, J. & Petty, R. [1999]. “Knowledge management: the information revolution has
created the need for a codified system of gathering and controlling knowledge.”
Company Secretary, 9(1): 38-41.

Hahn, J. & Subramani, M. [2000]. “A framework of knowledge management systems: issues
and challenges for theory and practice.” Proceedings of the 21st international
conference on Information systems. Atlanta, GA.: 10-14 Dec 2000: 302-312.

Hall, T., Rainer, A. & Jagielska, D. [2005]. “Using software development progress data to
understand threats to project outcomes”. Proceedings of the 11th IEEE international
symposium on software metrics (METRICS 2005). Como, Italy 19-22 Sep 2005: 10-
18.

Hallows, J. [2002]. The project management office toolkit: a step-by-step guide to setting up
a project management office. New York, NY.: AMACOM/American Management
Association.

Hansen, M. [1999]. “The search-transfer problem: the role of weak ties in sharing knowledge
across organizational subunits.” Administrative Science Quarterly, 44: 82-111.

 R-10

http://www.nongnu.org/cvs

Hansen, M., Nohria, N., & Tiemey, T. [2001]. “What's Your Strategy for Managing
Knowledge?” Harvard Business Review on Organizational Learning. Boston: Harvard
Business School Press: 61-86.

Harvey, M. & Speier, C. [2000]. “Developing an inter-organization relational management
perspective.” Journal of Marketing Channels, 7(4): 23-44.

Healey, P., Garrod, S., Fay, N., Lee, J. & Oberlander, J. [2002]. “Interactional context in
graphical communication.” Proceedings of the 24th annual conference of the
Cognitive Science Society, Fairfax VA. 7-10 Aug 2002: 441-446.

Heikkinen, M. [1997]. A concurrent engineering process for embedded systems
development. Licentiate thesis, University of Oulu, Finland, 1997 (Technical
Research Centre of Finland, VTT Publications 313).

Henkel, J. [2006]. Selective revealing in open innovation processes: the case of embedded
linux. Working paper. Available at http://www.tim.wi.tum.de/paper/
Henkel_Selective_revealing_2005.pdf (Accessed 12 Dec 2007).

Henniger, S. [1997a]. “Case-based knowledge management tools in software development.”
Automated Software Engineering, 4: 319-339.

Henniger, S. [1997b] “Capturing and formalizing best practices in a software development
organization.” Proceedings of the 9th international conference on software
engineering and knowledge engineering (SEKE'97, 1997). Madrid, Spain 17-20 Jun
1997: 24-31.

Henninger, S. & Schlabach, J. [2001]. “A tool for managing software development
knowledge.” Proceedings of the 3rd international conference on product focused
software process improvement (PROFES 01). Kaiserslautern, Germany 10-13
September 2001: 182-195.

Herbsleb, J. , Mockus, A., Finholt, T., Grinter, R. [2001]. ”An empirical study of global
software development: distance and speed” Proceedings of the 23rd international
conference on software engineering. Toronto, Canada 19-21 May 2001: 81-90.

Herrmann, T., Kunau, G., Loser, K. & Menold, N. [2004]. “Socio-technical walkthrough:
Designing technology along work processes.” Proceedings of the participatory design
conference. Toronto, Canada 27-31 Jul 2004, 3: 132-141.

Hill, M. [1999]. The Impact of Information on Society. London: Bowker Saur.

Ho, J. & Tang, R. [2001]. Towards an optimal resolution to information overload: an
Infomediary approach. Proceedings of the international ACM SIGGROUP conference
on supporting group work (GROUP '01). Boulder, CO. 30 Sep-03 Oct 2001: 91-96.

Hoffmann, M., Loser, K., Walter, T. & Herrmann, T. [1999]. “A design process for embedding
knowledge management in everyday work.” Proceedings of the international ACM
SIGGROUP conference on supporting group work (GROUP '99). Phoenix, AZ. 14-17
Nov 1999: 296-305.

Holsapple, C. [2003]. Handbook of knowledge management. New York, NY.: Springer.

Houdek, F., Schneider, K. & Wieser, E. [1998]. “Establishing experience factories at Daimler-
Benz: An experience report.” Proceedings of the 20th IEEE international conference
on software engineering (ICSE 20). Kyoto, Japan 19-25 Apr 1998: 443-447.

House, R., Rousseau, D. & Thomas-Hunt, M. [1995]. “The Meso paradigm: a framework for
the integration of micro and macro organizational behavior.” Research in
organizational behavior, 17: 71-71.

Hu, C. & Chen, P. [2002]. “Design and evaluation of a knowledge management system.”
IEEE Software, 19: 56–59.

 R-11

http://www.tim.wi.tum.de/paper/%20Henkel_Selective_revealing_2005.pdf
http://www.tim.wi.tum.de/paper/%20Henkel_Selective_revealing_2005.pdf

Hughes, B. & Cotterell, M. [2005]. Software project management (4th edition). London:
McGraw-Hill.

Humphrey, W., Lovelace, M., & Hoppes, R. [1999]. Introduction to the Team Software
Process. Reading, MA.: Addison-Wesley.

IBM. [2009]. Rational Rose Technical Developer. Available at http://www-
01.ibm.com/software/awdtools/developer/technical/?S_TACT=105AGY59&S_CMP=1
3&ca=dtl-13. (Accessed 10 Jun 2009).

Jackson, D. & Caspi, P. [2005]. “Embedded systems education: Future directions, initiatives,
and cooperation.” ACM SIGBED Review, 2(4): 1-4.

Jacobson, I., Booch, G. & Rumbaugh, J. [1999]. The unified software development process.
Reading, MA: Addison Wesley.

Jantsch, A. & Tenhunen, H. [2003]. Networks on chip. Boston, MA.: Kluwer Academic
Publishers.

Jepsen, H.P, Dall, J. & Beuche, D. [2007]. “Minimally invasive migration to software product
lines.” Proceedings of the 11th international software product line conference (SPLC
2007). Kyoto, Japan 10-14 Sep 2007: 203-211.

Jerraya, A. [2004]. “Long term trends for embedded system design”, Proceedings of the
digital system design, EUROMICRO systems. Rennes, France 31 Aug-3 Sep 2004:
20-26.

Jerraya, A. & Wolf, W. [2005]. “Hardware/Software interface codesign for embedded
systems.” Computer, 38 (2): 63-69.

Johnson, B., Lorenz, E. & Lundvall, B. [2002]. “Why all this fuss about codified and tacit
knowledge?” Industrial and Corporate Change, 11(2): 245-262.

Jǿrgensen, M. & Sjǿberg, D. [2000]. “The importance of NOT learning from experience.”
Proceedings of European software process improvement conference. Copenhagen,
Denmark 7-9 Nov 2000. Available at http://www.informatik.uni-
bremen.de/gdpa/conferences/eurospi2000.htm (Accessed 6 Feb 2010).

Joy, B. & Kennedy, K. [1999]. Information technology research: investing in our future: report
from the President's Information Technology Advisory Committee (Pitac). Available at
http://ww.itrd.gov. (Accessed 14 Dec 2007).

Jurison, J. [1999]. “Software project management: the manager’s view.” Communications of
the AIS. 2(3es): 2.

Kamsties, E. & Rombach, H. [1997]. “A framework for evaluating system and software
requirements specification approaches.” In Broy, M. & Rumpe, B. (eds.)
Requirements targeting software and systems engineering. Berlin, Germany:
Springer: 203-222.

Kan, S. [2002]. Metrics and models in software quality engineering. Boston, MA.: Addison-
Wesley Longman.

Karadsheh, L., Mansour, E., Alhawari, S., Azar, G. & El-Bathy, N. [2009]. “A theoretical
framework for knowledge management process: towards improving knowledge
performance.” Communications of the IBIMA, 7(7): 67-79.

Kass, R. & Stadnyk, I. [1992]. “Using user models to improve organizational communication”.
Proceedings of 3rd international workshop on user modeling (UM’92). Dagstuhl,
Germany 10-13 August 1992: 135-147.

Karsai, G., Sztipanovits, J., Ledeczi, A. & Bapty, T. [2003]. “Model-integrated development of
embedded software.” Proceedings of the IEEE, 91(1): 145-164.

 R-12

http://www-01.ibm.com/software/awdtools/developer/technical/?S_TACT=105AGY59&S_CMP=13&ca=dtl-13
http://www-01.ibm.com/software/awdtools/developer/technical/?S_TACT=105AGY59&S_CMP=13&ca=dtl-13
http://www-01.ibm.com/software/awdtools/developer/technical/?S_TACT=105AGY59&S_CMP=13&ca=dtl-13
http://www.informatik.uni-bremen.de/gdpa/conferences/eurospi2000.htm
http://www.informatik.uni-bremen.de/gdpa/conferences/eurospi2000.htm
http://ww.itrd.gov/

Kessels, J. [2001]. “Learning in organisations: a corporate curriculum for the knowledge
economy.” Futures, 33(6): 497-506.

Kegel, D. [2007]. Building and testing gcc/glibc cross toolchains. Available at
http://www.kegel.com/crosstool. (Accessed 10 Sep 2007).

Kettinger, W., Teng, J. & Guha, S. [1997]. “Business process change: a study of
methodologies, techniques, and tools.” Management Information Systems Quarterly,
21: 55-80.

Kettunen, P [2001]. Towards rapid development of embedded telecommunications system
software products. Working Paper (unpublished), Helsinki University of Technology,
Finland.

Kettunen, P. [2003]. “Managing embedded software project team knowledge.” IEEE
Proceedings: Software, 150(6): 359-366.

Kettunen, P. & Laanti, M. [2005]. “How to steer an embedded software project: tactics for
selecting the software process model.” Information and software technology, 47(9):
587-608.

Keutzer, K. [2002]. “System-level design: Orthogonalization of concerns and platform-based
design”. IEEE Transactions on Computer Aided Design, 19 (12): 1523-1542.

Kirikova M. & Grundspenkis J. [2000]. “Using knowledge distribution in requirements
engineering.” In Leondes C.T. (ed.) Knowledge based systems: techniques and
applications (1). San Diego, CA.: Academic Press: 149-184.

Kitamura, Y., Koji, Y. & Mizoguchi, R. [2005]. “An ontological model of device function and its
deployment for engineering knowledge sharing.” Proceedings of the 1st workshop –
formal ontologies meet industry (FOMI). Castelvouva del Guarda, Italy 9-10 Jun
2005. Available at http://www.ei.sanken.osaka-u.ac.jp/pub/kita/documents/kita-
fomi05.pdf (Accessed 6 Feb 2010).

Kitamura, Y., Washio, N., Koji, Y. & Mizoguchi, R. [2005]. “Functional metadata schema for
engineering knowledge management”. Proceedings of the workshop on activities on
semantic web technologies in Japan, The 14th international World Wide Web
Conference (WWW2005). Chiba, Japan 10 May 2005. Available at
http://www.ei.sanken.osaka-u.ac.jp/pub/documents/kita-www05.pdf (Accessed 6 Feb
2010).

Kitamura, Y., Washio, N., Koji, Y. & Mizoguchi, R. [2006]. “Towards ontologies of
functionality and semantic annotation for technical knowledge management.” In
Hirata, K., Nishida, T., Sumi, Y., Izumi, K., Yamaguchi, T. & Harao, M. (eds.) New
frontiers in Artificial Intelligence. Berlin/Heidelberg, Germany: Springer.

Kitchenham, B. [1998]. “The certainty of uncertainty”. Proceedings of the 4th European
conference on software measurement and ICT (FESMA 98). Antwerp, Belgium 6-8
May 1998: 33-38.

Kitchenham, B., Pickard, L. & Pfleeger, S. [1995]. “Case studies for method and tool
evaluation.” IEEE Software, 12(4): 52-62.

Kliem, R. & Ludin, I. [1998]. Project management practitioner's handbook. Amacom Books.

Knapik M. & Johnson J. [1998]. Developing intelligent agents for distributed systems. New
York: McGraw Hill.

Knoppix. [2009]. Knoppix Linux live CD. Available at http://www.knoppix.org/. (Accessed 23
Apr 2009).

Knorr-Cetina, K. [1997]. “Sociality with objects: social relations in postsocial knowledge
societies.” Theory, culture & society, 14(4): 1-30.

 R-13

http://www.kegel.com/crosstool
http://www.ei.sanken.osaka-u.ac.jp/pub/kita/documents/kita-fomi05.pdf
http://www.ei.sanken.osaka-u.ac.jp/pub/kita/documents/kita-fomi05.pdf
http://www.ei.sanken.osaka-u.ac.jp/pub/documents/kita-www05.pdf
http://www.knoppix.org/

Knorr-Cetina, K. [2001]. “Objectual practice”, in T.R. Schatzki, K. Knorr Cetina, & E. von
Savigny (eds.) The practice turn in contemporary theory. London: Routledge: 175-
188.

Knorr-Cetina, K. & Brugger, U. [2002]. “Traders’ engagement with markets: a postsocial
relationship.” Theory Culture Society, 9(5): 161-185.

Ko, A., DeLine, R. & Venolia, G. [2007a]. Information needs in collocated software
development teams. Proceedings of the 29th international conference on software
engineering (ICSE 2007), Minneapolis, MN. 20-26 May 2007: 344-353.

Ko, H., Chang, G. & Kangtae, K. [2007b]. “A reengineering approach of the legacy system in
the digital media domain.” Procceedings of the international conference on software
engineering advances (ICSEA 2007). Cap Esterel, French Riviera, France 25-31
August 2007: 76.

Kogut, B. & Zander, U. [1992]. “Knowledge of the firm, combinative capabilities, and the
replication of technology.” Organization Science, 3 (3): 383-397.

Komi-Sirviö, S., Mäntyniemi, A. & Seppänen, V. [2002]. “Toward a Practical Solution for
Capturing Knowledge for Software Projects.” IEEE Software, 19 (3): 60-62.

Kommeren, R. & Parviainen, P. [2007]. “Philips experiences in global distributed software
development.” Empirical Software Engineering, 12(6): 647-660.

Koopman, P. [1996]. “Embedded system design issues (the rest of the story)”. Proceedings
of the IEEE International Conference on Computer Design: VLSI in Computers and
Processors (ICCD'96) Austin, TX 7-9 Oct 1996: 310–317.

Kopetz, H. [1997]. Real-time systems: design principles for distributed embedded
applications. London: Springer Publishers.

Krishna, S. [1992]. Introduction to database and knowledge-base systems. Singapore: World
Scientific Publishing.

Kroll, P. & Kruchten, P. [2003]. The rational unified process made easy. Boston, MA.:
Addison-Wesley.

Kurzweil, R. [2001]. The law of accelerating returns. Available at
http://www.kurzweilai.net/articles. (Accessed 01 Dec 2007).

Labrosse, J., Ganssle, J., Noergaard, T., Oshana, R., Walls, C., Curtis, H., Andrews, J.,
Katz, F., Gentile, R., Hyder, K. & Perrin, B. [2008]. Embedded Software. Amsterdam,
The Netherlands: Newnes.

Langer, H., Gehrke, J., Hammer, J., Lorenz, M., Ingo, J. & Herzog, O. [2006]. “A framework
for distributed knowledge management in autonomous logistic process”. International
Journal of Knowledge-based and Intelligent Engineering Systems, 10 (4): 277-290.

Larsson, S., Wall, A. & Wallin, P. [2007]. “Assessing the influence on processes when
evolving the software architecture – foundations of software engineering.”
Proceedings of the 9th international workshop on principles of software evolution (in
conjunction with the 6th ESEC/FSE joint meeting). Dubrovnik, Croatia 3-7 Sep 2007:
59-66.

Leonard, D. [1999]. Innovation and knowledge management. Williamsburg, VA.: Institute for
Knowledge Management Press.

Leonard-Barton, B. [1995]. Wellsprings of knowledge: building and sustaining the source of
innovation. Boston. MA.: Harvard Business School Press.

Lewis, J. [2006]. The project manager's desk reference. London: McGraw-Hill.

 R-14

http://www.kurzweilai.net/articles

Lindeman, D. & Moore, D. [1994]. “PDM: An enabling technology for integrated product
development.” Proceedings of the IEEE annual symposium on reliability and
maintainability (RAMS). Anaheim, CA. 24-27 Jan 1994: 320-326.

Lindvall, M., Rus, I., Jammalamadaka, R. & Thakker, R. [2001]. Software tools for
knowledge management. Fraunhofer Center for Experimental Software Engineering.
Maryland, USA. Available at http://www.dacs.dtic.mil/ techs/kmse/swtools4km.pdf.
(Accessed 16 Feb 2009).

Lindvall, M., Komi-Sirviö, S., Costa, P. & Seaman, C. [2003]. Embedded Software
Maintenance. Available at https://www.thedacs.com/get_pdf/DACS-347003.pdf.
(Accessed 10 Nov 2008).

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M. Kiefer, D. & May, J. [2004].
“Agile software development in large organizations”. Computer, 37(12): 26-34.

Linn, J. [2001]. “Embedded Software Development Challenges in the Digital Signal
Processing Era”. 5th International symposium on autonomous decentralized systems.
Dallas, TX. 26-28 March 2001: 299-302.

Liu, J. [2000]. Real-time systems. London: Prentice Hall.

Louridas, P. [2006]. “Using wikis in software development.” IEEE Software, March/April
2006: 88-91.

Luqi, L., Berzins, Y. & Qiao, Y. [2004]. “Documentation driven development for complex real-
time systems”. IEEE Transactions on Software Engineering, 30(12): 936-952.

Lutz, M. [2006]. Programming python. Sebastopol, CA.: O'Reilly Media Inc.

Lyles, M., Steensma, H. & Tihanyi, L. [2004]. “Managing tacit and explicit knowledge transfer
in IJVs: the role of relational embeddedness and the impact on performance.” Journal
of International Business Studies, 35(5): 428-442.

Lynn, G., Reilly, R. & Akgűn, A. [2000]. “Knowledge management in new product teams:
practices and outcomes”. IEEE Transactions on Engineering Management, 47(2):
221-231.

Lyytinen, K. & Robey, D. [1999]. “Learning failure in information systems development.”
Information Systems Journal, 9(2): 85-101.

MacKenzie, D., Eggert, P. & Stallman, R. [2003]. Comparing and Merging Files with GNU
diff and patch. Network Theory Ltd. Available at http://ufpr.dl.sourceforge.net/project/
souptonuts/GNU%20Documentation/Original%20Files/GNU_diff.pdf (Accessed 12
Apr 2008).

Madhavan, R. & Grover, R. [1998]. “From embedded knowledge to embodied knowledge:
new product development as knowledge management.” The Journal of Marketing,
64: 1-12.

Maier, R. [2004]. Knowledge management systems: information and communication
technologies for knowledge management. New York: Springer.

Maier, R. & Hadrich, T. [2006]. “Knowledge management systems”. Encyclopedia of
knowledge management. Schwartz, D. & Edwards, J. Idea Group: 442-450.

Maier, R. & Remus, U. [2003]. “Implementing process-oriented knowledge management
strategies.” Journal of Knowledge Management, 7(4): 62-74.

Majchrzak, A., Rice, R., Malhotra, A., King, N. & Ba, S. [2000]. “Technology adaptation: the
case of a computer supported inter-organizational virtual team”. MIS Quarterly, 24
(4): 569-600.

 R-15

http://www.dacs.dtic.mil/%20techs/kmse/swtools4km.pdf
https://www.thedacs.com/get_pdf/DACS-347003.pdf
http://ufpr.dl.sourceforge.net/project/%20souptonuts/GNU%20Documentation/Original%20Files/GNU_diff.pdf
http://ufpr.dl.sourceforge.net/project/%20souptonuts/GNU%20Documentation/Original%20Files/GNU_diff.pdf

Majchrzak, A., Cooper, L. & Neece, O. [2003]. “Knowledge reuse in the radical innovation
process at the jet propulsion laboratory.” In Leibowitz, J. & Holm, J. (eds.),
Knowledge management technologies and applications in NASA. Washington, DC:
Government Printing Office.

Mäkäräinen, M. [2000]. Software change management processes in the development of
embedded software. Unpublished Dissertation, University of Oulu, Finland, 2000
(Technical Research Centre of Finland, VTT Publications 416).

Malhotra, Y. [2007]. KMBook.com. BRINT Institute. Available at http://www.kmbook.com/.
(Accessed 02 Mar 2007).

Mano, M. & Ciletti, M. [2006]. Digital Design (4th edition). London: Prentice Hall.

Mäntyniemi, A., Pikkarainen, M. & Taulavuori, A. [2004]. A Framework for Off-The-Shelf
Software Component Development and Maintenance Processes. Espoo, Finland:
VTT Publications. Available at http://www.vtt.fi/inf/pdf/publications/2004/P525.pdf
(Accessed 06 Feb 2010).

Martensson, M. [2000]. “A critical review of knowledge management as a management tool.”
Journal of Knowledge Management, 4(3): 204-216.

Martland, D., Holloway, S. & Bhabuta, L. [1986]. Fourth generation languages and
applications generators. Brookfield, WI: The Technical Press.

Marwedel, P. [2003]. Embedded System Design. Berlin, Germany: Springer.

McDermott, R. [1999a]. “Nurturing three-dimensional communities of practice.” Knowledge
Management Review, 2 (5): 26-29.

McDermott, R. [1999b]. “Why Information Technology Inspired but Cannot Deliver
Knowledge Management.” California Management Review, 41 (4): 103-17.

McKeown, M. [2008]. The truth about innovation. London: Pearson Education.

Medvidovic, N. & Mikic-Rakic, M. [2003]. Architectural support for programming-in-the-many.
Proceedings of the ACM/IFIP/USENIX 2003 international conference on middleware.
Rio de Janeiro, Brazil 16-20 June 2003: 162-181.

Mellis, W. [1998]. “Software quality management in turbulent times: are there alternatives to
process oriented software quality management?” Software Quality Journal, 7(3): 277-
295.

Meyers, L., Guarino, A. & Gamst, G. [2005]. Applied multivariate research: design and
interpretation. Thousand Oaks, CA.: Sage.

Microchip. [2008]. MPLAB Integrated Development Environment. Available at
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406
&dDocName=en019469&part=SW007002. (Accessed 20 Nov 2008).

Mikkonen, T. & Pruuden, P. [2001]. “Flexibility as a design driver.” Computer, 34 (11): 52-56.

Milton, N. [2005]. Knowledge management for teams and projects. Oxford: Chandos.

Molnar, W & Nandhakumar, J. [2007]. “Managing a new computer device development in a
creative ISO 9001 certified company: a case study.” Proceedings of the 40th annual
Hawaii international conference on system sciences (HICSS'07) Waikoloa, Big
Island, HI. 3-6 January 2007. Available at http://www.informatik.uni-
trier.de/~ley/db/conf/hicss/hicss2007.html (Accessed 06 Feb 2010).

Muller, H., Jahnke, J., Smith, D., Storey, M., Tilley, S. & Wong, K. [2000]. “Reverse
engineering: a roadmap.” Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000): Future of Software Engineering Track. Limerick,
Ireland 4-11 Jun 2000: 47-60.

 R-16

http://www.kmbook.com/
http://www.vtt.fi/inf/pdf/publications/2004/P525.pdf
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.informatik.uni-trier.de/%7Eley/db/conf/hicss/hicss2007.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/hicss/hicss2007.html

MySQL. [2009]. MySQL. Available at http://www.mysql.com/ (Accessed 25 Aug 2009).

Nakagawa, T., Kosha, H. & Mihara, Y. [2002]. “Reorganizing TRIZ solution generation
methods into simple five in USIT.” ETRIA World Conference, Strasbourg, France 6-8
Nov: 333-345.

Nelson, V., Nagle, H. Carroll, B. & Irwin, J. [1995]. Digital logic circuit analysis and design.
London: Prentice Hall.

Newell, S., Swan, J. & Robertson, M. [1998]. “A cross-national comparison of the adoption of
business process reengineering: Fashion-setting networks”. Journal of Strategic
Information Systems, 7(4): 299-317.

Nonaka, I. [1994]. “A dynamic theory of organizational knowledge creation.” Organization
Science, 5: 14-37.

Nonaka, I. & Konno, N. [1999]. “The Concept of “Ba”: Building a Foundation for Knowledge
Creation.” California Management Review, 40(3): 40-54.

Nonaka, I., Konno, N. & Toyama, R. [2001a]. “Emergence of BA.” In Nonaka I. & Nishiguchi,
T. (eds.) Knowledge Emergence: Social, Technical, and Evolutionary Dimensions of
Knowledge Creation. New York, NY.: Oxford University Press: 13-29.

Nonaka, I. & Takeuchi, H. [1995]. The knowledge-creating company: How Japanese
companies create the dynamics of innovation. New York, NY.: Oxford University
Press.

Nonaka, I., Toyama, R. & Boysiere, P. [2001b] “A theory of organizational knowledge
creation: understanding the dynamic process of creating knowledge”. In Dierkes, M,
Berthoin, A, Antal, A, Child, J. & Nonaka, I. (eds.) [2001]. Handbook of organizational
learning and knowledge. Oxford: Oxford University Press.

Nonaka, I., Toyama, R. and Konno, N. [2000]. “SECI, Ba, and leadership: A unified model of
dynamic knowledge creation”. Long Range Planning, 33: 5-34.

NXP Semiconductors. [2007]. The I2C-bus specification. Available at
http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf (Accessed 12
Feb 2007).

Nyerges, T., Jankowski, P. & Drew, C. [2002]. “Data-gathering strategies for social-
behavioural research about participatory geographical information system use.”
International Journal of Geographical Information Science,16(1): 1-22.

O'Brien, J. [2006]. Introduction to Information Systems (13th edition). London: McGraw-Hill.

O'Dell, C. & Grayson, C. [1999]. “If only we knew what we know: identification and transfer of
internal best practices.” California Management Review, 40(3):154-174.

O'Dell, C., Elliott, S. & Hubert, C. [2003]. “Achieving knowledge management outcomes.” In
Holsapple, C. (ed.) Handbook on knowledge management: knowledge directions 2.
Berlin, Germany: Springer: 253-288.

Object Management Group. [2002]. “Object constraint language (OCL).” Specification, 1(4)
Available at http://www.omg.org/cgi-bin/doc?ad/03-01-07.pdf (Accessed 15 Feb
2010).

Odell, L., Goswami, D. & Herrington, A. [1983]. In Mosenthal, P. & Walmsley, L. (eds.)
Research on writing: principles and methods. New York, NY.: Longman: 221-36.

Oluic-Vukovic, V. [2001]. “From information to knowledge: some reflections on the origin of
the current shifting towards knowledge processing and further perspective.” Journal
of the American Society for Information Science and Technology, 52: 54-61.

OMG. [2005]. UML 2.0. Available at http://www.omg.org/spec/UML/2.0/ (Accessed 12 Nov

 R-17

http://www.mysql.com/
http://www.nxp.com/acrobat_download2/literature/9398/39340011.pdf
http://www.omg.org/cgi-bin/doc?ad/03-01-07.pdf
http://www.omg.org/spec/UML/2.0/

2005).

Ordanini, A. & Pol, A. [2001]. “Infomediation and competitive advantage in B2B digital
marketplaces.” European Management Journal, 19(3): 276-285.

Ortenblad, A. [2007]. “The evolution of popular management ideas: an exploration and
extension of the old wine in new bottles metaphor.” International Journal of
Management Concepts and Philosophy 2(4): 365-388.

Osiov, I., Smirnov, I., Tikhomirov, I., Vybornova, O. & Zavjlrva, O. [2006]. “Linguistic
knowledge for search relevance improvement.” In Tyugu, E. & Yamaguchi, E. (Eds.)
Proceedings of the 7th joint conference on knowledge-based software engineering.
Amsterdam, The Netherlands: IOS Press: 294-302.

Pan, S. Scarbrough, H. [1999]. “Knowledge management in practice: an exploratory case
study.” Technology analysis and strategic management 11(3): 359-374.

Patil, L., Dutta, D. & Sriram, R. [2005]. “Ontology-based exchange of product data
semantics.” IEEE Transactions on Automation Science and Engineering 2(3): 13-
225.

Patrick, A. [2008]. “Formalising the ‘No Information without Data-representation’ Principle.”
Frontiers in Artificial Intelligence and Application: proceedings of the 2008 conference
on current issues in computing and philosophy. Amsterdam, The Netherlands: IOS
Press: 79-90.

Patriotta, G. [2004]. “On studying organizational knowledge.” Knowledge Management
Research & Practice 2: 3-12.

Patterson, D. & Hennessy, J. [2005]. Computer organization and design: the
hardware/software interface. San Francisco: CA.: Morgan Kaufmann.

Pena-Mora, F., Sriram, R. & Logcher, R. [1993]. “SHARED DRIMS: SHARED design
recommendation and intent management system”. Enabling technologies:
infrastructure for collaborative enterprises. IEEE Press: 213-221.

Pena-Mora, F., Sriram R. & Logcher, R. [1995]. “Conflict mitigation system for collaborative
engineering”. AI EDAM: special issue on concurrent engineering 9 (2): 101-123.

Pérez Pérez, M. & Sanchez, A. [2003]. “The development of university spin-offs: early
dynamics of technology transfer and networking.” Technovation, 23(10): 823-831.

Piaseki, D. [2005]. RFID Update: The basics, the Wal-Mart mandate, EPC primary concerns,
and more. Available at http:// www.rfidjournal.com/article/articleview/781/1/82.
(Accessed 14 Dec 2007).

Polanyi, M. [1958]. Personal knowledge: towards a post-critical philosophy. London,
Routledge.

Project Management Institute [2004]. A guide to the project management body of knowledge
(PMBOK Guide) (3rd edition). Newtown Square, PA.: Project Management Institute.

Prowell, S., Trammell, C. Linger, R. & Poore, J. [1999]. Cleanroom software engineering:
technology and process. Lebanon, IN.: Addison-Wesley Publishers.

Radding, A. [1998]. Knowledge management: succeeding in the information-based global
economy (1st edition). Charleston, SC.: Computer Technology Research.

Rahe, M. & Morales, C. [2005]. “Reducing resistance to change through knowledge
management: a conceptual approach.” Research and Practice in Human Resource
Management, 13(2): 49-64.

Rennolls, K. & Al-Shawabkeh, A. [2008]. “Formal structures for data mining, knowledge
discovery and communication in a knowledge management environment.” Intelligent

 R-18

Data Analysis 12(2): 147-163.

Richter, H. & Abowd, G. [2004]. “Tagging knowledge acquisition sessions to facilitate
knowledge traceability”. International Journal of Software Engineering and
Knowledge Engineering,14: 3-19.

Riesgo, T., Torroja, Y. & de la Torre, E. [1999]. “Design methodologies based on hardware
description languages.” IEEE Transactions on Industrial Electronics, 46(1): 3-12.

Rodgers, P., Huxor, A. & Caldwell, N. [1999]. “Design support using distributed web-based
AI tools.” Research in Engineering Design, 11: 31-44.

Romano, N., Chen, F. & Nunamaker, J. [2002]. “Collaborative project management
software”. Proceedings of the 35th Hawaii international conference on system
sciences (HICSS-35.02) (1). Maui, Hawaii, 7-10 January 2002: 233-242.

Rousseau, D. & House, R. [1994]. “Meso organizational behavior: avoiding three
fundamental biases”. In Cooper, C. & Rousseau, D. (eds.) Trends in organizational
behavior (Volume 1). New York, NY.: John Wiley & Sons: 13-30.

Rowen, C. & Leibson, S. [2004]. Engineering the complex SoC: fast, flexible design with
configurable processors. Upper Saddle River, NJ.: Prentice Hall.

Royce, W. [1970]. “Managing the development of large software systems.” (Reprinted from
Proceedings of IEEE WECON, August 1970). Available at
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_wi
nston_royce.pdf (Accessed 10 Jul 2010).

Rumbaugh, J., Jacobson, I. & Booch, G. [2005]. The unified modeling language reference
manual. (2nd Edition). Boston. MA.: Addison-Wesley.

Rumizen, M. [2002]. The complete idiot’s guide to knowledge management. Madison, WI.:
CWL Publishing Enterprises.

Runco, M. & Pritzker, S. [1999]. Encyclopedia of creativity (Volumes 1 & 2). San Diego, CA.:
Academic Press.

Rus, I. & Lindvall, M. [2002]. “Knowledge management in software engineering.” IEEE
Software, 19(3): 26–38.

Rus, I., Lindvall, M. & Sinha, S. [2001]. Knowledge management in software engineering.
The Data and Analysis Centre for Software (DACS) state-of-the-art report. Available
at https://www.thedacs.com/techs/DACS345468.pdf Accessed 11 Jul 2010.

Sabat, H. [2007]. “Successful paradigms, execution issues and best practices to build
learning organisations.” International Journal of Knowledge Management Studies,
1(3): 306-329.

Sangiovanni-Vincentelli, A. & Pinto, A. [2005]. “An overview of embedded system design
education at Berkeley.” ACM Transactions on Embedded Computing Systems
(TECS), 4(3): 472-499.

Schach, S. [2005]. Object-oriented and classical software engineering. Boston, MA.:
McGraw-Hill.

Scheifler, R. & Gettys, J. [1986]. “The X window system.” ACM Transactions on Graphics,
5(2): 79-109.

Sefton-Green, J. & Sinker, R. [2000]. Evaluating creativity: making and learning by young
people. Milton Park: Routledge Falmer.

Senge, P. [1990]. The fifth discipline: the art and science of the learning organization. New
York, NY.: Currency Doubleday.

 R-19

http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
https://www.thedacs.com/techs/DACS345468.pdf

Seth, D. [2007]. A platform based approach for embedded systems software development.
Unpublished doctoral thesis, Massachusetts Institute of Technology. Available at
http://dspace.mit.edu/handle/1721.1/35092 (Accessed 20 Nov 2007).

Seviora, R. [2005]. “A curriculum for embedded system engineering.” ACM Transactions on
Embedded Computing Systems (TECS), 4(3): 569-586.

Sgroi, M., Sheets, M., Mihal, A., Keutzer, K. & Malik, S. [2001]. “Addressing the system-on-
a-chip interconnect woes through communication-based design.” Proceedings of the
38th conference on design automation. Las Vegas, NV.18-22 June 2001: 667-672.

Shetler, J. [1996]. “Teaming in the microprocessor laboratory.” Proceedings of the Frontiers
in Education conference (Vol 3). Salt Lake City, UT. 6-9 Nov, 1996: 1437-1440.

Silvestro, R., Fitzgerald, L., Johnston, R. & Voss, C. [1992]. “Towards a classification of
service processes.” International Journal of Service Industry Management, 3(3): 62-
75.

Simard, A., Broome, J., Drury, M., Haddon, B., O'Neil, B. & Pasho, D. [2007]. Understanding
knowledge services at natural resources Canada. Ottawa, Canada: Office of the
Chief Scientist, Natural Resources Canada. Available at
http://warehouse.pfc.forestry.ca/HQ/27338.pdf (Accessed 11 Jul 2010).

SimIt-ARM. [2008]. SimIt-ARM. Available at http://simit-arm.sourceforge.net (Accessed 14
Feb 2008).

Simonin, B. [1999]. “Ambiguity and the process of knowledge transfer in strategic alliances.”
Strategic Management Journal, 20(7): 595-623.

Skuce, D. [1995]. “Knowledge management in software design: a tool and a trial.” Software
Engineering Journal, 10(5): 183-193.

Smith, H. & McKeen, J. [2003]. “Creating and facilitating communities of practice.” In
Holsapple, C.W. (ed.) Handbook on Knowledge Management 1: Knowledge Matters.
Berlin/Heidelberg/New York: Springer: 393-407.

Smith, P. & Reinertsen, D. [1998]. Developing products in half the time (2nd edition). New
York, NY.: John Wiley and Sons.

SnapGear. [2007]. SnapGear embedded Linux distribution home page. Available at
http://www.snapgear.org/ (Accessed 21 Aug 2007).

Snowden, D. [1998]. “A framework for creating a sustainable knowledge management
programme.” The knowledge management yearbook 1999-2000. Oxford: Butterworth
Heinemann: 52-64.

Sommerville, I. [2005]. “Integrated requirements engineering: a tutorial.” IEEE Software,
22(1): 16-23.

Sommerville, I. [2006]. Software engineering. Reading, MA.: Addison-Wesley.

Sophia, A. [2006]. Creative process vs product. Available at
http://ezinearticles.com/?Creative-Process-Vs-Product&id=2367713 (Accessed 15
Mar 2006).

Souchkov, V. [2005]. “Skills and tools to support productivity in creative work.” Paper
presented at the European summit for the future. Amsterdam, The Netherlands 27
Jan 2005. Available at
http://www.xtriz.com/publications/SummitForFuture2005Souchkov.pdf (Accessed 11
Jul 2010).

Speer, S. & Hutchby, I. [2003]. “From ethics to analytics: aspects of participants’ orientations
to the presence and relevance of recording devices.” Sociology, 37(2): 315-337.

 R-20

http://dspace.mit.edu/handle/1721.1/35092
http://warehouse.pfc.forestry.ca/HQ/27338.pdf
http://simit-arm.sourceforge.net/
http://www.snapgear.org/
http://ezinearticles.com/?Creative-Process-Vs-Product&id=2367713
http://www.xtriz.com/publications/SummitForFuture2005Souchkov.pdf

Spinuzzi, C. [2002]. “Modeling genre ecologies.” Proceedings of the ACM 20th annual
international conference on computer documentation (SIGDOC).Toronto, Ontario,
Canada 20-23 Oct 2002: 200-207

Spinuzzi, C. [2003]. “Compound mediation in software development: using genre ecologies
to study textual artifacts.” In Bazerman, C. & Russell, D. (eds.) Writing selves/writing
societies. Mahwah, NJ.: Laurence Erlbaum Associates: 97-124.

Staab, S., Studer, R., Schnurr, H. & Sure, Y. [2001]. “Knowledge processes and ontologies.”
IEEE Intelligent systems 16(1): 26-34.

Ståhle, P. & Grönroos, M. [2000]. Dynamic intellectual capital: knowledge management in
theory and practice. Porvoo/Helsinki/Juva, Finland: Werner Söderström Osakeyhtiö
(WSOY) Publishers.

Stamelos, I., Angelis, L., Oikonomou, A. & Bleris, G. [2002]. “Code quality analysis in open
source software development.” Information Systems Journal, 12(1): 43–60.

Sternberg, R. & Frensch, P. [1991]. Complex problem solving: principles and mechanisms.
Hillsdale, NJ.: Lawrence Erlbaum.

Sutter, E. [2002]. Embedded systems firmware demystified. Lawrence, KA.: CMP Books.

Stojanovic, L., Maedche, A., Motik, B. & Stojanovic, N. [2002]. “User-driven ontology
evolution management.” Proceedings of the 13th international conference on
knowledge engineering and knowledge management: ontologies and the semantic
web (EKAW02). Sigüenza, Spain 1-4 October 2002: 285-300.

Sveiby, K. [1997]. The invisible balance sheet: key indicators for accounting, control and
evaluation of know-how companies. Stockholm, Sweden: The Konrad Group.
Available at http://www.sveiby.com/articles/IntangAss/denosynl.htm (Accessed 10 Jul
2010).

Sveiby, K. [1998]. Measuring intangibles and intellectual capital: an emerging first standard.
Available at http://www.sveiby.com/Portals/0/articles/ EmergingStandard.html
(Accessed 02 Mar 2007).

Sveiby, K. [2000]. What is knowledge management? Available at
http://www.sveiby.com.au/KnowledgeManagement.html (Accessed 20 Nov 2007).

Sveiby, K. [2001]. “A knowledge-based theory of the firm to guide in strategy formulation.”
Journal of Intellectual Capital, 2: 344-358.

Tatham, S. [2009]. PuTTY: A free Telnet/SSH client. Available at
http://www.chiark.greenend.org.uk/~sgtatham/putty/ (Accessed 23 Aug 2009).

Tautz, C. & Althoff, K. [1997]. “Using case-based reasoning for reusing software knowledge.”
Case-based reasoning research and development: proceedings of the 2nd
international conference on case-based reasoning (ICCBR-97). Providence, RI. 25-
27 Jul 1997:156-165.

Tautz, C., Althoff, K. & Nick, M. [2000]. “A case-based reasoning approach for managing
qualitative experience”. AAAI-00 workshop on intelligent lessons learned systems.
American Association for Artificial Intelligence. Papers from the AAAI Workshop.
Menlo Park, Edison NJ.: AAAI Press: 54-58.

Tcl Developer Site. [2007]. Available at http://www.tcl.tk/ (Accessed 21 Mar 2007).

Teece, D. [2001]. “Strategies for managing knowledge assets: the role of firm structure and
industrial context”. In Nonaka, I. & Teece, D.J. (eds.), Managing industrial
knowledge-creation, transfer and utilization. London: Sage Publications: 125-144.

Thamhain, H. [1990]. “Managing technologically innovative team efforts toward new product
success.” An international publication of the product development & management

 R-21

http://www.sveiby.com/articles/IntangAss/denosynl.htm
http://www.sveiby.com/Portals/0/articles/%20EmergingStandard.html
http://www.sveiby.com.au/KnowledgeManagement.html
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://www.tcl.tk/

association 7(1): 5–18.

Tian, J., Nakamori, Y. & Wierzbicki, A. [2009]. “Knowledge management and knowledge
creation in academia: a study based on surveys in a Japanese research university.”
Journal of Knowledge Management, 13(2): 76-92.

Tierney, P. & Farmer, S. [2002]. “Creative self-efficacy: Its potential antecedents and
relationship to creative performance.” Academy of Management Journal, 38: 1137-
1148.

Törngren, M., Grimheden, M. & Adamsson, N. [2007]. “Experiences from large embedded
systems development projects in education, involving industry and research.” ACM
SIGBED Review, 4(1): 55-63.

Tsui, E. [2002]. “Technologies for personal and peer-to-peer (P2P) knowledge
management.” CSC Leading Edge Forum (LEF) Technology Grant report, 2002.
Available at http://www2.csc.com/lef/programs/completed_02.html (Accessed 11 Feb
2010).

Turner, J. [2009]. The handbook of project-based management (3rd edition). New York, NY.:
McGraw-Hill Professional.

Turner, R., Huemann, M. & Keegan, A. [2008]. “Human resource management in the project-
oriented organization: employee well-being and ethical treatment.” International
Journal of Project Management, 26(5): 577-585.

Ulrich, K. & Eppinger, S. [1995]. Product design and development. New York, NY.: McGraw-
Hill.

Underhill, L. & Bradfield, D. [1998]. Introstat. Cape Town, South Africa: Juta Academic.

Van der Spek, R. & Spijkervet, A. [1997]. “Knowledge management: dealing intelligently with
knowledge.” In Wilcox, L.C. (ed.), Knowledge management and its integrative
elements. Boca Raton, FL.: CRC Press: 31-60.

Van Zolingen, S., Streumer, J. & Stooker, M. [2001]. “Problems in knowledge management:
A case study of a knowledge-intensive company.” International Journal of Training
and Development, 5(3): 168-184.

Vaswani, V. [2004]. MySQL: the complete reference. Emeryville, CA.: McGraw-Hill Osborne.

Vinter, O. [2005]. “A framework for classification of change approaches of process
improvement models.” In Bomarius, F. & Komi-Sirviö, S. (eds.) Proceedings of the 6th
international product-focused software process improvement conference. Oulu,
Finland, 13-15 Jun 2005: 29-38.

Von Hagen, W. [2007]. Ubuntu Linux Bible. Indianapolis, IN.: Wiley.

Von Krogh, G., Spaeth, S. & Lakhani, K. [2003]. “Community, joining, and specialization in
open source software innovation: a case study.” Research Policy, 32(7): 1217-1241.

Wagner, I., Tellioglu, H., Balka, E., Simone, C., Ciolfi, L. [2009]. “On the effects of refactoring
in the coordination of software development activities”. Proceedings of the 11th
European Conference on Computer Supported Cooperative Work (ECSCW 2009).
Vienna, Austria 9-11 Sep 2009: 215-222.

Wake, W. [2002]. Extreme programming explored. New York, NY.: Addison-Wesley.

Wandeler, E., Thiele, L., Verhoef, M. & Lieverse, P. [2006]. “System architecture evaluation
using modular performance analysis: a case study.” International Journal on
Software tools for technology transfer, 8(6): 649-667.

 R-22

http://www2.csc.com/lef/programs/completed_02.html

Wangenheim, C., Weber, S., Hauck, J. & Trentin, G. [2006]. “Experiences on establishing
software processes in small companies.” Information and Software Technology,
48(9): 890-900.

Warden, R. [1992]. “Re-engineering – a practical methodology with commercial
applications”. In Hall, P.A.V. (ed.) Software reuse and reverse engineering in
practice. London: Chapman & Hall: 283-305.

Weinberg, G. [1975]. An Introduction to general systems thinking. New York: NY.: Wiley-
Interscience.

Wenger, E. [1998]. Communities of practice: learning, meaning and identity. Cambridge:
Cambridge University Press.

Wenger, E., McDermott, R. & Snyder, W. [2002]. Cultivating communities of practice.
Boston, MA.: Harvard Business School Press.

White, S. [2005]. “Improving the system/software engineering interface for complex system
development.” Proceedings of the12th IEEE International Conference and Workshop
on the Engineering of computer-based systems (ECBS ’05) Greenbelt, ML. 4-7 Apr
2005: 281-288.

Wiig, K. [1995]. Knowledge management methods. New York, NY.: Schema Press.

Wiig, K. [1997]. “Knowledge management: where did it come from and where will it go?”
Expert Systems with Applications, 13: 1-14.

Wikipedia. [2008]. Correlation. Available at
http://en.wikipedia.org/w/index.php?title=Correlation&oldid=324601995. (Accessed
10 Mar 2008).

Wikipedia. [2009]. Virtual machine. Available at
http://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=320601238.
(Accessed 21 Aug 2009).

Wiktionary. [2008]. Tool chain. Available at http://en.wiktionary.org/wiki/toolchain. (Accessed
14 Oct 2008).

Wilson, T.D. [2002] "The nonsense of 'knowledge management" Information Research, 8(1),
paper no. 144. Available at http://InformationR.net/ir/8-1/paper144.html (Accessed 30
Jan 2010).

Winberg, S. [2005a]. “A study of learning tasks used in implementation procedures during
embedded software development.” Radar Remote Sensing Group, University of
Cape Town. Report no. 4527, July 2005, Available at
https://rrsg.ee.uct.ac.za/refs/refview.php?id=4527 (Accessed 14 Mar 2007).

Winberg, S. [2005b]. “Getting Started With GCC and ESAOA on Linux.” Unpublished
laboratory tutorial. University of Cape Town.

Winberg, S. [2005c]. “CSB337 & MicroMonitor.” Unpublished laboratory tutorial. University of
Cape Town.

Winberg, S. [2006a]. “Embedded system artefact organization and adaptation (ESAOA)
framework setup procedure.” Radar Remote Sensing Group. Report no. 4648,
Feburary 2006, Available at https://rrsg.ee.uct.ac.za/refs/refview.php?id=4648.
(Accessed 15 Mar 2007).

Winberg, S. [2006b]. “Development of a knowledge management methodology with
application to embedded system development.” Radar Remote Sensing Group.
Report no. 4658, March 2006, Available at
https://rrsg.ee.uct.ac.za/refs/refview.php?id=4658. (Accessed 15 Mar 2007).

Winberg, S. [2006c]. “An innovative approach to embedded system education and

 R-23

http://en.wikipedia.org/w/index.php?title=Correlation&oldid=324601995
http://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=320601238
http://en.wiktionary.org/wiki/toolchain
http://informationr.net/ir/8-1/paper144.html
https://rrsg.ee.uct.ac.za/refs/refview.php?id=4527
https://rrsg.ee.uct.ac.za/refs/refview.php?id=4648
https://rrsg.ee.uct.ac.za/refs/refview.php?id=4658

 R-24

development.” Radar Remote Sensing Group. Report no. 4649, November 2006,
Available at https://rrsg.ee.uct.ac.za/refs/refview.php?id=4649. (Accessed 20 Apr
2007).

Winberg, S. [2006d]. “Knowledge management needs in embedded software development.”
Radar Remote Sensing Group. Report no. 4650, December 2006, Available at
https://rrsg.ee.uct.ac.za/refs/ refview.php?id=4650. (Accessed 20 Apr 2007).

Winberg, S. [2006e]. “A pilot study of knowledge acquisition of embedded system methods:
self-directed learning of engineering methods to improve laboratory practice.” Radar
Remote Sensing Group. Report no. 4657, December 2006, Available at
https://rrsg.ee.uct.ac.za/refs/refview.php?id=4657. (Accessed 03 May 2007).

Winberg, S. & Schach, S. [2007]. “A pilot study of productive versus nonproductive
knowledge acquisition in embedded software development.” International Journal of
Software Engineering and Knowledge Engineering, 11(4): 539-556.

Winberg, S., Schach, S. & Inggs, M. [2008]. “Bringing knowledge management into an
engineering curriculum.” South African Journal of Higher Education, 21(7): 969-983.

Winberg, S. [2009]. “A pilot study of the ESAOA Ontology Manager.” Radar Remote Sensing
Group. Report no. 6820, March 2009, Available at
https://rrsg.ee.uct.ac.za/aigaion/publications/show/6820 (Accessed 17 Mar 2009).

Wood, W. & Agogino, A. [1996]. “Case based conceptual design information server for
concurrent engineering”. Computer-Aided Design, 8(5): 361-369.

Yahoo! Messenger. [2004]. Available at http://messenger.yahoo.com/. (Accessed 12 Aug
2004).

Yoon, S., Henschen, L., Park, E. K. & Makki, S. [1999]. “Using domain knowledge in
knowledge discovery”. Proceedings of the eighth international conference on
Information and knowledge management (CIKM '99). Kansas City, MO. 2-6 Nov
1999: 243-250.

Zander, U. & Kogut, B. [1995]. “Knowledge and the speed of the transfer and imitation of
organizational capabilities: an empirical test.” Organization Science, 6 (1) 76-92.

Zha, X. & Du, H. [2005]. “Knowledge-intensive collaborative design modeling and support,
Part 1: review, distributed models and frameworks”. Computers in Industry, 57(1): 39-
55.

Zha, X. & Du, H. [2006]. “Knowledge-intensive collaborative design modeling and support,
Part 2: system implementation and application”. Computers in Industry, 57(1): 56-71.

Zha, X., Fu, M., Lu, W., Ma, S. & Zhu, C. [2002]. Knowledge modeling in design process-
knowledge modeling in product family design for mass customization, SIMTech
Technical Report, MIT/02/031/PDD, Singapore, 2002.

Zhou, J., Cooper, K., Ma, H. & Yen, I. [2007]. “On the customization of components: a rule-
based approach”. IEEE Transactions on Knowledge and Data Engineering, 19(9):
1262-1275.

Zingheim, P. & Schuster, J. [1995]. “Supporting teams with multi-rater performance reviews.”
Compensation and Benefits Management, 11: 41-41.

Van Zolingen, S., Streumer, J. & Stooker, M. [2001]. "Problems in knowledge management:
a case study of a knowledge-intensive company." International Journal of Training
and Development, 5(3): 168-184.

https://rrsg.ee.uct.ac.za/refs/refview.php?id=4649
https://rrsg.ee.uct.ac.za/refs/%20refview.php?id=4650
https://rrsg.ee.uct.ac.za/refs/refview.php?id=4657
https://rrsg.ee.uct.ac.za/aigaion/publications/show/6820
http://messenger.yahoo.com/

Appendix A: Experiment 1 appendices

A.1 Knowledge register for first case study (P1-1)
The table below presents the list of ESAOA events for the first case study (P1-1). The thirteen columns of this table are described below:

1. Event No.: event number;
2. Event description: brief description of the event;
3. Event chain: the event chain number for this event;
4. Pred: predecessor(s) of the event;
5. Dead-end: number of the event causing this event to become a dead-end (events that are not dead-ends have a blank in this column);
6. Event comments: additional comments and solution strategies related to the event;
7. K: knowledge type (one of D for data, P for Process, and I for Innovation);
8. Src: data source used to determine this event (L for developer log, M for meeting, E for email archive);
9. PT: hours of productive time for this event;
10. NT: hours of non-productive time for this event;
11. TT: total number of hours spent on the event;
12. T/C: Indicates if the event concerned mainly a tool (indicated by T) or a component (indicated by C);
13. Tool Time: amount of hours involved in learning a tool;
14. Cmp Time: amount of hours spent learning a component.

 A-1

Table A.1: Knowledge events for P1-1.

Event
No.

Event description Event
Chain

Pred Dead
end

Event comments / solution description K Src PT NT TT T/C Tool
Time

Cmp
Time

0 <Root> This is the starting point of development 0 0
1 What computers are we to

use?
1 0 Windows lab computers P M 0.10 0.00 0.10 T 0.10 0.00

2 What embedded platform
should we use?

1 0 Cogent CSB337 P M 0.10 0.00 0.10 C 0.00 0.10

3 Cannot connect to network 2 1 Supervisor helped to fix proxy configuration
for lab PC

P M 0.10 0.20 0.30 C 0.00 0.30

4 Cannot seem to access
Linux server

2 3 Supervisor reset passwords for developer. P E 0.05 0.20 0.25 T 0.25 0.00

5 Physically connect
CSB337 to PC

3 2, 4 Use either a RS232C null link (NL) modem
connection. Alternatively, use an Ethernet
cross-over cable

P M 0.20 0.90 1.10 C 0.00 1.10

6 Where can we get cables? 3 5 Technical officer P M 0.10 0.00 0.10 C 0.00 0.10
7 PC software to talk to

CSB337 over RS232C?
3 6 Various free and shareware options

available. Must run on Windows. Hyperterm
may provide all the needed features.

D L 0.20 0.40 0.60 T 0.60 0.00

8 Decided on comms
software to use

3 7 Use HyperTerminal. Must create config file. P L 0.15 0.05 0.20 T 0.20 0.00

9 RS232C protocol settings 3 8 Look through manual for prot settings.
38400bps, 8 data bits, no parity, one stop
bit, no flow control.

D L 0.60 0.10 0.70 C 0.00 0.70

10 Info about testing board? 3 8 Found ref to Ed Stutter's book and website
with umon source. Use MicroMonitor (boot
loader).

D L 0.30 0.60 0.90 T 0.90 0.00

11 Inversitage umon source 4 10 Download umon source from web. Has nice
manual for commands. But it's a lot of
reading to get through -- might use it later.

D L 1.30 0.00 1.30 T 1.30 0.00

 A-2

12 How to use MicroMonitor
to test the CSB337?

3 9,
10

 Stat, arp, etc.
Most of the time (say 70%) was spent
playing about with commands which were
not used.

P L 0.30 0.80 1.10 T 1.10 0.00

13 Decided to ignore umon
source for now.

4 11 13 Commands seem simpler enough. Will put
the umon source aside and tidy directory.

P L 0.00 0.10 0.10 T 0.10 0.00

14 What software tools
should be used?

5 2 Supervisor suggests Open Office or MS
Word for documentation. Requirements C or
ASM.

P E 0.20 0.15 0.35 T 0.35 0.00

15 Software development
tools for CSB337?

5 14 Browsed through CSB337 manual
 - much of it did not mention s/w
 - mentioned commercial tools: do we have
it?
 - Mentioned MicroMonitor

D L 0.30 0.60 0.90 T 0.90 0.00

16 Commercial development
tools for CSB337?

5 15 17 Asked supervisor if we have commercial
tool mentioned. -- reply: no

D M 0.00 0.50 0.50 T 0.50 0.00

17 Decided to use
MicroMonitor for dev tools

5 12,
15

 Conclusion: use MicroMonitor.
Considered pros and cons of using other
bootloader or operating systems, but
decided to keep it simple.
Need to select toolchain for compiling.

P L 0.80 0.50 1.30 T 1.30 0.00

18 Toolchain 6 17 Looking for toolchain. Search web, found
arm-linux. Perhaps supervisor has a
toolchain?

D L 0.20 0.30 0.50 T 0.50 0.00

19 Toolchain: arm-linux 6 18 Found sources for Linux and compiler
sources. Don't want Linux source, just
compiler executable for windows.

D L 1.20 0.00 1.20 T 1.20 0.00

20 Windows arm-linux
compilers for ARM?

6 19 Seems to come with MicroMonitor disk, but
we don't have it. Looked some more on
web.

D L 0.90 0.00 0.90 T 0.90 0.00

 A-3

21 Method to develop
software

7 18 Supervisor made toolchain available on
Linux server. Work on code (edit, compile,
etc) using ssh, then download to lab PC
using winscp. Gave up looking for a
Windows compiler.

P E 0.40 0.20 0.60 T 0.60 0.00

22 Example C program for
CSB337

8 21 Looking for example C code, preferably
written for for MicroMonitor and that can
send/receive chars over RS232. Asked
supervisor, and he provided an example.

D L 0.30 0.70 1.00 C 0.00 1.00

23 Decide to archive arm-
linux

6 20 23 Example C and supervisor's toolchain looks
OK. Will zip arm-linux incase needed later.

P L 0.15 0.07 0.22 T 0.22 0.00

24 Makefile: how to use? 9 22 Cannot remember how to do makefiles, will
look at examples from umon and on web.

D L 0.00 0.10 0.10 T 0.10 0.00

25 Makefile from umon
source?

9 24 26 Spent some time looking at makefiles but
cannot find for CSB337 platform. Not
provided in this generic version. Gave up.

D L 0.00 0.60 0.60 T 0.60 0.00

26 Makefile 9 24 Found tutorial on makefiles. Read a few
things not really needed. Should manage
now.

D L 1.20 0.40 1.60 T 1.60 0.00

27 Compiling example
program

9 26 Writing make file to compile program. And
tested compiling.

I L 1.00 0.00 1.00 T 1.00 0.00

28 Install program on
CSB337

10 24 Want to get executable onto the CSB337. P E 0.20 0.00 0.20 T 0.20 0.00

29 Considering install options 10 28 Supervisor says to upload with umon
xmodem command, or it's faster to upload
using tftp.

D E 0.15 0.00 0.15 T 0.15 0.00

30 Install program using
TFTP

10 29 30 Could not get an IP number. Don't have
second eth card because sys admin not
available to install one. Will just use
hyperterm.

P E 0.00 0.80 0.80 T 0.80 0.00

 A-4

31 Installing program using
xmodem

10 29 Took a while to figure out how exactly to do
it. Need the right flags set in umon, and
Xmodem settings configured in HyperTerm.

P L 0.30 0.90 1.20 T 1.20 0.00

32 Why does program crash? 11 31 Program won't load. Wrong format? Turns
out that the 'e' flag needs to be set when
downloading using Xmodem.

P L 0.20 1.00 1.20 T 1.20 0.00

33 Looking through files for
cause of crash.

11 32 34 Program crashes. Tried recompiling, re-
uploading, etc. No luck. Will ask supervisor.

P E 0.10 0.50 0.60 T 0.60 0.00

34 Compiling example
program

9 31 Supervisor looked at code. Wrote a new
makefile because it was a mess and fixed
linking problems.

I M 0.80 0.10 0.90 T 0.90 0.00

35 Toss earlier makefile 9 27 34 Tossed earlier makefile because new one
works better.

P M 0.00 0.10 0.10 T 0.10 0.00

36 Running program 12 34 Example application now runs. Testing. P L 0.25 0.00 0.25 T 0.25 0.00
37 Reading user interface

spec
13 36 Writing user interface code. Evaluating UI

design to see how to do this. Need to check
some terms.

D L 0.80 0.60 1.40 C 0.00 1.40

38 User interface 14 37 Writing UI I L 1.20 0.40 1.60 C 0.00 1.60
39 How to send bytes 15 37 Sending bytes was quite easy; the solution

was in the example code.
D L 0.20 0.00 0.20 C 0.00 0.20

40 How to read bytes 16 39 Took a bit more time to figure out. Had to
investigate monitor.h file.

D L 0.10 0.50 0.60 C 0.00 0.60

41 Command processor
decisions

17 40 Will need to develop a state machine, build
up command strings using command buffer.
Wasted some time trying alternate ways.

P M 0.40 0.20 0.60 C 0.00 0.60

42 Command processor
implementation

17 41 Display command prompt. Parse input
characters and output replies.

I L 1.10 0.20 1.30 C 0.00 1.30

43 Startup 18 42 Display welcome message when program
starts. Displays prompt if in interactive
mode.

I L 1.00 0.15 1.15 C 0.00 1.15

 A-5

44 Handle input (nb_readLine
function)

17 43 State machine triggered on character input.
Enter returns 1 to tell main loop to call
command parser. Wasted some time
figuring out how to prevent blocking calls --
simply use mon_getchar().

I L 1.50 0.30 1.80 C 0.00 1.80

45 Command parser
(Parse_String function)

17 44 Just used a set of string compares, called
corresponding functions. Wrote stub
functions for handlers.

I L 1.30 0.25 1.55 C 0.00 1.55

46 Command parser 17 45 Optimizations I M 0.60 0.20 0.80 C 0.00 0.80
47 Jump table optimization 19 46 Experimenting with a jump table. I L 1.60 0.00 1.60 C 0.00 1.60
48 Looking at LED control 20 46 48 Could be good to use LED port for doing

timing. No easy sample code. Will leave for
now.

P L 0.00 0.50 0.50 C 0.00 0.50

49 Removed jump table 19 47 49 Could not get jump table working properly,
reverted to old version of code.

I L 0.00 1.00 1.00 C 0.00 1.00

50 Command parser 17 45 Need to handle parameters for commands
(e.g. frequency for freq command)

P L 0.30 0.00 0.30 C 0.00 0.30

51 String to integer
conversion

21 50 52 Trying to find sscanf equivelent to convert
the parameter to an integer. Does not want
to link as function is not declared. Trying to
find implementation on web; not much help.

D L 0.00 0.50 0.50 C 0.00 0.50

52 String to integer
conversion

21 50 The itoa is working instead. P L 0.10 0.00 0.10 C 0.00 0.10

53 Integer to string
conversion

21 52 Using atoi P L 0.10 0.00 0.10 C 0.00 0.10

54 I2C Interface for actuator
board containing DAC

22 2 Need to determine how to connect the
CSB337 to the DAC. Need to find
datasheets.

P L 0.20 0.00 0.20 C 0.00 0.20

55 DAC interface 22 54 Searching web for DAC datasheet. Found
easily enough. Now reading through. Most
of it was rather irrelevant.

D L 0.10 0.40 0.50 C 0.00 0.50

 A-6

56 Pins to use on DAC 22 55 Need to determine what pins to use. P L 0.20 0.20 0.40 C 0.00 0.40
57 CSB337 I2C port 22 56 Read CSB337/AT91RM9200 datasheet to

find info about I2C port. Lot of stuff.
D L 0.20 0.60 0.80 C 0.00 0.80

58 Connecting up the
actuator board

23 57 Got jumper cable from supervisor, stripped
other end. Installed DAC on breadboard.

I L 0.60 0.20 0.80 C 0.00 0.80

59 Powering actuator board 24 58 Try power supply directly P L 0.50 0.00 0.50 C 0.00 0.50
60 Powering actuator board 24 59 60 Decide to utilize regulator in design P M 0.00 0.50 0.50 C 0.00 0.50
61 I2C software interface 25 58 Searching for example code for this. D L 0.20 0.60 0.80 C 0.00 0.80
62 I2C polling sw interface 25 61 After some effort, got polling I2C interface to

send and receive. Implemented own buffer.
I L 1.20 0.70 1.90 C 0.00 1.90

63 I2C alternatives? 25 62 Looking for sample code for I2C interrupt D L 0.40 0.10 0.50 C 0.00 0.50
64 Command processor help

cmd
17 53 Need help command to list commands and

how to use each one.
I L 1.00 0.25 1.25 C 0.00 1.25

65 Command processor 17 64 Need to load custom signal and have
additional command to do so. Put in code
instead of dowloading.

I L 1.30 0.60 1.90 C 0.00 1.90

66 I2C interrupt sw interface 25 63 Want to improve the I2C interface so that an
ISR handles the input. Much time spent.

I L 4.50 0.00 4.50 C 0.00 4.50

67 Gave up on I2C interrupt 25 66 67 Decided to give up on the I2C interrupt, but
improved the polling implementation.

I L 0.00 0.20 0.20 C 0.00 0.20

68 Timing 26 62 Can CPU clock be used as timer? P M 0.30 0.10 0.40 C 0.00 0.40
69 Make improvements to

communications
27 65 Made various improvements to the

communications. More robust.
I L 0.50 0.30 0.80 C 0.00 0.80

70 Minor improvement to
actuator board

23 62 Improved power supply to reduce noise on
outputs.

I L 0.40 0.50 0.90 C 0.00 0.90

71 Timing improvements 26 68 Finding info on onboard time. D L 1.00 0.00 1.00 C 0.00 1.00
72 Test timing improvements 26 71 72 Experimented with using timer based on

datasheet. Too little time; gave up.
P L 0.00 0.70 0.70 C 0.00 0.70

73 Tidied up final prototype 28 72,
70

 Readied system for demo and tidied up
code

I L 1.20 0.30 1.50 C 0.00 1.50

74 <Final> 28 73 This is the ending point of the project

 A-7

A.2 Knowledge register for the second case study (P1-2)
The table below shows each event for the second case study (P1-2). Please refer to A.1 for a description of the columns.

Table A.2: Knowledge events for P1-2.

Event
No.

Event description Event
Chain

Pred Dead
end

Event comments / solution description K Src PT NT TT T/C Tool
Time

Cmp
Time

0 <Root> This is the starting point of development 0 0
1 What components should

be used for interface
board?

1 0 Searched internet, requested prices from
supplier

D L 2.00 0.00 2.00 C 0.00 2.00

2 How should the files be
managed?

2 0 Supervisor says to keep work files on local
workstation, use samba to copy to server

P M 0.10 0.00 0.10 T 0.10 0.00

3 Problem mounting samba 3 2 Had to recompile kernel on developer PC P L 2.00 0.00 2.00 T 2.00 0.00
4 How to connect up

CSB337
4 0 Had to figure out how to connect up

CSB337
P L 0.20 0.00 0.20 C 0.00 0.20

5 How to communicate with
CSB337 over RS232?

4 4 Need to find a terminal program for Linux.
Had short look, but no luck yet. Try again
later.

D L 0.00 0.50 0.50 T 0.50 0.00

6 Power supply problems 5 4 7 Power supply seems faulty. Testing it out. P L 1.40 0.00 1.40 C 0.00 1.40
7 Replace power supply 5 4 Replaced power supply, some time to find. P L 0.20 0.30 0.50 C 0.00 0.50
8 Software for CSB337? 6 4 MicroMonitor is a bootloader provided with

it
D M 0.20 0.00 0.20 T 0.20 0.00

9 Learn about MicroMonitor 7 8 Find umon site. Download umon source D L 0.25 0.30 0.55 T 0.55 0.00
10 Software development

options
8 8 Need to decide if an O/S is needed, if we

will use e.g. Embedded Linux or only umon
P M 0.20 0.00 0.20 T 0.20 0.00

11 Linux options 9 10 Emailed cogent requesting info re Linux.
Goodled for "linux toolchain csb337" (found
various options, nothing of use)

D L 0.10 0.50 0.60 T 0.60 0.00

 A-8

12 RTEMS as O/S? 10 10 12 Visited RTEMS, but decided not to use it D L 0.00 0.30 0.30 T 0.30 0.00
13 RS232 comms 4 5 Investigate ckermit D L 0.10 0.30 0.40 T 0.40 0.00
14 Use ckermit for RS232

comms
4 13 Decided to use ckermit for comms P L 0.10 0.00 0.10 T 0.10 0.00

15 Using MicroMonitor (1) 11 9 15 Googled for MicroMonitor howto, found only
index of training guide.

D L 0.00 0.50 0.50 T 0.50 0.00

16 Using MicroMonitor (2) 12 9 Read general documentation supplied with
umon source, most not relevent to what I'm
wanting to do.

D L 0.20 0.80 1.00 T 1.00 0.00

17 How to communicate with
CSB337 over Network?

13 14 Want to use network for faster transfer.
Need to organize an IP.

P M 0.15 0.00 0.15 C 0.00 0.15

18 IP for CSB337 13 17 Requested IP address from UCT ICTS P L 1.00 0.00 1.00 C 0.00 1.00
19 Assign IP to CSB337 13 18 Doesn't seem to get the IP. Tried various

things. Worked using: set IPADD DHCP
P L 0.50 0.00 0.50 C 0.00 0.50

20 Linux options 9 11 Googled for "linux on arm", found kernel for
Cogent on www.linux.arm.org.uk

D L 0.50 0.00 0.50 T 0.50 0.00

21 Program for doing
diagrams

14 1 Tried various options, decided on dia D L 0.50 0.00 0.50 T 0.50 0.00

22 Interface board 15 21 Working on schematic for HW/HW interface I L 2.00 0.00 2.00 C 0.00 2.00
23 Arm-Linux 16 20 Downloaded installation guide and source

for ARM-LINUX
D L 2.00 0.00 2.00 T 2.00 0.00

24 TFTP Problems 13 19 Problems using TFTP on UCT network.
May need to install second network card
and set up a local net.

P L 0.10 0.20 0.30 C 0.00 0.30

25 TFTP 13 24 Looking on web for solutions. Trying to
recompile developer PC kernel for tftp.

D L 0.50 1.70 2.20 C 0.00 2.20

26 Linux options 9 20 Looking for option options. Found
emdebian toolchain, started download.

D L 0.10 0.20 0.30 T 0.30 0.00

27 EmDebian 17 26 38 Download didn't work, so installed each
package one at a time.

D L 2.70 0.00 2.70 T 2.70 0.00

 A-9

28 TFTP 13 25 TFTP still not working. Seems like wrong
version of kernel installed

D L 0.00 0.50 0.50 T 0.50 0.00

29 How to install kernel 9 28 Reading-up on how to install kernel D L 1.00 0.00 1.00 T 1.00 0.00
30 Parts for interface board 18 22 Searching web for info on parts. Reading

datasheets for ideas. Requesting quotes.
D L 0.25 0.90 1.15 C 0.00 1.15

31 Installing kernel 9 29 Dowloading, fixing: lilo, mouse, xserver.
Much time wasted on network -- could not
fix.

D L 1.30 4.50 5.80 C 0.00 5.80

32 Fixing network 19 31 33 Search google, etc for help with network. D L 0.00 1.33 1.33 C 0.00 1.33
33 Fixing network 19 31 New net card installed. Looked for some

settings. Got it to work.
P L 0.50 0.20 0.70 C 0.00 0.70

34 TFTP 13 28 35 Now, with new kernel and net network,
trying again to get TFTP working. No luck.

P L 1.00 0.00 1.00 C 0.00 1.00

35 ATFTP 20 19 Set up atftp, it works fine. Able to upload
executable to cogent board.

P L 0.35 0.00 0.35 C 0.00 0.35

36 Executing example
application on
MicroMonitor

21 35 Attempting to run hello.elf on MicroMonitor.
But no luck.

P L 0.00 0.90 0.90 T 0.90 0.00

37 Fixing linker options 22 36 Simon found linker options were wrong. P M 0.20 0.00 0.20 T 0.20 0.00
38 Compiling Snapgear 23 20 Found snapgear linux. Seems better.

Decided to toss emdebian. Attempting to
compile snapgear. Gives errors.

P L 0.10 0.40 0.50 T 0.50 0.00

39 Installing uCliux rpms 24 38 Installing uClinux tools P L 0.15 0.00 0.15 T 0.15 0.00
40 Compiling Snapgear 23 39 Attempting to compile snapgear using the

uClinux tools. Get different errors now.
P L 0.70 0.00 0.70 T 0.70 0.00

41 Compiling Snapgear 23 40 42 Searching for solution to errors on web D L 0.20 0.00 0.20 C 0.00 0.20
42 Compiling Snapgear 23 38 Trying yet another toolchain (m68k-elf-

tools)
P L 1.20 0.00 1.20 T 1.20 0.00

43 Compiling Snapgear 23 42 Attempting to compile snapgear. After
various fixes, got it to compile. When run on
csb337, caused crc error.

P L 1.40 0.00 1.40 T 1.40 0.00

 A-10

44 Compiling Snapgear 23 43 45 Reading howtos, web, man, etc to solve crc
problem.

D L 1.10 0.00 1.10 C 0.00 1.10

45 Gave up on Snapgear 23 20 45 Searched for fixes for Snapgear; decided to
give up on it after not finding anything
useful.

D L 1.00 0.00 1.00 C 0.00 1.00

46 Arm-linux new option
found

25 20 Attempting to get arm-linux working. Cannot
get it to compile.

P L 0.20 0.60 0.80 T 0.80 0.00

47 Compiling arm-linux 26 46 Trying to find information to get arm-linux to
compile.

D L 0.10 0.65 0.75 T 0.75 0.00

48 Compiling arm-linux 26 47 49 Experimenting with settings to get arm-linux
to compile.

P L 1.00 0.90 1.90 T 1.90 0.00

49 Compiling arm-linux 26 47 Tried different toolchain for compiling P L 0.50 0.00 0.50 T 0.50 0.00
50 Installing arm-linux 27 49 Compile succeeded, but when executes,

cannot mount root fs.
P L 0.50 0.00 0.50 T 0.50 0.00

51 Booting arm-linux 28 50 Found that ramdisk needs to be installed. D L 0.30 1.20 1.50 C 0.00 1.50
52 Ramdisk 29 51 Found and downloaded ramdisk D L 0.30 0.20 0.50 C 0.00 0.50
53 Installing ramdisk 30 52 Find info about configuring ramdisk D L 0.40 0.10 0.50 C 0.00 0.50
54 Installing ramdisk 31 53 Trying to configure and install ramdrive P L 2.33 2.50 4.83 C 0.00 4.83
55 DC motor interface 32 30 Researching DC motor drive D L 0.40 0.60 1.00 C 0.00 1.00
56 AC-DC circuit 33 30 57 Constructed AC-DC circuit I L 1.00 0.00 1.00 C 0.00 1.00
57 AC-DC circuit 33 55 Problem with AC-DC circuit; rebuilt it I L 1.00 0.00 1.00 C 0.00 1.00
58 Examine busybox 34 20 Considering busybox for use on csb337 D L 0.50 0.00 0.50 T 0.50 0.00
59 Installing arm-linux 27 54 Determined procedure to mount ramdrive

on PC and modify the settings, by editing
inittab. Got linux running on the csb337.

P L 1.30 0.00 1.30 T 1.30 0.00

60 csb337 linux networking 35 59 Trying to get csb337 network going P L 0.00 0.30 0.30 C 0.00 0.30
61 Revisiting snapgear 23 45 62 Compiling and trynig to install snapgear. No

luck will ask cogent.
P L 1.00 0.30 1.30 T 1.30 0.00

62 New snapgear toolchain 36 45 Found and downloaded new snapgear D L 0.30 0.60 0.90 T 0.90 0.00
63 Imeplemented envolope

detector method
37 0 Implemeted and tested method for

envolope detector on PC
I L 2.00 1.00 3.00 C 0.00 3.00

 A-11

 A-12

64 ADCS research 38 57 Studying ADCS datasheets D L 0.35 0.00 0.35 C 0.00 0.35
65 New snapgear toolchain 36 62 66 Compiing snapgear. Uninstall emdebian. 1.10 0.00 1.10 T 1.10 0.00
66 New snapgear toolchain 36 62 Failed to compile snapgear; searching for

answers. Some success.
D L 0.30 0.30 0.60 T 0.60 0.00

67 Busybox 39 58 Got busybox working on csb337 P L 0.30 0.70 1.00 T 1.00 0.00
68 Device drivers 40 66 Researching device drivers for emb linux D L 0.30 0.70 1.00 C 0.00 1.00
69 Device drivers 40 68 Test sample device driver on csb337 P L 0.70 0.60 1.30 C 0.00 1.30
70 Device drivers 40 69 Developing experimental device driver I L 0.50 0.00 0.50 C 0.00 0.50
71 Device drivers 40 70 Read-up on device drivers D L 0.20 0.80 1.00 C 0.00 1.00
72 LED driver 41 71 Managed to get simple LED driver to work I L 0.70 1.30 2.00 C 0.00 2.00
73 AT91RM9200 42 72 Read-up on AT91RM9200 D L 0.50 0.50 1.00 C 0.00 1.00
74 i2c driver 43 73 Developed i2c driver running on snapgear I L 2.00 3.00 5.00 C 0.00 5.00
75 i2c driver works 43 74 Managed to get i2c driver to work I M 1.00 2.00 3.00 C 0.00 3.00
76 Antenna control code 44 75,

63
 Making antenna rotate via s/w control I M 3.00 1.00 4.00 C 0.00 4.00

77 User interface 45 76 Code to start/stop/change direction of
rotation via RS232

I M 3.00 0.33 3.33 C 0.00 3.33

78 <Final> 45 77 This is the ending point of the project 0.00 0.00 0.00

Appendix B: Experiment 2 appendices
In order to save space, only the knowledge registers for the first project in Experiment 2 is provided (the knowledge registers of the other
projects followed the same structure).

B.1 Knowledge register for Project P2-1
As explained in Chapter 4, the knowledge register structure for the second experiment was refined. The table below presents the list of ESAOA
events for the first project in the second experiment (P2-1). The 20 columns of this table are described below:

1. No.: indicates the number of the data entry.
2. Type: indicates the data source, e.g., email, project discussion forum, developer log, etc.
3. Project: identifies the team number.
4. Event chain: links the knowledge event to other knowledge events in the chain.
5. Phase: the duration of the project was divided into eight phases – the phase number indicates in which of the eight phases the

knowledge occurrence took place
6. KD: indicates data knowledge events
7. KP: indicates process knowledge events
8. R: indicates process knowledge that related to roles.
9. L: indicates process knowledge that related to logistical issues.
10. KI: indicates innovation knowledge events
11. PK: indicates a productive knowledge event
12. NPK: indicates a non-productive knowledge event
13. Artefacts: indicates the components used
14. Comments: researcher’s comments
15. DS con: data steward (DS) contributed to this occurrence (*)
16. PE con: process engineer (PE) contributed to this occurrence (*)
17. IE con: innovation engineer (IE) contributed to this occurrence (*)
18. Delta: 1 if either (a) DS contributed process or innovation knowledge or (b) PE contributed data or innovation knowledge or (c) IE

contributed data or process knowledge (*)
19. Tool: the engineer/team learned to use a tool in this occurrence (*)
20. Component: the engineer/team learned to use a component in this occurrence (*)

 B-1

(*) NOTE: All columns marked (*) were added to Projects P2-1, P2-2 and P2-10 only in order to perform further analysis on the contribution of
knowledge occurrences according to roles (see Section 5.5.6).

Table B.1: Knowledge events for P2-1.
No. Type Proj-

ect
Event
Chain

Phase K
D

K
P

R L K
I

P
K

NP
K

Artifacts:
Tools

Artifacts:
components

Comments DS
con

PE
con

IE
con

Delta Tool Comp-
onent

1 E 1 1 1 1 1 1
Role
responsibilities 0 1 0 0 0

2 E 1 1 1 1 1 1 0 1 0 0 0

3 E 1 2 1 1 1 1 EM303 1 1 0 1 0 1

4 E 1 2 1 1 1 1 0 1 0 0 0

5 E 1 2 5 1 1 1 0 0 0 0

6 E 1 2 3 1 1 1

upset about
group member
changing the
roles 0 1 0 0 0

7 E 1 3 1 1 1
Re: What to
access… 1 0 0 0 0

8 E 1 4 1 1 1 1 Decide venue 0 1 0 0 0

9 E 1 4 1 1 1 1
 Source GPS &
GPRS modules 1 0 0 1 0 0

10 E 1 5 2 1 1 1

GPS module
motorola oncore
8.4 0 1 0 0 1

11 P 1 6 2 1 1 see 58.6 0 0 1 0 0

12 P 1 6 2 1 1 see 58.6 0 0 1 0 0

13 E 1 7 2 1 1 1 0 0 0 0

14 E 1 7 2 1 1 1 0 0 0 0

15 P 1 8 2 1 1
looking at GPS
modules 1 1 0 1 0 0

16 P 1 8 2 1 1 0 0 1 0 0

17 P 1 8 2 1 1 1 0 0 0 0

18 P 1 8 2 1 1 0 0 1 0 0

19 P 1 8 2 1 1

Initial version of
program using
GPS wrapper 0 0 1 0 0

 B-2

20 E 1 9 2 1 1 1 0 1 0 0 0

21 E 1 10 2 1 1 OpenOffice.org
Relates to data
1c 1 0 0 0 1

22 E 1 11 2 1 1 1

Group meet
because they
were trying
things that
didn't work 0 1 0 0 0

23 E 1 11 2 1 1 1

Review choice
of tools and
components 0 1 0 0 0

24 E 1 12 2 1 1 0 1 0 0 0

25 E 1 12 2 1 1
enter_ESA
OA Success 0 1 0 1 0

26 E 1 12 2 1 1 0 0 1 0 0

27 E 1 13 2 1 1 0 0 0 1 0 0

28 E 1 14 3 1 1 1 0 0 0 0

29 E 1 14 3 1 1 1 0 0 0 0

30 E 1 14 3 1 1

was useful data
provided to him
earlier 1 0 0 0 0

31 E 1 14 6 1 1 MPI 1 1 0 1 0 1

32 E 1 15 5 1 1 0 0 1 0 0

33 E 1 15 5 1 1 vcLinux Interrupts 0 0 1 1 1

34 E 1 16 3 1 1 0 1 0 1 0 0

35 E 1 16 3 1 1 1 0 0 0 0

36 E 1 16 6 1 1 GPS 0 0 1 1 0 1

37 E 1 16 6 1 1 GPS 0 1 0 1 0 1

38 E 1 16 6 1 1 GPS 0 1 0 1 0 1

39 E 1 17 3 1 1

Trimble GPS
module, uCLinux
bluetooth support,
USB dongel, GPS
module motorola
oncore 8.4

checking a
information 0 1 0 1 0 1

40 G 1 17 3 1 1
uCLinux bluetooth
support 0 0 1 0 1

41 E 1 17 6 1 1
Trimble GPS
module 0 1 0 0 1

 B-3

 B-4

42 E 1 17 6 1 1 0 1 0 0 0

43 E 1 17 6 1 1

VCLinux,
bluetooth support,
USB dongel 0 1 0 0 1

44 E 1 18 4 1 1
Hypertermi
nal

Disokoleds.c,
RS232, Wled 0 1 0 1 1

45 E 1 18 4 1 1
Micromonit
or 0 1 1 1 0

46 E 1 18 4 1 1 0 1 1 0 0

47 E 1 18 6 1 1
PC interface for
GPS module 1 0 0 1 0 1

48 E 1 18 8 1 1 vcLinux DAC, circuit 0 0 1 1 1

49 E 1 18 8 1 1
ESAOA
vcLinux DAC, war files 0 0 1 1 1

50 E 1 18 8 1 1

mount-iso,
umount-iso,
ESAOA 0 0 0 1 1 0

51 E 1 18 8 1 1 vcLinux ftp

cannot execute
elf files
downloaded
using ftp 1 0 0 1 1 0

52 E 1 19 8 1 1 ucLinux timer 0 0 1 1 1

53 E 1 19 8 1 1 vcLinux DAC, circuit 0 0 1 1 1

54 E 1 19 8 1 1 0 0 1 0 0

55 E 1 20 8 1 1 vcLinux Test Driver 0 0 1 1 1

56 E 1 21 6 1 1 Success 0 0 1 0 0

57 E 1 21 8 1 1 vcLinux MemDerInfo 0 1 0 1 1

58 E 1 22 8 1 1 ucLinux MemDev 0 0 1 1 1

 Totals: 16 25 20 13 13 21

B.2 Requirements check sheets for Experiment 2
The table below provides the requirement check sheet ratings for each project of Experiment 2.

PROJECT REQUIREMENTS CHECKSHEET
Issue Max Section

Total
Category
Weight

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

1. FUNCTIONAL REQUIREMENTS
 Note: Rating of functional requirements for a
particular product are based

44% 90% 77% 75% 78% 90% 81% 65% 51% 64% 70% 74% 83% 66%

Hardware 50 48 33 37 48 50 45 34 23 40 30 47 46 50
Prototype assembly
 - robustness & elegance
 - for enclosure, see below

20 18 18 12 20 20 19 14 8 18 18 19 20 20

Schematics and/or circuit diagrams 30 30 15 25 28 30 26 20 15 22 12 28 26 30
Software / Program Execution 70 60 59 53 45 58 52 44 38 37 54 42 54 29
- Program runs smoothing: no penalties
- Program hangs after a while or handles
 invalid/valid input poorly or terminates
 unexpectedly: up to 20 points removed
- Program does not run: see penalty notice below

0 0 0 0 0 0 0 -5 -5 0 -2 0

Start-up message displayed 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Argument parsing works 6 6 6 6 6 6 3 3 6 1 6 6 2 6
Menu works 14 6 6 6 6 6 6 4 6 0 3 6 6 0

0

Menu ease of use
 (6=user friendly; 0=very user unfriendly)

6 6 6 4 4 3 2 5 5 6 1 3 5 0

Communications 21 19 21 19 11 21 19 11 6 18 21 6 21 21
Event & service processing 21 21 18 16 16 20 20 19 18 15 21 21 18 0
2. TEMPORAL REQUIREMENTS:

QUALITY OF SERVICE (QoS) (real-time
11% 97% 63% 70% 63% 97% 37% 53% 67% 67% 100% 73% 57% 87%

Total quality of service points 30 29 19 21 19 29 11 16 20 20 30 22 17 26
Predictability future response of system is
predictable

6 6 6 4 2 5 2 5 3 2 6 2 3 3

Speed product is responsive 2 2 0 1 1 2 2 2 2 2 3 2 1 2
Timeliness time between the occurrence of an
event

d h di f h i ffi i l ll

4 4 3 4 2 4 2 4 3 3 3 4 3 3

Throughput max no. of jobs/time unit 3 3 2 3 3 3 2 2 3 3 3 3 3 3
Responsiveness worst-case latency not exceeded 3 3 2 2 3 3 0 1 1 2 3 3 1 3
Capacity ability of system to meet all hard
deadlines;

h j b / i ffi i t

4 3 0 1 2 4 0 1 2 2 4 2 1 4

Reliability / sustainability system keeps important
deadlines even in overload conditions

4 4 2 2 2 4 1 1 2 2 4 2 1 4

Safety where applicable, account for safety issues 2 2 2 2 2 2 0 0 2 2 2 2 2 2
Security extent to which product is protected against
 security misconduct

2 2 2 2 2 2 2 0 2 2 2 2 2 2

3. QUALITY OF ARTEFACTS 40% 96% 94% 89% 80% 94% 85% 73% 73% 55% 62% 57% 66% 72%
ESAOA Repository 20 20 19 20 20 19 20 20 20 14 4 15 16 16
All files within project root. 3 3 3 3 3 2 3 3 3 2 1 3 3 3
Artifact Organization Diagram (AOD) 14 14 14 14 14 14 14 14 14 9 0 9 10 10
Location of files 3 3 2 3 3 3 3 3 3 3 3 3 3 3
Code 80 76 74 69 59 75 71 51 51 41 58 39 57 53
Conformance to ANSI C 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Use of comments 10 6 9 5 5 7 5 3 5 5 6 3 8 3
Module interfaces 20 20 18 18 8 20 20 15 15 10 18 6 18 18
Required modules
 - Main module 3 3 3 3 3 3 3 3 3 3 3 3 3 3
 - Encoding of welcome / version information 4 4 4 4 4 4 4 2 4 4 4 4 4 4
 - Configuration settings and command parsing 6 6 6 6 6 6 6 5 6 4 6 6 6 6
 - Menu component 8 8 8 8 8 8 6 6 8 4 6 6 7 2
 - Service module(s) 12 12 10 12 9 10 11 0 0 0 0 0 0 0
 - Drivers 12 12 11 8 11 12 11 12 5 6 10 6 6 12
Compiling and Linking 10 10 10 9 9 9 2 9 9 6 6 9 0 1
 -

0
No warnings or errors: all 10 points

 - Warnings: 5 points (if many warnings)
 - Minor error: 0 points; Major error: penalties

10 10 10 9 9 9 2 9 9 6 6 9 0 1

4. QUALITY OF ENCLOSURE 5% 33% 80% 87% 33% 73% 73% 20% 33% 67% #### 53% 20% ####
Enclosure 15 5 12 13 5 11 11 3 5 10 15 8 3 15

0

A rough enclosure is provided with labels
indicating important controls and displays 15

5 12 13 5 11 11 3 5 10 15 8 3 15

TOTAL POINTS FOR PROJECT 275 100% 248 226 222 205 251 212 177 166 168 197 182 193 199
PERCENTAGES 90% 82% 81% 75% 91% 77% 64% 60% 61% 72% 66% 70% 72%

 B-5

 B-6

B.3 Comments from requirements check sheets for Experiment 2
The comments provided by the review panel that accompanied the requirements check sheets for each project
are given below.

P1
Nice attention to detail. Excellent AOD. Compiles perfectly.
Like the help display. Menu works well. Provides menu shortcuts as well.
Communications pretty good, occasional missed packets / non-responses
Handles events well. QoS good, except misses occasional deadline when
comms active, or pressing pushbutton button frequently.
Good prototype setup and quality block diag and schematics for circuit. Enclosure is rather lacking!
P2
A high standard of work. AOD looks good. But some files are not located so well in the framework.
No compiling problems. No communication problems, robust comms!
Handles events well. QoS reasonably, but just not fast enough. Have not optimized the main loop suitably, or
your algorithms are not efficient. Did miss a few deadlines (timing from LED2 pin using osc.).
Lacking schematic / circuit diagram (rather quick, unclear and missing components used in the demo setup)
Prototype setup was acceptable.
Have made some effort on enclosure, especially labels.
Gave all safty points since your product does not have safty needs.
P3
Minor warnings during compile. Good quality of work (visual result esp).
Menu not very user-friendly, too many sub-menus.
Much confusion between signed and unsigned, also un-casted conversion of int to pointer types.
Minor comms problems, lost packets.
Does not meet all functional or QoS requirements sufficiently, mainly
due to the comms glitch.
Prototype setup was messy and disorganized. Wires looked insecure.
Acceptable circuit diagram. Well-labeled enclosure.
P4
Very good AOD. Like the color changes of crossing lines in the AOD diagram.
Minor error in menu: upload me->you should be you->me
Menu could be more user-friendly (check over menu names thoroughly). Minor compiling problems.
Some comms would not get through (possible calculation problems in error checking?)
QoS requirements not met, timing is a bit out. (timed from LED2 track)
Insufficient use of comments. Need prototype setup for demo
Schematic acceptable. Effort on enclosure is lacking.
P5
AOD lacks detail, important artifacts. Warnings during compile.
Menu not very logically arranged, cryptic/too short names.
The menu works, but displays characters user did not type, for instance entering setup (s) echoes characters
'ssss'. System is responsive, deadlines with time to spare.
No communication problems observed.
Good and elegant schematic, nicely drawn.
Rather a lot of wires in prototype setup, but that is normal. Acceptable enclosure
P6
Some problems compiling. Argument passing problems, hangs expectantly on some arguments.
Menus cannot be navigated properly, gets stuck in sub menus (have to jump to keep jumping to main
menu / the top level menu). Not user-friendly.
Although the deadlines are met, the system is not reliably and hangs expectantly, therefore the QoS ratings are
low. Considering that a system for a car has some safety requirements, 0 points were given for safety.
Reasonably need demo setup. Acceptable circuit diagram. Acceptable enclosure.

 B-7

P7
Good job on AOD. Couple of warnings during compile.
Argument parsing workings, but is not robust; gives a signal 11 on the arguments “-h 1 2 3”.
Communications not very robust, occasional packet missed, not acked.
Dead-lines were met, but the non-robust comms lowers the QoS rating. Safety and security were given 0 as
field sensors on a public transport vehicle would need to be secure and safe.
Messy setup for demo!
Schematic does not provide sufficient details on how things were
connected, which pins on the csb337 board were used, etc.
Enclosure lacking. A good effort in all.
P8
Acceptable AOD. Could be neater. Some warnings during compile. Argument parsing acceptable.
Poorly coded driver modules.
Communications not very robust, frequent problems or ignored messages.
Met deadlines, but non-robust comms reduces QoS rating.
Prototype setup was too neat : indeed things were missing. Could have connected up a osc scope to demo
timing, etc.
Your schematic is lacking detail, such as pin numbers of the csb337 board in addition to which PIO lines were
used. A close-up photograph of your breadboard and connections would help some.
Enclosure has much room for improvement, no labels.
P9
AOD was not part of framework, was provided separately (although it was supposed to be included in the
framework).
AOD is not drawn accurately or according to the guidelines, for example the application main module is shown
as the root of the project, which is not correct – it is within the applications folder within the software folder.
Many warnings during compile. Argument parsing functions.
Occasional comms errors, possibly due to driver problems. Drivers inefficiently coded.
Events not handled accurately – occasional glitch. Reduced QoS rating. Ok demo setup.
Acceptable schematics, although they could be neater. Reasonable enclosure and labels.
P10
AOD was not provided. All files not within framework! Simple do a: tz within the Project10 directory under
ESAOA environment, else do 'tar -zcf Project10.tar.gz Project10' to compress framework manually.
Check the logic of the menus: confusing, not user-friendly.
Many warnings during compile. Pointer problems. Application not robust.
Menu does not function properly; sometimes hangs when a sub-menu is exited, and you have to reset the
product.
Dead-lines met, good QoS operation. Good prototype setup.
Circuit diagram lacks detail of which pins on the csb337 and DAC were used.
Excellent enclosure and well labeled. Comms works fine. Reasonably well coded drivers.
P11
AOD notation is incorrect. For example, Menu.c module is incorrectly shown as depending on the Utility folder,
where it is contained in the utility folder.
Only a few minor compile warnings.
No shortcuts implemented in menu (e.g. Cannot issue the sequence 'sb 19200' for 'setup comms baud 19200')
Comms not robust. Does not work with large downloads of prices.
Dead-lines were met, but system was not predictable. Occasional odd behavior to inputs. Lack of input checks.
Neet demo setup. Acceptable circuit diagram.
Inefficient drivers, isr not robust. Enclosure not logically designed.
P12
The AOD is lacking important artefacts and has too few comments and descriptions as shown in the example.
Error encountered while compiling, took some time to remedy. It seems that something was possibly added to a
module at the last minute, and the compile not retested, before the framework was submitted.
The software crashed frequently, was not robust.
Menu Ok and reasonably easy to use (didn't seem to cause crashes).
Comms worked Ok, and managed to accomplish the tests even though the drivers do not look elegant.
Missed a deadline during test (it did respond, but response was too late); the other QoS test were acceptable;
but this problem has lowered the QoS rating for this project. Perhaps the requirements should have just
indicated a larger response time; timings in multiples of 100ms would probably have been Ok for this product.

 B-8

Events not elegantly handled, could use jump table or switch. Should be colocated in a clearly marked 'cricital'
section. Must have made timing of the events difficult. Furthermore, there were LED2 toggles left in the
code, which could not be disabled (using #undef TIMING).
Setup a little on the messy side, but you had the needed instrumentation setup and arranged suitably.
Acceptable circuit diagram. Drivers inefficiently coded and buggy.
Enclosure is lacking.
P13
The AOD is Ok, but it should have been in the Documentation folder.
A thorough job was done on the AOD, showing the folders and contents.
But few descriptions and comments; more would have helped explain the structure of the framework. The
StdIO library module should not be shown as contained in the software components folder, but rather shown
as an external dependency as it is contained within the uCLinux operating system directory (outside your
ESAOA project framework).
Menu does not function well and does not suitably meet the requirements, and was consequently thought to be
rather user-unfriendly.
The product does not meet its requirements. The services are not implemented fully, nor do they function well.
There are missing event handles; not all services are implemented.
Should at least respond with messages like “SERVICE xx not available” or removed items from the menu.
Reduces the predictability of the system.
QoS issues were otherwise acceptable and deadlines were met.
Comms works fine.
Drivers work well, and are well structured and commented.
Excellent demo setup for prototype.
Good, elegant schematic. Excellent enclosure, good labels.

B.4 Evaluation forms used to rate code and design reviews
The forms below show samples of the forms that were filled out by the researcher during code and design
reviews in order to evaluate: 1) the creativity of the prototype concept discussed during the first review; 2) the
quality of the prototype design evaluated during the second review; and 3) the quality of the artefacts
displayed during the final review.

B.4.1 Evaluation of concept creativity
The image below show a sample of the form filled in by the researcher to rate creativity of the teams proposed
product during the first code and design review meeting.

 B-9

CREATIVITY SCOREBOARD

TEAM: 3 (Vibynet)

Criteria Descirption Rating Boring = 0 MAX/2 = Middle of the road MAX = Inspired!
How commonplace?
Levels: 0 ‐ 15

13

The context. Levels: 0 ‐ 5 4
Amount of 'playing with ideas'
evident / variety of ideas
contemplated: 0 ‐ 10

7

Application usefulness: 0 ‐ 10

8

Level of challenge 0 ‐ 5

5

Sophistication of techniques &
components needed: 0‐10

7

Interfacing & connection to real‐
work: 0‐5 5

Deversity of parts: 0 ‐ 10
7

Enclosure: 0 ‐ 10
9

Cost‐saving ideas: 0 ‐ 10

8

Drawings & general clarity of
concept description: 0 ‐ 10

10

TOTAL / 100: 83

Cleaver tradeoffs, cost‐saving
strategies and budgeting plan.

Illustrated ideas during meeting using
sketches / 3D models, etc.

Little or no concern for costs or
budgeting. Possible wasteful
expenditures.

Little or no use of drawings or
documents during meeting.

Multiple parts, needing to be
integrated

Stylish, elegant selection/choices for
colors, eyecatching.

Not particularly useful / already easily
obtained (e.g. can be bought cleaply In
most shopping malls)

Could be pieced togther quickly with
little effort, little or no software coding
needed.

Simple techniques / components

Little or no connection to anything
outside the system (even minimal or
no HCI)

Just one or two parts, little integration
needed.

Square, colorless, simple, unstylish.

Very useful. Likely to be used
frequently (e.g., every day), either
hard to get / doesn't exist yet.

Challenging. Still needs to be
raighned in a whole lot more.

Developers likely to create own
specialised, unusual processes.

Connets to many external things,
include some form of HCI.

Had few ideas / mostly focused on one
initial idea and didn't consider
broadening much else.

Very common / routine / everyday
ideas

Unusual / novel / imaginative

Each criterion is given a rating value from 0 to a maximum value. Fill in a number
within this range to indicate how well the team has done.

Unusual place for use, e.g. aircraft, Typical place of use, e.g. lab, home

Thought of lots of things, was an
effort settling focusing in on a single
practical idea.

B.4.2 Evaluation of design quality

 B-10

DESIGN SCOREBOARD

TEAM: 3 (Vibynet)

Criteria Descirption Rating Boring = 0 MAX/2 = Middle of the road MAX = Inspired!
Introduction / readme doc: Rating
levels: 0‐5 5

Block diagram (overview of HW
and SW componts & important
connections). Levels 0‐10

9

Use case design: 0‐5
5

Scenarios / sequence models.
Levels: 0‐5 4

UML class & object design and
diagrams: 0‐10 9

Drafs schematics / curcuit. Rating
levels: 0‐10 7

Component list: 0‐5

4

Enclosure model / specifications: 0‐
5

5

No unwanted redundancy: 0‐5

5

Accuracy of design (i.e., no
obvious mistakes with software
needs, capacitance / resistance /
timing calculations): 0‐10

8

Completeness: 0‐5 5
General: clarify and
understanding: 0‐10

10

General: internal consistancy.
Levels: 0‐5 5

General: external consistancy.
Levels: 0‐5 5

General: Cross‐references /
tracability / captions and
annotations. Levels: 0‐5

5

TOTAL / 100: 91

Mistakes / inconsistancies / glaringly
wrong calculations

Not provided. Difficult to understand. Good outline / starting point

Each criterion is given a rating value from 0 to a maximum value. Fill in a number
within this range to indicate how well the team has done.

Simple, clear. One diagram per use
case. Correct use of notation.

Not provided. Unclear. Illogical.

Not provided / unclear

None given. Incorrect / non‐standard
notation. Messy.

None given. Totally incorect / wrong
one given / unreadable.

None. Vague. Incomplete. Little useful
information given. No clear linkages to
other aspects of the design.

None. Minimal effort. Untidy. No
labels. Missing aspects (e.g., design
mentions buttons, but enclosure
hasn't been design for any).

Duplicated design elements / excessive
duplication (e.g., separate on and off
buttons whereas single button reduce
size and costs). Too many (mainly)
useless features.

Neatly produced and labelled.
Accompanying text to indicate
important aspects / decisions.

Listing includes useful info such as
part numbers, URLs to manuals.
Relates back to block diagram / cicruit
/ UML models.

Neat enclosure design. Elements of
design linked (e.g. via labells or
accompanying comments) to design
aspects.

Developers have been meticulous in
ensing aspects of the design are not
duplicated or unnecessary.

Designs thoroughly checked & tested.
Suitable detail. Calculations clear and
appear to be correct (during the time‐
limited review).

Good consistancy in different
documents/modules. Same design
decisions evident in all docs.

Design appears comprehensive

Use of cross‐refs between design
aspects. Good captions, labels.

Not provided / unclear. Good neat. Diagram. Concise.

Generally unclear / untidy /
incomprehensible in many parts

Generally tidy, readable, well laid out.

The text of individual design
documents/models are full of
inconsistancies

Text and diagrams of individual
documents agree / are logical.

Little cosistancy between
documents/models: one indicates one
choice, different to other docs.

Important design details lacking

No cross‐refs between designs,
minimal labels, not tracable back to
concept requirements.

Sufficient detail, logical sequencing
and labelling of steps.

Neat. Correct notation. Suitable level
of detail used.

B.4.3 Evaluation of artefact quality

ARTEFACT SCOREBOARD

TEAM: 3 (Vibynet)

Criteria Descirption Rating Confusing = 0 MAX/2 = Middle of the road MAX = Excellent!
Naming of artefacts.
Levels: 0‐10 6

Structure / organization of digital
artefacts: 0‐10 8

Tracability: 0‐10

7

Modifiability: 0‐10

10

Reusability: 0‐5 (somewhat related
to modifiability) 4

General Readability / clarity of
content: 0‐10 7

Readability of code: 0‐5
3

Diagrams / models / AOD relating
artefacts: 0‐5 5

Accessibility / ease of location: 0 ‐
10 9

Owner/author, change history.
Levels: 0‐5

3

Non‐redundancy: 0‐5

4

Cross‐referencing: 0‐5

4

Use of ESAOA tools / other
artefact management and
classification tools: 0‐10

8

TOTAL / 100: 78

Difficult to tell how some of the files
can be modified / adapted. (e.g., need
some kind of obscure software
programs)

Meanigless / vague names. Good, descriptive names.

Each criterion is given a rating value from 0 to a maximum value. Fill in a number
within this range to indicate how well the team has done.

Easy to tell what design features /
requirements the artefact provides or
is related to.

Difficult to determine what design
feature or requirement the artefact
relates to.

Easy to locate files / information.

Each document contains author/
owner information, history of
indicating dates of important
changes/ fixes applied.

Few if any of the artefacts are worth
reusing.

Difficult to make sense of artefacts.
E.g. messy, illegible documents.

No attempt to model the layout of
artefacts, how they relate.

Difficult to find important information
/ files/ documents.

No author/owner indification. No
change history/log of fixes.

Poor/no comments Suitable amount of meanigful
comments.

Little redundancy (only used where it
is beneficial to do so). Backup / old
versions of artefacts moved into
separate folders / compressed
archives to avoid confusion.

All lumped together, difficult to
identify what particular files relate to.

Well organised. Easy to determine
what particular files contain / are
used for.

No cross‐refs used, likely to waste time
trying to keep track of where related
artefacts are.

Effective use of cross‐refs (e.g.
mention of paths, URLs, filenames,
etc. making it easy to find / know of
related artefacts).

Poor used of IT tools / poor
organisational structures / no use of
scripts to automate procedures

Good organisation and
documentation of artefacts.
Application of IT tools to facilitate
management of the artefacts. Use of
tools like fclass to classify and relate
artefacts.

Duplicated documents. Multiple
versions scattered haphazardly.
Difficult to determine correct version.
Commented out code.

Generally obvious (to a computer
engineer) what tool to use; special
formats and tools explained.

Many artefacts could be reused in
future projects / upgrades.

Neat easy‐to‐read documents, good
diagrams, annotations.

Explained the organization and reason
for important artefacts.

 B-11

B.5 Design review 2 questions regarding knowledge production
In design review 2, teams were asked to comment on their knowledge production methods and information
sources used in their project. The same set of questions was posed to each team; the question sheet is shown
below. The researcher took a printout of this sheet to read out during design review meetings, and wrote point-
form notes in the space provided to record responses.

 B-12

Appendix C: ESAOA KMS version 2 appendices

C.1 Knowledge ontology for ESAOA KMS version 2

The top-level terms of the knowledge ontology are not indented; terms that are
specializations of these top-level terms are intended depending how deep they are in
the hierarchy of terms. For terms that are specializations of more than one higher
level term, the other higher levels terms are indicated using curled parentheses.
Terms added for ESAOA KMS version 2 are indicated using an asterisk (*).

 Activity: one or more related actions carried out by a role (or multiple roles) that
relates to the development of an embedded system.

 Artefacts: a physical resource (e.g., books and equipment) or digital resource
(e.g., software tools, documents and other files) used in activities.
 Soft artefact OR digital artefact: a file stored on computer (e.g., a code file or

PDF datasheet).
o Data artefact: an artefact that captures data knowledge. These artefacts

act as a source for process knowledge. Examples include datasheets, data
files, sample source code and manuals.

o Process artefact: an artefact that captures process knowledge, such as a
how to manual, a baseline code module, or a log of commands used to
configure a tool.

 Hard artefact OR physical artefact: a physical artefact that is not stored in a
file system (e.g., hardware components, printouts, and embedded system
products that developers are working on).

 Innovation artefact: an artefact that captures innovation knowledge. Modified
baseline code modules and concept drawings are examples of code artefacts.

 Role: describes the behaviour, responsibilities, characteristics and needs that a
developer takes on during certain development activities.

 Space: a location (digital or physical) where artefacts reside.
 Communal space: space shared between multiple teams (e.g., laboratory).
 Team space: space shared between members of a team.
 Individual space: space used mainly by one member of a team.
 Soft space OR digital space: space comprising only soft artefacts (e.g.,

website, file directory stored on a hard drive)
o Workspace OR ESAOA workspace: a soft space where development

activities that involve changes to soft artefacts take place, comprising
software tools and other artefacts used to carry out development activities.
 Communal workspace: a digital space where members from different

teams share and interact (e.g., a wiki site or shared network folder).
 Team workspace: a workspace that is shared by members of the same

team. Stores the master version of a team’s project repositories.

 C-1

 Personal workspace: a workspace that is predominantly used by an
individual team member. The personal workstation is usually a working
copy of the team workspace.

 Master workspace: workspace containing master versions of a team’s
soft artefacts (generally the same as the team workspace).

 Workspace copy: a copy of the master workspace stored for example
on the hard driver of the local machine (i.e., a backup).

 Hotspot OR knowledge hotspot: a demarked section of a soft artefact,
within a particular workspace, that is of particular importance to
formulating or sharing a certain type of knowledge.

 Hard space OR physical space: place where hard artefacts are located.
o Workstation computer: refers specifically to the computer of a workspace

(i.e, the PC used by an engineer).
 Workstation OR ESAOA workstation: a computer system that provides the

human/computer interface to a workspace, together with the surrounding
physical artefacts used during development (e.g., printouts of datasheets,
testing equipment and the embedded system being worked on).
o Communal workstation: a workstation accessible to multiple teams.
o Team workstation: a workstation accessible to all members of a particular

team.
o Individual workstation: a workstation used predominantly by a specific

team member.

 Classifications (*): ways in which an artefact is classified.
 Form classification (*): indication of whether an artefact is a soft or hard

artefact. Also declares an artefact as represents explicit knowledge, or being
a boundary artefact, or being a knowledge artefact, or a combination of these.

 Functionality classification (*): based on what the artefact provides or is used
for (e.g., used for documentation, or is a code file). The functionality
classification helps to identify what an artefact is, or what it provides in a
project or workspace.

 Workspace classification (*): indicates where the master version of an artefact
should resides, or from which workspace the initial version of the artefact was
obtained. The URL or other reference information about the original version of
the artefact can be added to this classification.

 Maintainer classification (*): indicates the role responsible for maintaining the
artefact (this classification is partly implied by the workspace classification; for
example, artefacts in the communal workspace are maintained by the CKS).

 Episode (*): an activity, or set of related and chronologically close activities, within
a larger sequence of activities leading to a final result.
 Progression to innovation episode (*): a sequence of knowledge production

tasks related to a common idea, which leads from an initial acquisition of data
knowledge related to the idea, through zero or more instances of process
knowledge creation, resulting in a final occurrence of innovation knowledge in
which the idea is tested and possibly new ideas arise.

 Productive episode OR productive progression to innovation episode (*): a
progression to innovation episode in which only productive knowledge is
obtained.

 C-2

 Non-productive episode OR non-productive progression to innovation episode
(*): a progression to innovation episode in which both productive and non-
productive knowledge is obtained.

Note: Only a subset of the terms listed above were tested using the prototype of the
ESAOA ontology manager (OM) tool discussed in Chapter 6; the terms and their
descriptions were stored in a CSV file which the OM tool read and wrote to.

C.2 Details concerning the ESAOA modelling language
This section provides supplementary connection details concerning use of the
ESAOA modelling language.

C.2.1 Further detail on connectors
A “knowledge capture” flow links a knowledge atom to one or more artefact atoms,
and is used to show artefacts used to make aspects of knowledge explicit. An
“artefact adaptation” flow is modelled as an arrow that points from a role (or process)
atom to an artefact atom, indicating which role (or process) is responsible for
creating, adapting or maintaining that artefact. An “artefact use” association is shown
as an arrow that points from an artefact to a role or process atom; it shows which role
or process makes make use of the artefact. A “role support” association is in the form
of a line that has a solid circle on one end – the end with the circle indicates which
role is provided support form the role on the other end. Figure C.1 provides examples
showing the use of these connections.

R
Artefact X created
by role R

S

Knowledge
Knowledge capture flow:
shows that a method is
carried out to store a
certain knowledge form Artefact adaptation flow:

shows role R carries out a
procedure to maintain
artefact X.

Role support association:
shows that role S
supports role R. Artefact use association:

indicates role S uses
artefact X.

Figure C.1: Knowledge store, artefact maintenance, role support and artefacts use
connectors.

The “knowledge use” association joins a knowledge atom to a process atom,
indicating a knowledge form that the process depends on. The “role interaction”
association indicates an interaction or some form of relation between two roles (these
connectors are labelled to identify the relation involved). If the role interaction
connection has an arrowhead, the arrow points to the role that is provided something
by the other role (the role interaction connector junction is used to specify what is
being provided – see Section 6.3.3). The “role perform” association connects a role
atom to a process atom, showing a process that the role performs. The “process
capture” flow links a process atom to a soft artefact, identifying a soft artefact used to
document the process. The “process maintenance” flow shows a role that maintains

 C-3

a process. An “artefact conversion” flow shows an artefact formulated into a different
type. These connectors are illustrated in Figure C.2.

Knowledge K / DK

Soft artefact
capturing
process P

S

Process P

Knowledge use association:
indicates knowledge needed
for a certain process (usually
data knowledge)

Role perform association:
specifies a processes
performed by role S.

Process capture flow:
shows an artefact used to
capture all or part of a
process.

Role interaction
association: role R
does something (in this
case consults) with role
S – the arrowhead
indicates R gives
something to S

R

T

Process adaptation
flow: role T performed
process P and is
responsible for
maintaining or
adapting the process

Reformed
artefact

Artefact conversion flow:
shows an artefact that is
reformed into a different
type of artefact.

consults

Figure C.2: Knowledge use, role interaction, process capture, process adaptation, role
perform, and artefact conversion connectors.

The containment association, modelled as a line ending in a solid diamond shape, is
used to indicate a type of atom (usually an artefact or process) contained within
another atom; the container atom is on the end with the diamond shape. The
containment association can connect two artefact atoms (indicating artefacts stored
inside another artefact), or can link two process atoms (showing a hierarchical
breakdown of a high-level process into sub-processes). A dependency association is
represented as a dashed line ending in an arrowhead (the atom on the end without
the arrowhead depends on the atom on the end with the arrowhead). Figure C.3
provides an example model using these connectors.

Soft artefact Folder

Inheritence: code is a type
of soft artefact

Containment: soft artefacts
 are stored in a folder Process P

Process P.1

A sub-process
performed as part of
process P and captured
using a script.

Script.c
A Bash ESAOA
script file

find
Executable
program Dependency: artefact “Script.c”

depends on the “find” program.
Figure C.3: Containment, dependency and inheritance associations.

 C-4

C.3 Design details related to ESAOA support tools
This section provides supplementary design details concerning ESAOA support tools
that are included in version 2 of the ESAOA KMS.

C.3.1 Design issues of the Personal Expert Program (PEP)
The Personal Expert Program (PEP) was added to version 2 of the ESAOA KMS as
a means to access and manipulate file classifications more efficiently. The PEP
application starts by loading the .fci file corresponding to the ESAOA workspace that
is loaded when the user enters the ESAOA environment using the enter-aoa script.
The PEP program then remains running as a background task, waiting for IPC
messages to be sent to it from the fclass program.

The PEP program can be started in stand-along mode, in which the user can use a
menu to interface with the program. Alternatively, command line arguments can be
specified to invoke one PEP command (after which the application exists; for
example the command ‘PEP Count’ will return the number of entries in the .fci file of
the currently active workspace). The IPC messages, and corresponding commands,
that can be used with PEP are listed below:

Command ID Menu Item / command

line arguments
Description

90 Select path Change the active workspace file (uses
the ESAOA_TEAM, ESAOA_ROOT and
ESAOA_COMMUNAL environment
variables) to determine the .fci file to
make active. If no path is specified, the
personal workspace is selected.

91 SelectP Select the personal workspace.
92 SelectT Select the team workspace.
93 SelectC Select the communal workspace.
100 Add code description Add a new classification and its

description
101 Inherit code_sub

code_super
Instruct PEP to record that the
classification code_sub inherits the
existing classification code_super.

102 Uninherit code_sub
code_super

Remove any entry recording that
classification code_sub inherits
classification code_super.

103 Suggest_desc
description

Request PEP to suggest a classification
code value for the given description.

104 Ask_desc code Request the description of a classification
with given code.

105 Ask_inh code List all inherited classifications for the
specified classification with given code.

110 Count Return the number of classification
entries in the .fci file.

111 Get n Return the classification code of the nth
classification entry in the .fci file.

112 Deln n Remove nth classification from .fci file.
120 Copyto code

destination_file
Copy a classification from the current .fci
file (loaded in memory) to a .fci file in a
different workspace (the destination path
will be compared to the ESAOA_TEAM
and ESAOA_COMMUNAL environment

 C-5

variables to determine the appropriate .fci
file to change.

121 Moveto code
destination_path

Move a classification from the current .fci
file (loaded in memory) to a .fci file in a
different workspace (using environment
variables as above).

122 Remove code
destination_path

Remove a classification from the .fci file
corresponding to the path indicated.

123 LRemove code Remove a classification from the .fci file
of the current workspace.

C.3.2 Detailed design issues related to fclass and related CSV files
The fclass program is used to access and manipulate file classification information
related to files in an ESAOA workspace. The second version of fclass also supports
functions for recording source information and URL references related to particular
files in an ESAOA workspace. The table below lists command line parameters of the
fclass program.

Syntax Description
fclass <files> + <class> Apply classification <class> to the files indicated.
fclass <files> class <class> Same as above
fclass <files> - <class> Remove indicated classification from all files listed

that have that classification applied.
fclass <files> rmclass <class> Same as above
fclass <files> - Remove all classifications from files
fclass <files> rmclass Same as above
fclass <files> class? <words> Return all the classifications (one per line) that

have been applied to the files in <files>. If
<words> is empty, returns all classifications found,
otherwise returns only results that contain all the
words listed in <words>.

fclass <path> qclass <class> Return the names of all files in directory <path>
that have the classification <class> applied. If
<class> is an empty string, all files that have a
classification are returned.

fclass <path> -f <class> Same as above – for compatibility with version 1
fclass <path> find <class> Same as above – for compatibility with version 1
fclass <files> desc <desc> Apply description <desc> to all files indicated. If

<desc> is blank, existing description is removed.
fclass <files> desc? <words> Returns description for all files in <files>. If

<words> is empty, returns all descriptions found,
otherwise returns only descriptions that contain all
the words listed in <words>.

fclass <files> qdesc <words> Returns all files in directory <path> that are
assigned a description that contains all the words
listed in <words>. If <words> is empty, then all the
names of files that have a description linked to
them are returned.

fclass <path/file> -l List all classifications applied to the files or paths
specified. Each line returned starts with the
filename followed by the description applied. This
provides compatibility with version 1 of fclass.

fclass <path/file> list Same as above

 C-6

fclass <file> count Counts number of classifications applied to a file.
fclass def <class> <desc> Define a new class and give it a description
fclass def <class> Delete the description for a class
fclass qdef <class> Display the description for a class
fclass isa <class1> + <class2> Define a new inheritance (class1 inherits class 2)
fclass isa <class1> - <class2> Disinherit class2 from class1 (i.e., class1 no longer

inherits class2)
fclass qisa <class> Display super-classes of class
fclass nisa <class> Count number of classes that <class> inherits
fclass <file> url <url> Link a URL to a file (note that of <url> is blank,

then the URL is deleted). This command
manipulates the .fos file in the directory that <file>
is located in.

fclass <path> qurl <words> Display URLs linked files in <path> in which all the
words in <words> are found in the URL text. If
<words> is empty, then all the URLs are returned.

fclass <file> src <path> Indicate from which workspace or path a file
originates. The <path> string can be assigned to
“common” to indicate the communal workspace.
Alternatively, set <path> to a team number (such
as “team1” to record the team name). Whatever
<path> is set as, is stored into the .fos file directly
(i.e., fclass does not checks to see if the path
actually is valid). If <path> is not given, then the
src record for the file in the corresponding ‘.fos’ file
is deleted.

fclass <path> qsrc <words> Search .fos files in directory <path> that has src
entries that match all the words in string <words>.
If <words> is blank, then all the src entries for files
in <path> are returned.

fclass –h ... Sets fclass to use generate html output for
classification or description queries – the result is
saved in a file called ‘out.html’ that resides in the
root of the user’s personal workspace. The –h
option must be followed by a query for results to
be produced.

fclass –hd ... Similar to the –h option, except the html output of
the query is displayed to the console.

C.3.3 Hotspot logging (hsl) tool
The hsl tool was introduced in Section 6.4.2. In summary, the hsl program works in a
similar way to fclass, maintaining file meta-data, in terms of hotspots, in a CSV file.
As defined in the ESAOA knowledge ontology, a hotspot (or knowledge hotspot)
demarcates a section of a soft artefact that resides in a particular workspace and is
of importance to the formulation or sharing of knowledge related to the artefact
concerned. This section provides further details on the hsl tool.

C.3.4 List of ESAOA support tools
The collection of ESAOA support tools available in version 2 of the ESAOA KMS are
listed below.

 C-7

Command and
syntax

Short
name

Description

ESAOA SCRIPTS
acro Display a PDF file (using preferred PDF reader).
aod Display AOD for current project (uses acro script).
build-esaoa Compile and link any ESAOA command

implementations in the current directory.
check-comments.sh Indicate which c and h files for the current project

have or have not been commented (intended for
used by the Workspace Administrator).

esaoa-clean clean Remove make and object files.
cls Calls the Linux clear command to clear the screen.
dayplans.tcl [date] TCL script to display a dayplan (i.e., list actions that

the team or a developer recorded to be performed
on a certain day – defaults to current day)

del-csv.sh file Delete a CSV, but check that it is not needed by
any files in the directory. This script is used in
cleaning up an ESOAO workspace.

del-fcs.sh file Delete a FCS file, but only if it does not refer to any
files that actually exist (used in clearing up an
ESAOA workspace).

desc file description Add a description to a file, stored in a CSV metafile.
dus The Disk User Summary (DUS) command presents

a summary of disk space used by active workspace.
enter-esaoa
(or enter-aoa)

 Enters the ESAOA framework environment.

esaoa-access Script to assist setting file access rights in an
ESAOA workspaces. Can be configured to keep
track of which users should have access to a
particular project.

esaoa-addpath path Add path to the PATH environment variable.
esaoa-artifact file Add meta-data to artefact (stored in CSV file in local

directory).
esaoa-bm name
[path]

b Add a bookmark (if two parameters are given) or
change to directory associated to a bookmark name
(if one parameter is given). Bookmarks are stored in
a CSV file in the personal workspace root directory.

esaoa-bmark name Change directory to a bookmarked directory (same
as esaoa-bm but gives more output).

esaoa-burn [file] burn Script to write a compiled program to the boot
sector of flash memory on the CSB337 (this script
can be overridden for different plafroms).

esaoa-cd path cd Change directory (makes use of the standard Linux
cd, but allows for recording directory changes are
used most frequently, allowing for possible future
automatic suggestions and bookmark additions).

esaoa-checkdir This script is called by esaoa-cd and esaoa-goto to
check if the user has changed to the directory of a
different project, or to a different subproject, and
updates the environment variables as needed.

esaoa-checkin Called from a personal workspace. Overwrites files
and their metadata in the team workspace that have
been changed in the personal workspace.

 C-8

esaoa-checkout Called from a personal workspace. Overwrites files
and their metadata in the personal workspace that
have been changed in the team workspace.

esaoa-checks Perform checks to verify that the ESAOA
environment is operating and installed correctly.
Also can test the ESAOA tools.

esaoa-clean Removes all generated files in application directory.
esaoa-cleanup This method saves the program (if any) and then

deletes all the intermediate object files and other
generated files used to compile the program.

esaoa-cp files dest cp This script copies a file or a set of files to a given
destination. The alias cp is configured when the
ESAOA environment is entered to override the
standard Linux cp program.

esaoa-create-c name Creates a C file called name (by copying file
template.c from the Templates directory in the
active workspace).

esaoa-create-cpp
name

 Creates a C++ file (as above).

esaoa-create-script
name

 Creates a copy of the ESAOA Script template (by
copying template.sh from the Template directory).

esaoa-dt dt Returns the current date and time in format DD-
MM-YYYY HH:MM:SS.

esaoa-edit file e Edit the specified file using preferred editing tool
(set using environment variable ESAOA_EDITOR);
can be overridden using another esaoa-script in
current workspace’s Scripts directory.

esaoa-exeapp
filename

x Execute the exe file in current directory – if using
PCBox executes on PC, otherwise instructs
embedded platform to run the program.

esaoa-exit ex Exit the ESAOA framework environment.
esaoa-extract Script to extract an archive file based on its

extension name (uses tar or unzip).
esaoa-find name f Find an artefact based on keywords. Can search

based on filename or on text within files.
esaoa-flash-free Show free space on preferred USB flash drive; used

to check space for backups (the file
$HOME/mounted-flash.inf indicates which directory
corresponds to the preferred USB flash drive).

esaoa-flash-list [path] List files on preferred USB flash drive.
esaoa-flash-mount Mount preferred USB flash drive.
esaoa-gf keywords Script to find a certain artifact and change directory

its parent folder. Keywords are in the description
metadata of the artefact concerned.

esaoa-help [name] Display summary of frequently used ESAOA
support tools. If parameter given, shows help for
ESAOA program/script corresponding to that name.

esaoa-home Change to root of current project if current directory
is in a valid ESAOA workspace, otherwise changes
directory to root of personal workspace.

esaoa-info See framework-info (provides version information).
esaoa-l [path] l Display file listing for current directory, including

summary of classifications applied to files.
esaoa-m m Compile application, based on current directory.

 C-9

esaoa-mkrc Create an ESAOA RC file (a Bash script file
executed when the user changes into the directory
containing the RC file).

esaoa-mv source
destination

mv Move or renames a source file to a description, and
moves related metadata along with the file. This
script overrides of the standard Linux mv command
when the ESAOA environment is entered.

esaoa-nop Does nothing.
esaoa-platform name Alias for platform command (see platform below).
esaoa-project Script to create a new ESAOA project (note that a

template project must exist in directory
$ESAOA_INSTALL/Templates). Can also be used
to manage current project metadata.

esaoa-request-ids This script is obsolete. Reserve an ID range for this
user. This script should only be executed on the
central server, which keeps track of which user
owns which Ids.

esaoa-rm rm Deletes a file together with its associated metadata.
Overrides the standard Linux rm command.

esaoa-scratch Manage temporary file: creates and automatically
disposes (on esaoa-ex) of temporary files for an
ESAOA workspace.

esaoa-snap snap Take zip archive snapshot of files in current
directory and below, excluding object and exe files.

esaoa-term term Open favourite terminal (default: xterm).
esaoa-test This script tests a C/C++ module if it includes a

body of code that contains a main() function that is
only included if ESAOA_TEST is defined.

esaoa-to-flash file Copy a file to the preferred USB flash drive.
esaoa-tz tz Tar and gzip current directory and subfolders.
exit-esaoa Same as esaoa-exit (exits ESAOA environment).
fileswap file1 file2 Swap the names of two files (i.e., changes file1 to

file2 and the original file2 has its name set to file1).
framework-info Provide information about the ESAOA framework

(e.g., version number, installation paths, etc).
Includes info about active ESAOA communal
workspace and ESAOA team workspace.

gendoc [file] Script to generate documentation for a module
using Doxygen (and provided that Doxygen-
compatible comments are used in the module).

godir string go Calls the esaoa-godir program. Changes directory
to subdirectory in current folder that most closely
matches the characters in string.

gui-kmtools.tcl Prototyped GUI menu for accessing ESAOA tools
without having a type them at the command line.

gui-menu.tcl Prototyped GUI menu for accessing commonly
used tools without having to write them at the
command line.

home h Executes command “goto \$H” to change current
directory to the active framework root.

isa file class Uses fclass to associate an artefact classification to
a file.

keyw file keywords Associate keywords to a file.
kw Loads the Kwrite text editor.

 C-10

platform name Display or change current target platform.
platform-info Display information for current target platform.
rm-objects Removes all compiler-generated object files from

the current directory (used by esaoa-clean).
start-pep Start the Personal Expert Program (PEP)

background process (called by enter-esaoa).
title file name Associate a title or longer and more descriptive

name to a file or directory.
tree path Display directory tree for path given.
ESAOA PROGRAMS
ascii-table Display table of ASCII codes and characters
esaoa-apps Display list of applications in applications directories

for current workspace. Also used to determine the
directory for applications for the go apps script.

esaoa-arg Program to assist argument processing.
esaoa-askpass Ask user for password (echoes ‘*’ characters for

characters entered).
esaoa-bar num char Display a status bar (num indicates number of

characters char to print out)
esaoa-capture Redirects input from RS232 serial port to a file.
esaoa-cwd [path] Prints current working directory from given root path

directory(defaults to ‘/’ if path is not given).
esaoa-defs
[options...] file

 List or add a definition to project defs.csv file.

esaoa-download Downloads bytes from a RS232 serial port or IP
socket connection.

esaoa-err err Add a line of text or file to the ESAOA error log file
for indicating user concerned. Can also be used to
redirect error stream (depending on environment
settings specifying where errors should be sent).

esaoa-fm fm Filename manipulation application. This program is
used to access parts of a filename, such as
removing the path from a file.

esaoa-godir keywords Based on current directory and keywords, the
program decides which directory the usually
probably wants to change to (this program is used
in conjunction with the godir script which performs
the actual change of directory).

esaoa-kdb operations This program implements a console interface to the
ESAOA database comprising metafiles within an
ESAOA workspace.

esaoa-log [time] text log Program to add an entry to a text log file, display a
log for a certain day, or to construct a day plan.

esaoa-menu Used in displaying a menu to the console (used by
scripts such as the ESAOA install script).

esaoa-mm [file] mm Make *.make files for application. Run in the
relevant application directory.

esaoa-moddep file Determine dependencies for a C or C++ code
module.

esaoa-neaten file Neaten the comments and code indentation in a C
file.

esaoa-pathtool Add a directory to the path in the team workspace.
Also provides functions to determine which paths
are already in the environment PATH variable, and

 C-11

changing the order of paths in the PATH variable.
Only implemented for Linux/Cygwin; version 2.0
does not handle Windows paths.

esaoa-platform Access information regarding a particular platform,
or compute environment variables that need to be
changed to reconfigure compiling for a different
platform.

esaoa-ppc file C / C++ file pre-processor. Use in C or C++ pre-
processing (e.g., finding comments, author names,
etc). By default, inputs a C file and outputs to the
console a version of the file with all comments
removed and sections of code that would be
eliminated by #ifdef constructs.

esaoa-projroot Return the project root directory for the project
corresponding to the current directory.

esaoa-prompt Compute the Linux prompt to display. Called by
Bash when in the ESAOA environment to display a
command prompt.

esaoa-readln Read a line of text from console entered by user.
esaoa-setup Program to display and manipulate ESAOA setup

information stored in shared memory and copied to
the repository .esaoa file. Generally used to
customise the ESAOA environment.

esaoa-shm ESAOA SHared Memory data access program. This
console application provides an interface to access
shared memory segments manually (e.g., copy a
file from disk into a shared memory segment, or
copy a shared memory segment to a file on disk).

esaoa-sm sm Send / log a message to fellow team member.
esaoa-status Add status entry or annotate existing status entry.
esaoa-stubgen Generate stub functions.
esaoa-synch Synchronise two directories (generates a .sync file

in each directory used to determine which files have
been added or deleted).

esaoa-tally tally_file
[val name] [d]

 Program to create and manipulate a table where
each row contains a count value and a name.

esaoa-tdb file
operations

 Text file database. Program that manages rows of
data (strings or floats) in a text file.

esaoa-termcnf Generate terminal configuration script (used when
ESAOA environment is entered).

esaoa-upload Upload a datafile over RS232 serial port or IP
socket connection. Expected to be used mostly to
send compiled executables to the target platform.

esaoa-version ver Display current version of ESAOA communal
workspace.

esaoa-xfer This program uses the esaoa-sync application to
import or export files from a particular personal
workspace to a team workspace.

esaoa-zip Zip archive manager (used to manage archives
stored in Project directory). (This program is meant
to track zip files created, and can access certain
files within a zip file, but is not meant as a
replacement for the standard zip/unzip programs
used to do the actually file de/compression.

 C-12

fclass ESAOA file classification program. Program that is
accessed by the user form the console to change
file classifications stored in csv files.

fcs ESAOA file classification system data manipulation
program. Manipulates CSV files, and implements
many of the functions needed by fclass.

fim Functionality classification index file manager.
istime Check if a certain date/time has been reached.
penv Modify/displays ESAOA environment variable.
pep Personal Expert Program (PEP). This program is

started as a service to maintain the .fci files used by
fclass that contains the classification indexes for the
active workspace.

sdb Simple database application (SDB). Console-based
prototyped program that uses a subset of SQL
commands to create, update and manipulate CSV
files.

C.4 Kit for Information Technology (KIT)
The Kit for Information Technology (KIT) is a C++ application programming that was
developed during the first iteration of Framework Construction. KIT provides high-
level functions for navigating ESAOA directory structures and for manipulating CSV
files that contain meta-data for files. The KIT API consists of a set of C++ H files that
incorporate the functional interface and a library file that is linked to the user
application being compiled. The KIT C++ modules can be incorporated directly into
an application without linking the precompiled library file (this was done to make it
easier to port individual programs or reuse code from KIT for other purposes, such as
inclusion into embedded software). The KIT API is included in the ESAOA communal
distribution.

The UML class model for KIT is given in Section C.4.1 and is used in outlining the
various modules and classes available in the library. Section C.4.2 provides a
flowchart and code snippets showing the design and implementation of a C++
ESAOA program using KIT.

C.4.1 KIT modules and UML class model
This section lists the Kit classes and modules of the KIT API and provides a UML
class diagram to illustrate the relation between the classes in the KIT API.

List of KIT classes and module files

Class name(s) Module files Description
 KitTypes.h Includes all the commonly used

Kit datatypes (such as KitObject
and KitString).

 XMLCommon.h Routines that are used by both
KitXMLOut and KitXMLIn.

Kit, KitCli Kit.cpp Kit.h Included by all applications that
uses Kit. This module
implements top-level classes.

KitActionExpert KitActionExpert.cpp
KitActionExpert.h

Record an action and add to list
of actions (used if command

 C-13

capture is enabled in the ESAOA
environment).

KitAssoc KitAssoc.cpp KitAssoc.h Abstract class for a top-level
association class (a class used
to relate two other classes).

KitAtom KitAtom.cpp KitAtom.h A type of class that is used in a
KitDisplay and can display itself.

KitBaseRepository KitBaseRepository.cpp
KitBaseRepository.h

Abstract / top-level repository
class (has no methods).

KitContainer KitContainer.cpp
KitContainer.h

A KitObject that can contain zero
or more KitObjects. Similar to a
file folder.

KitDisplay KitDisplay.cpp
KitDisplay.h

A display class. Displays
KitObjects to the console or a
GUI window (depending on
subclass used).

KitExternalRepository KitExternalRepository.cpp
KitExternalRepository.h

Corresponds to a folder that is
outside an ESOA workspace.

KitFile KitFile.cpp
KitFile.h

Corresponds to a file on disk.

KitFileRepository KitFileRepository.cpp
KitFileRepository.h

Corresponds to an ESAOA
workspace.

KitFolder KitFolder.cpp
KitFolder.h

Corresponds to a folder on disk.

KitGUI KitGUI.cpp
KitGUI.h

A wrapper class for GUI window
display functions. Subclasses of
this class implement the actual
calls to underlying libraries.

KitGUICreate KitGUICreate.h
KitGUICreate.cpp

A wrapper class that handles
creation of GUI windows.
Subclasses implement calls to
underlying GUI libraries.

KitImageAtom KitImageAtom.cpp
KitImageAtom.h

A KitAtom with an image/bitmap
representation.

KitImageResource KitImageResource.cpp
KitImageResource.h

An image resource (stored within
the Common directory of the
active workspace).

KitInternalRepository KitInternalRepository.cpp
KitInternalRepository.h

A repository that is hidden from
the user (stored within Comon
directory of active workspace).

KitKB KitKB.cpp
KitKB.h

Wrapper class for access to a
SQL database engine.
Subclasses implement library
calls to access the database.

KitList KitList.cpp
KitList.h

A list of KitObjects.

KitLogFile KitLogFile.cpp
KitLogFile.h

Corresponds to a CSV log file in
a KitRepository.

KitLogger KitLogger.cpp
KitLogger.h

Routines for adding or updating
entries in a KitLogFile.

KitModel KitModel.cpp
KitModel.h

Routines to draw a line and box
diagram/model (experimental
routines to automate AOD
generation – not fully functional).

 C-14

KitObject KitObject.cpp
KitObject.h

An item that Kit can manipulate.

KitObjectLoader KitObjectLoader.cpp
KitObjectLoader.h

A means to load a KitObject from
a file.

KitParser KitParser.cpp
KitParser.h

Used in parsing text files to
interpret commands strings.

KitRegion KitRegion.cpp
KitRegion.h

A named region (groups a set of
KitObjects, but does not relate to
a physical folder – e.g. set of
objects that certain keywords).

KitRenderer KitRenderer.cpp
KitRenderer.h

Draw an object using KitGUI
commands.

KitReporter KitReporter.cpp
KitReporter.h

Output a report (e.g., information
about certain file groups).

KitRepositories KitRepositories.cpp
KitRepositories.h

A list of KitRepositories.

KitRepository KitRepository.cpp
KitRepository.h

Abstract repository class (could
be a KitFileRepository or some
other kind of repository).

KitResource KitResource.cpp
KitResource.h

A resource used by the Kit
library (e.g., an image).

KitSortedList KitSortedList.cpp
KitSortedList.h

Holds a list of objects that has
been sorted. Has methods for
sorting text in various ways.

KitSpell KitSpell.cpp
KitSpell.h

Wrapper class for aspell, used in
checking spelling in text fields.

KitStack KitStack.cpp
KitStack.h

A stack datatype of KitObjects.

KitStream KitStream.cpp
KitStream.h

A stream datatype of KitObjects.

KitString KitString.cpp
KitString.h

A variable length string class.

KitUniquePointerList KitUniquePointerList.cpp
KitUniquePointerList.h

A list which does not hold
duplicate pointer values
(attempts to add pointer values
already in the list are ignored).

KitUtils KitUtils.cpp
KitUtils.h

Various utility functions (e.g.,
converting string to integer).

KitVar KitVar.cpp
KitVar.h

A kit variable type (e.g.,
corresponds to system
environment variable).

KitXMLIn KitXMLIn.cpp
KitXMLIn.h

Class for loading XML files.

KitXMLOut KitXMLOut.cpp
KitXMLOut.h

Class for saving XML files.

Figure C.4 provides a UML model showing a selection of the KIT classes. As the
model shows, many of the classes in KIT inherit the KitObject class. The KitContainer
contains zero or more KitObjects, and can itself be treated as a KitObject. The most
commonly used classes are KitFile, KitFolder, and KitRepository; these classes
correspond respectively to a file within a repository, a folder within a repository, and a
repository stored on disk. In terms of using KIT with ESAOA workspaces, a
KitFileRepository corresponds to an ESAOA workspaces (this is the repository class

 C-15

used in all the ESAOA tools; however, KIT was design for wider flexibility for use
outside of ESAOA workspaces).

A KitAtom and KitRegion are intended to be used with a KitDisplay. KitDisplay is
used to display information to a console or (more graphically) in a Window. For
version 2 of ESAOA, the console display is operational.

KitBaseRepository

KitFileRepository

KitExternalRepository

KitRepository

KitExternalRepository
KitContainer

*
*

KitStream

KitObject
KitResource KitFolder

File

KitImageAtom

KitInternalRepository

KitFile

KitReporter

KitLogFile

KitLogger

KitVar

KitDisplay

KitAtom

KitRegion

Figure C.4: Containment, dependency and inheritance associations.

The KitLogger class implements most of the functions provided by the esaoa-log
program that is included in the communal ESAOA workspace. The KitLogger makes
used of a KitLogFile (which maintains a log in CSV file format), and in turn the
KitLogFile uses functions it inherits from KitReporter to display lines of text.

A KitResource is used to refer to data (e.g., images or help messages) that is stored
within a KIT resource files in repository. These resources can be added, deleted, and
changed via KitResource methods. This was intended to allow for a means for
programs using the KIT library to access program resources based on a resource ID,
without having to know where in the repository the resources are stored as files.

C.4.2 KIT sample application: esaoa-apps
This section describes the implementation of the esaoa-apps ESAOA support tool;
this is done to provide a scenario showing how the KIT API can be used.

The requirements for the esaoa-apps program is to display the number of
applications in the active project, and list the folders names are in the directory
$P/Software/Applications (note that $P corresponds to the root of the currently active
project directory). For each folder that has description metadata attached to it (i.e., in
a .fcs CSV file), the description is displayed after the folder name. The displayed
information needs to be in the form of a table.

Example: if the project had two folders in its applications directory, named App1 and
App2, and only App1 had a description “This is application#1” attached to it, then the
following output would be displayed when esaoa-apps is executed:

 C-16

 +====================================+
 | 2 Applications |
 +====================================+
 | Name | Description |
 +====================================+
 | App1 | This is application#1 |
 | App2 | |
 +====================================+
The implementation of esaoa-apps starts by checking to see if the current working
directory if within a valid ESAOA workspace; if it is not, then it displays an error
message and exists. Next, the program checks if the current directory corresponds to
a folder that is a project folder of a subdirectory of a project folder (all projects folders
are stored as a subdirectory in folder $H/Projects, where $H corresponds to the root
of an ESAOA workspace). If the current directory is not within a project directory, the
program quits; otherwise, execution continues. The code snippet below shows how
these first steps of the program are performed using KIT library calls.

int main (int argc, const char** args)
{
 int res = esaoa.init(); // Initialize KIT with ESAOA settings
 if (res) return -1;
 // esaoa.init() returns true if not currently in the

 // ESAOA environment, in which case the program exists.
 ...

 show_app_folders(); // this function continues execution
 ...
 return 0;
 }

void show_app_folders ()
{
 ...
 // The esaoa.AppsDir() returns the path that corresponds

 // to the directory that applications are stored for the
 // current project. If the current directory is not in a
 // project, or the project has no applications, then the
 // esaoa.AppsDir() call returns a blank sting; this blank
 // string would be ignored by the traverse_dir call, leaving
 // the KitList apps empty; otherwise apps will be filled with
 // the names of all the folders in the Applications directory.

 traverse_dir(esaoa.AppsDir(),handle_file,0,0);
 int n = apps.count();
 if (n) {
 ... display directories names and descriptions ...
 } else
 printf("No application directories found.\n");
 }

The show_app_folders function call above shows the use of the traverse_dir function,
which is a function included in the KitFolder.cpp module. This function is given a path
(in the case above, it is esaoa.AppsDir()), a function to call, namely handle_file, and
the number of subdirectories to descend into (in this case 0), and finally a extra
parameter to pass through to handle_file (in this case 0). Essentially, handle_file is
called for each folder in the Applications directory and is passed a KitFile that
corresponds to the folder concerned (in the example above, this would involve the
call handle_file(app1folderreference,0) and handle_file(app2folderreference,0) – note
that the extra parameter 0 is simply passed verbatim to the handle_file function on
each call, and app1folderreference and app2folderreference correspond to KitFiles
that would be instantiated to refer respectively to the folder

 C-17

$P/Software/Applications/App1 and $P/Software/Applications/App2). All that the
handle_file function needs to do is add the first parameter (i.e., a copy of the folder
object) to a list; in this implementation the list is called apps. When the traverse_dir
function returns, the apps list will contain instances of KitFolder objects that refer to
the directories within the applications directory. The KitFolder::get_name() method
can then be called to display the name of the folder, and a call to
KitFolder::get_meta(“description”) can be used to display the description linked to the
folder (note that this call would return an empty string if no description was given).

The flowchart shown in Figure C.5 illustrates the behaviour of the esaoa-apps
program as described above.

 C-18

start

Within
ESAOA environment

?

exit

N

Within
an ESAOA project

?

N

Y

Show error: this program
must be run from the
ESAOA environment

Initialize apps to empty list.
Initialize traversal of directory
$P/Software/Applications,
X = first directory in folder
traversal list.

Y

X is valid
?

Add X to apps, i.e.:
apps.add(X)

Traverse to the next folder

Y

Print out apps.count() to show
the number of applications that
are in the applications folder.
X = first entry in list apps

N

Print X.get_name()
i.e., prints the name of the
application folderX is valid

?

X.get_meta(“description”) = “”
?

Y

Print newline
X = next entry in apps

Print X.get_meta(“description”)
i.e., displays the description

Y

N

exit

N

Figure C.5: Flowchart describing operation of the esaoa-apps program.

 C-19

Appendix D: Case study participants

D.1 Experiment 1 participants

The first experiment comprised four participants, each working on a fourth year
undergraduate project that involved developing or modifying an embedded system
and writing embedded software. The participants worked in two groups of two. In the
case of both groups, the developers worked on different higher-level project topics,
but collaborated on the development of a common subsystem. In the case of the
ANTCON project (P1-2), the common subsystem involved developing interfacing
hardware and software to control an antenna pedestal. Similarly, in the case of the
Software Signal Generator (SoSiG) project (P1-1), both group members worked on
different final year projects, but collaborated on developing the SoSiG systems; in
this case however the development of the SoSiG was more of a pre-study for the
students as a means to experiment with development tools.

The participants in this experiment were of a similar level, both in the electrical and
computer engineering (ECE) programme, and working on embedded systems as part
of their final year projects. All the participants had completed the first, second and
third year core courses (except EEE3074W) listed in Table D.2.1 below.

D.2 Experiment 2 participants

The case studies used in the second experiment comprised participants registered in
the Embedded Systems EEE3074W third-year course at the University of Cape
Town. The students are part of the ECE programme. In order to provide details on
the experience level of the students, the core course and prerequisite courses that
the students would have passed to enter EEE3074W are described in Table D.2.1.
An electronic version of the Engineering and Build Environment (EBE) handbook,
which includes a detailed description of the current ECE programme, is available
from: http://www.ebe.uct.ac.za/images/documents/EBE%20Handbook%202008.pdf.
The EEE3074W course was largely project-based which was suited to having the
students work on group projects, a practice that is commonly used in embedded
systems courses in other universities. The EEE3074W course had three prerequisite
courses, namely completion of both the second year computer science courses
(CSC2001F and CSC2002S) in addition to completion of the Electronics Engineering
course (EEE2040W). These prerequisites were in place because students doing the
EEE3074W needed an understanding of designing and implementing circuits
containing electronic components (skills gained in EEE2040W), in addition to
software design and programming skills (gained in CSC2001F and CSC2002S).

Table D.2.1: ECE programme from first to third year. Source: EBE Faculty Handbook 2005.
Course Code Description
First year core courses
CAS1001S Culture, Identity and Globalization in Africa
CSC1015F Computer Science 1A
CSC1016S Computer Science 1B
EEE1004W Engineering I

 D-1

http://www.ebe.uct.ac.za/images/documents/EBE%20Handbook%202008.pdf

 D-2

MAM1003W Mathematics I
MEC1003F Engineering Drawing
PHY1010W Physics
Second year core courses
CSC2001F Computer Science 2A **
CSC2002S Computer Science 2B **
EEE2026S Electrical Engineering Part 2
EEE2035F Signals and Systems I
EEE2036S Probability and Statistical Design in Engineering
EEE2040W Basics of Electronic Engineering **
MAM2080W Mathematics II
Third year core courses
CSC3012Z Operating Systems I
EEE3064W Digital Electronics & Microprocessors (also co-requisite / pre-

requisite for EEE3074W)
EEE3073S Professional Communication Studies
EEE3074W Embedded Systems*
EEE3081F Control Engineering A
EEE3086F Signals and Systems II
EEE3084W Communication System and Network Design
* The EE3074W course was established only in 2005, a year after Experiment 1.
** Prerequisite courses for EEE3074W (i.e., students taking EEE3074W must have
passed these courses)

The students were formed into groups of three. The process for allocating the groups
involved a series of steps as follows:

1. Students were required to read about an embedded-system related product of
their interested, and to produce a short essay reporting on what they read.

2. Each student was then required to post a short project proposal based on
their area of interest, describing a system they would like to prototype. These
projects did not have to be based on the essay the student write – the essay
was merely an encouragement for the students to do some reading which
may help inspire them for this second step.

3. Based on the topic of the postings for step 2, the postings were grouped into
related fields, such as security, entertainment, military, etc. The students were
then assembled into corresponding groups, for example the students
interested in security applications were put into the same group.

4. Groups that were too big (more than three members) or two small (less than
thee members) had members moved out or moved in so that all the groups
were the same size. A size of three was chosen because there were 39
participants, which is divisible into exactly 13 groups. The movement between
groups was done to maintain a close-as-possible relation to the student’s
interests. For example, there were four students specifically interested in
security systems (who did the ‘Campus Protection Device’ Project P2-12) but
one of the students were moved to the ‘Central Alarm Clock’ Project P2-9 so
that both projects had three members (the reason for doing so was the
potential for the ‘Central Alarm Clock’ having some aspects similar to that of a
security system).

The experiment proper (i.e., when data was captured from the experiment) was
only started after the final teams had been allocated, the requirements decided,
the high-level designs completed and the teams had entered the implementation
phase of the project.

Appendix E: Supplementary documentation

E.1 A comparison of search results

In order to obtain an indication of how many literary contributions have been made
that relates to KM of embedded software development, in comparison to KM of
software development in general, a search was done using Google Scholar. The
results shown below were updated on 28 Jan 2009. First searches related to
embedded software was performed (see step 1 below) and the total number of
results was totalled. Next (see step 2) a search related to KM of software was done
and the results were tallied. To perform a percentage the first total was divided by the
second; i.e.: (total embedded software KM hits) / (total software KM hits).

Step 1: Searches performed for KM of embedded software development

Search Expression Estimated

Hits
"embedded software" "software development" "knowledge
management"

348

"embedded system" "software development" "knowledge management" 129
"real-time system" "software development" "knowledge management" 107
Total: 584

Step 2: Searches performed for KM of software development

Search Expression Estimated

Hits
"software development" "knowledge management" 14,000
Total: 14,000

Step 3: Percentage of step1 results to step2 results

584 / 14000 = 0.042 = 4.2%

Based on the estimated number of hits provided by Google Scholar, the number of
embedded software KM hits was 4.2% of the number of general software KM hits.

 E-1

G Glossary

This section lists all important terms used in this thesis. All terms are presented in
singular form. Underlined terms in definitions indicate that the term (in its singular form)
is defined elsewhere in the glossary. Synonyms for a term are listed after the definition
of the term.

The ESAOA KMS users (i.e., knowledge worker roles such as component researcher
and process engineer) do not need to understand all these terms. Different roles do not
need to know the same set of terms. This glossary is designed in relation to the second
version of the ESAOA KMS (detailed in Chapter 6); correspondingly, the acronyms
[CR], [WA], [PE], [IE], and [CKS] are placed in the ‘term’ column to indicate respectively
terms the component research (CR), workspace administrator (WA), process engineer
(PE), innovation engineer (IE) and communal knowledge steward (CKS) need to
understand. Terms that need to be understood by all roles are indicated using a [*].
The chief knowledge officer (CKO), or a developer wanting to customise an ESAOA
KMS, needs a broader understanding of this terminology. Terms in the ESAOA
Knowledge Ontology (Appendix C.1) that are seldom used are not repeated below.

Term (Acronym) Description
Activity [*] A form of work that can be performed by a person filling a

certain role. See: ESAOA activity
API [*] Application Programming Interface
Application framework [*] A set of software libraries or modules used to implement

the standard structure of a software application within a
particular application domain. This application domain is
defined in terms of an operating system, hardware
platform, operating environment, and general
requirements relating to what the software does (e.g.
connecting microcontrollers in a sensor network). By
integrating a significant amount of reusable code into an
application framework, development time can be saved
by reducing the amount of code that needs to be written
for new applications in the application domain concerned.

Artefact Artefacts are objects used or worked on by developers in
a project. Artefacts are broadly classified as soft artefacts
or hard artefacts. See: implementation artefact.

Artefact adaptation (AA) An activity in which a developer creates or modifies an
implementation artefact.

Artefact organisation (AO) An activity in which a developer classifies or organises
implementation artefacts (e.g., changing file names or
arranging files in directories).

Artefact organisation and
adaptation (AOA) [*]

Method of organising artefacts in a work area (e.g., file
directory or code module) and adapting these artefacts to
accomplish specific needs.

Artefact Organisation
Diagram (AOD) [*]

A diagram used to represent the organisation of an
ESAOA workspace.

Automatable process
knowledge [PE]

Process knowledge that can effectively be represented in
the form of a script (specifically, in the case of the
ESAOA KMS, this type of knowledge refers to knowledge
that can be effectively represented as one or more Bash
scripts or a combination of Bash scripts and C++
executable programs.

 G-1

Back end This term refers to software system components that
process the output from the front end.

Background program Background programs, or ‘daemons’, run without user
interaction and provide services to other programs
[Enderunix.org, 2008].

Bash [PE+IE] Bash is a shell available on most Linux and GNU-based
operating systems. Bash includes aspects of both Korn
shell (ksh) and the C shell (csh). Bash offers a variety of
functional improvements over sh for both programming
and interactive use. In the ESAOA KMS, Bash was used
as the scripting language for ESAOA workspaces and to
capture automatable process knowledge.

Boundary artefact [*] An artefact used to in the transfer of ESAOA knowledge.
Generally refers to a soft artefact in an ESAOA
workspace.

Breadboard [*] A board on which experimental electronic circuits can be
temporary constructed without using solder.

Capability [*] Ability of a person to complete a specific set of actions of
a particular level of complexity, within a certain context,
and for a specific purpose. Capability is a result of
learning, skills, abilities and values.

Chain of command The chain of command is a term commonly used in a
military context to indicate the line of authority and
responsibility that orders are passed along.

Chief knowledge officer
(CKO)

The CKO is responsible for administrating the KMS as a
whole and for training knowledge workers in its use.

Commercial off-the-shelf
(COTS) [*]

Commercial off-the-shelf (or COTS) refers to a
commercially manufactured system that is integrated
(and possibly adapted) for use as a component in a
product, fulfilling certain requirements for the product.
Source: http://en.wikipedia.org/wiki/COTS

Communal knowledge A type of knowledge shared between members of
different development teams in the same organisation.

Communal knowledge
steward (CKS) [*]

Role responsible for helping the CKO manage communal
knowledge and maintain the communal workspace.

Communal workspace [*] An ESAOA workspace shared between all teams.
Communities of practice
(COPs)

A community of practice (COP) is a group of volunteers
who learn and work together. Generally, the members of
a COP generally have similar jobs and skills.

Component A part from which a product is built. A component can be
considered a special form of implementation artefact.
Components can be separated components into software
and hardware components.

Component integration The process by which a software developer writes or
adapts code to connect components.

Component knowledge [*] Knowledge related to a component (e.g., the function of
certain control pins on an integrated circuit). Component
knowledge could also be categorised as data, process,
or innovation knowledge depending on which form of
knowledge was produced during the knowledge
occurrence concerned.

Component researcher
(CR) [*]

A knowledge worker role found in the second version of
the ESAOA KMS. This role is responsible for locating and
studying components, and provides highly focused

 G-2

http://en.wikipedia.org/wiki/COTS

component knowledge to the PE and IE.
Concept [*] A product idea.
Concurrency [*] Each high-level task involving multiple simultaneous

lower-level operations taking place.
Concurrent Versioning
System (CVS)

CVS is an open-source collaboration and version control
system. Source: http://www.nongnu.org/cvs

Corroborate [*] Checking that information is valid.
COTS [*] See Commercial off-the-shelf

Cross-compiler [*] A cross-compiler is a type of compiler used to create
executable code for a platform than is different to the one
on which the cross-compiler is run on.
Source: http://en.wikipedia.org/wiki/Cross_compiler

CSB337 An embedded system platform used in the experiments
discussed in chapters 5 and 6. Details of the platform is
provided by [Cogent Computers, 2005].

Daemon See background program.
Data knowledge [*] Knowledge of information sources and understanding of

knowledge artefacts (e.g., knowledge produced while
reading a datasheet).

Data Steward (DS) [*] A knowledge worker role used in the first version of the
ESAOA KMS. This role was responsible for the location
and study of data knowledge.

Data synthesis The process of collating data into a systematic
representation, from a variety of sources that store data
in dissimilar representations.
Source: http://dictionary.reference.com/browse/synthesis?

Embedded engineer [*] An engineer who develops an embedded system. An
embedded engineer can be a hardware engineer, or a
software engineer, or both. But generally, an embedded
engineer needs a general understanding of both the
hardware and software aspects of embedded systems.

Embedded system [*] A single-purpose computer built that is built into a larger
system to control and monitor the larger system. See
definition in Ball [Ball, 2002, xi].

Embedded system artefact
organisation and
adaptation (ESAOA) [*]

The process of structuring, arranging, and adapting
implementation artefacts during the implementation of an
embedded system product.

Embedded system
engineer (ES engineer) [*]

See: Embedded Engineer

ES [*] See embedded system

ESAOA [*] Embedded system artefact organisation and adaptation
ESAOA activity [*] The act of performing embedded system artefact

organisation and adaptation.
ESAOA conceptual
modelling language [*]

A specialised modelling language, which is an adaptation
of the UML, used in modelling aspects of the ESAOA
KMS and interrelations between aspects of this KMS.

ESAOA directory structure
[*]

A file directory organised according to the organisation
and naming guidelines specified by an ESAOA KMS.

ESAOA knowledge
management system
(ESAOA KMS)

A KMS design to facilitate KM within ESAOA activities to
aid the successful completion of implementation tasks.

ESAOA knowledge
ontology (or ESAOA
ontology) [*]

A specialised terminology structure used to specify the
ESAOA KMS.

 G-3

http://www.nongnu.org/cvs
http://en.wikipedia.org/wiki/Cross_compiler

ESAOA support tools [*] Software tools and scripts that assist in maintaining an
ESAOA workspace and for accessing the knowledge
base stored within it.

ESAOA workspace [*] An ESAOA workspace is a digital, computer-based work
area that comprises: 1) a shell environment; 2) soft
artefacts (i.e., computer files) organised into an ESAOA
directory structure; 3) an integrated knowledge base; 4)
ESAOA support tools; and 5) a related collection of
externally stored and maintained development tools.

Evaluation board [*] A pre-built hardware platform used for evaluating a
certain microcontroller architecture and set of peripherals
[Berger, 2002].

Event chain A sequence of associated knowledge events leading
from a problem to a solution or dead-end.

Executable [*] A file that can run on a platform. See: executable image.
Executable image [PE+IE] A binary file that contains a program; can be installed

and executed on a platform.
Final product The product that a project is focused on building.
Framework construction Part of the research design described in Chapter 3 that

involves designing and implementing the documentation,
supporting tools and other parts of the ESAOA KMS.

Front end [*] In software engineering, the term ‘front end’ refers to a
part of a software system that interacts directly with the
user. Partitioning a system between ‘front ends’ and
‘back ends’ is an abstraction that helps to keep the
different parts of the system separated.

FTP [PE+IE] The File Transfer Protocol (FTP) is a TCP/IP standard for
transferring files across the internet or between
networked computers.

Functionality classification
index file (.fci) [*]

An .fci file resides in the root of each ESAOA workspace.
It is a comma separated values (CSV) that stores
classification terms used by .fcl files.

Functionality classification
lookup file (.fcl) [*]

An .fcl file resides in each folder within an ESAOA
workspace that contains files that have classification
metadata linked to them. All classification keywords
added to an .fcl file should be defined in the .fci file for
the ESAOA workspace.

Hard artefact Physical objects an ES engineer works with in a
laboratory, e.g. electronic components, hardware
devices, tools and equipment (see Section 1.1.6).

Hardware component A part of the product that is hardware (e.g., microchip).
Hardware platform [*] A hardware platform is the minimum required hardware

components, circuit board, chips and other electronics
needed to support the software platform around which
embedded software is constructed.

Implementation Artefact [*] Implementation artefacts are objects used or worked on
in the implementation phase of a project. These objects
store knowledge (in the form of information), are used as
tools, or form part of the product being developed.
Implementation artefacts are accordingly divided into two
categories: soft artefacts or hard artefacts.

Implementation Knowledge
[*]

Implementation knowledge is used by a developer during
the implementation phase of a development project when
the developer transforms a design into a product.

 G-4

Implementation phase The fourth phase of the embedded systems lifecycle
model presented in Section 2.2.

Implementation tasks Tasks carried out in the implementation phase [Schach,
2005]. ESAOA activities are carried in many
implementation tasks. In this thesis, ‘implementation’
refers to the process by which development moves from
a product concept/design to a final product; in this case,
the act of implementation refers more to a process of
building, coding and piecing together parts of an
electronic circuit, as apposed to a process of designing
and modelling a system.

Information source [*] Resource from which information is obtained, e.g., a
document.

Innovation [*] Innovation is a process for converting concepts and
knowledge into better ways of performing tasks, into
novel products, or into new services.

Innovation engineer (IE) [*] A knowledge worker role of the ESAOA KMS responsible
for innovation. In version 2 of the KMS, this role depends
on the process engineer and component researcher to
provide component knowledge, techniques and solutions
needed to test design concepts.

Innovation knowledge [*] Knowledge related to innovation, such as which concept
designs work effectively.

Innovation Process [*] Incorporates the various strategies by which innovation
occurs, including: research and development,
commercialisation, and technology diffusion.

Instructions [*] A command that causes the processor to perform a
certain action, for example to add two numbers stored in
registers. Also referred to as opcodes or machine code.

Intangible knowledge
assets

Non-physical assets. Includes patents, copyrights,
contracts, trademarks, and goodwill. Contrasts to
physical assets such as equipment, and vehicles.
Source: http://en.wikipedia.org/wiki/Intangible_assets

Intellectual capital Knowledge that is of value to an organisation, intellectual
capital is made up of human capital, structural capital,
and customer capital [Edvinsson & Malone, 1997].

Intellectual property (IP) [*] The intangible property that results from creativity. IP can
be legally protected using patents and copyrights.

Inter-Integrated Circuit
(I2C) [*]

The I2C bus (pronounced I-squared-C) is an inter-device
communications bus invented by Philips. It is used to
connect low-speed peripherals in an embedded system.
Source: http://en.wikipedia.org/wiki/I2C

IP [*] Internet Protocol (IP) is a packet-based protocol for
delivering data across networks.
Source: www.ipowerweb.com/hostingdictionary/

Joint Test Action Group
(JTAG) [PE+IE]

JTAG is a standard for providing external test access to
integrated circuits serially, via an external interface.
Source: http://www.netsilicon.com/support/embeddedglossary.jsp

KB * [*] See: Knowledge base

KIT API See Kit for Information Technology.
Kit for Information
Technology (KIT) [PE]

A C++ application framework and set of libraries included
in the ESAOA communal workspace to facilitate
development of ESAOA programmes that need to
navigate ESAOA workspace directories.

KMS analysis Part of research design presented in Chapter 3, which

 G-5

http://en.wikipedia.org/wiki/Intangible_assets
http://en.wikipedia.org/wiki/I2C
http://www.ipowerweb.com/hostingdictionary/
http://www.netsilicon.com/support/embeddedglossary.jsp

involves analysis data obtained from development teams
working on ES development projects.

KMS aspect [*] A KMS is broken into four KMS aspects to assist the
description of the system by describing each aspect
independently by abstracting the other aspects.

Knowledge [*] Knowledge is information combined with understanding
and capability.

Knowledge acquisition
(KA) [*]

A knowledge management activity that involves obtaining
knowledge from a source outside the organisation.

Knowledge analyst The role of the knowledge analyst in a KMS is similar to
that of a system analyst in a software engineering
project. The knowledge analyst studies the KMS, such as
procedure that users employ, or physiological impacts of
the system on the users and the resultant effect on the
working of the organisation. Typically, the knowledge
analyst uses statistics to discover means to make the
KMS more efficient.

Knowledge artefact [*] A knowledge artefact contains information about another
soft artefact or hard artefact. See knowledge object.

Knowledge audit [CKO, TL,
WA]

A knowledge audit is done by the workspace
administrator in ESAOA KMS version 2 to determine
statistics relating to use of the KMS, e.g., which artefacts
in the communal workspace are most valuable.

Knowledge base (or KB) [*] Generally speaking, a knowledge base (KB) comprises a
collection of interrelated concepts. A KB assists in
archiving and sharing explicit knowledge for later use.
Often, a knowledgebase is implemented using a
database application to capture a wide range of
information. However, in the ESAOA KMS, this term
refers to a collection of knowledge artefacts interwoven in
an ESAOA workspace. Specific ESAOA support tools
(e.g., fclass) assist in accessing or manipulating the KB
stored within a workspace (e.g., accessing file meta-data
and searching code comments).

Knowledge dissemination
[*]

A knowledge management activity in which a person, or
group of people, share their knowledge with others.

Knowledge economy The term ‘knowledge economy’ typically refers to using
knowledge to produce economic benefits [Wikipedia,
2007]. A knowledge economy is based on the production,
distribution and use of knowledge as the major driving
force for growth, wealth creation and employment
opportunities in industries [Drucker, 1998].
Source: http://en.wikipedia.org/wiki/Knowledge_economy

Knowledge engineer (KE)
[*]

The KE role designs and implement the support
infrastructure for a KMS, updating or pruning the system
while it is in use (see Section 2.7.6).

Knowledge event [*] An action carried out by a knowledge work at a specific
time that involves the production or management of
knowledge, e.g., finding information, applying a process,
testing an idea, or solving a problem.

Knowledge event chain See: event chain
Knowledge management
(KM) [*]

The capture, organisation, classification and
dissemination of knowledge [McDermott, 1999a].

Knowledge management The governing body that establishes and directs a KMS

 G-6

http://en.wikipedia.org/wiki/Knowledge_economy

steering committee in an organisation, more common in large corporations.
Knowledge management
system (KMS) [*]

A system for performing KM within an organisation, which
supports the creation, capture, storage and
dissemination of knowledge among members of the
organisation [Alavi & Leidner, 2001].

Knowledge object A knowledge object (called a knowledge artefact in this
thesis) is a document or collection of documents in which
knowledge is maintained [Knorr-Cetina, 2001]. In this
thesis, certain soft artefacts can be classified as
knowledge artefacts.

Knowledge occurrence A numbered knowledge-producing event that occurred in
an event chain.

Knowledge occurrence
graph

Plot of the accumulation of productive and non-
productive knowledge occurrences ordered
chronologically on the x-axis, most recent knowledge
occurrence on the left.

Knowledge production Actions carried out by a knowledge worker to learning
new knowledge.

Knowledge worker [*] The term ‘knowledge worker’ refers a person whose
primary form of work involves using and creating
knowledge [Drucker, 1998]. An example is an engineer
who accumulates and uses knowledge related to
development tools and electronic components used to
construct an embedded system.

Management of knowledge See: Knowledge Management.
Metadata Data about data – in this thesis, the term is generally

used to refer to classification information about a
particular file stored in an ESAOA workspace.

Metafile A file that stores metadata about another file.
Non-productive event A knowledge event not used in developing the final

product (i.e., or resulted in a dead-end).
Non-productive time Time (in hours) that a knowledge worker spent on non-

productive events.
Organisation In terms of KM, an organisation refers to a collection of

people (for example the employees of a company).
Organogram [CKO, TL] An organogram is a chart showing the structure of an

organisation. An organogram is primarily used to show
lines of authority (or chain of command) and the way in
which information flows in the enterprise. The chart is
used to indicate that all members of the organisation (or
project team) understand the operations and information
flows in the organisation.

Paradigm An understanding of how things work. Paradigms are
used to set the basic rules of how things operate within a
specific environment.

Partitioned Time History
Calculator (PTHC)

Inputs a knowledge register spreadsheet and outputs the
sequential accumulation of productive and non-
productive time (for ESAOA version 1) or productive and
non-productive knowledge occurrences (for version 2).

PCB [*] See: Printed circuit board

PEP [*] A program added to ESAOA version 2 that runs as a
background process to access functionality classification
index files in ESAOA workspaces.

Personal knowledge A special case of knowledge management in which a

 G-7

management (PKM) single user is the only user of the KMS.
Personal workspace An ESAOA personal workspace is a copy of a team

workspace that an individual works on. It is usually
synchronized with the team workspace using version
control software.

Platform [*] In this thesis, the term ‘platform’ describes a combination
of hardware and operating system on which embedded
software executes. Generally, the hardware aspect of a
platform (often termed the hardware platform) is
explained in terms of a microprocessor or microcontroller
architecture, and the peripherals available to it. The
software aspect of a platform (often called the software
platform) is defined in terms of operating system and
runtime libraries. A platform on its own can be considered
a ‘blank slate’ that needs application software installed
on it to make it do perform useful operations.

Printed circuit board (PCB)
[*]

A printed circuit board (PCB) is a thin board usually made
of fibreglass on which hardware components are
mounted. Connections between the components are
printed onto the board (hence the name). A printed circuit
board joins electronic components without discrete wires.
Source: http://en.wikipedia.org/wiki/Printed_circuit_board

Process engineer (PE) [*] A knowledge worker role of the ESAOA KMS responsible
for producing process knowledge.

Process knowledge [*] Knowledge related to performing tasks, such as using a
tool to compile embedded software.

Processor [*] A processor is an electronic device that manipulates data
according to a sequence of instructions.

Product In this thesis, the term ‘product’ relates to an embedded
system that is being built in a project.

Productive event A knowledge event within an event chain that led to a
final solution (i.e., did not result in a dead-end).

productivity graphs Plots productive time and non-productive time on the
vertical axis against knowledge event numbers ordered
chronologically on the horizontal axis.

Project management [TL] The process of planning, managing and coordinating all
elements of a project from the start to the end.

Productive time Time (in hours) that a knowledge worker spent on
productive events.

Prototype (or ES prototype) A prototype serves as an early product sample that is
built to test a concept [Floyd, 1984] or to determine
experimentally an effective means to build a product
[Brinkkemper et al., 1996]

Quality management [TL] Organisational structures, protocols, responsibilities and
evaluation methods to ensure development teams
deliverer a product to specified standards.

Rational Unified Process
(RUP)

The RUP is an iterative software design method that
describes how to produce and deploy software effectively
using proven techniques. It was created by the Rational
Software Corporation (now a division of IBM).
Source: http://en.wikipedia.org/wiki/Rational_Unified_Process

Research and
development (R&D) [*]

R&D is creative work performed systematically to acquire
knowledge to produce new products or applications.

Role [*] The part an individual plays in a KMS, specified

 G-8

http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Rational_Unified_Process

according to contributions made by that person’s through
application of their knowledge and abilities. A role
describes a type of person involved with a KMS. One
person can perform multiple roles; for example a person
can be both the CKO and a knowledge engineer.

Serial Peripheral Interface
(SPI)

The SPI is a general-purpose high-speed synchronous
serial interface originally produced by Motorola.
Source: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Shell [*] A command language interpreter, or in the more specific
case of an operating system shell, a shell refers to a
software tool that provides an interface to users allowing
the user to use a language for passing data between,
and invoking, operating system routines and programs.

Soft artefact [*] An implementation artefact in the form of a digital file
stored on a computer or a paper document. A soft
artefact that stores information about a hard artefact or a
soft artefact is considered a knowledge artefact.

Software component A component that represents a software part of a product
(e.g., a code file).

Software platform [*] A software platform* is the framework around which
software is constructed. In this thesis, the term refers to
the lower level of software on which application software
is deployed. In ESAOA, Platform Deployment Modules
(PDM) can reside in the software platform, or may exist
between application code and the software platform.
*Source: http://en.wikipedia.org/wiki/Software_Platform

SPI See: Serial Peripheral Interface

SQL Structured Query Language. Used to control or modify a
database, or to extract data from a database.

Steering committee See knowledge management steering committee.
Stereotype A facility provided in UML to extend the vocabulary of

UML to create new model elements derived from existing
ones [OMG, 2005].

TCP/IP Transmission Control Protocol/Internet Protocol (or
TCP/IP for short) refers to a standard suite of Internet
communication protocols used to communicate between
computers. The TCP protocol is responsible for an error
free connection between two computers, while the IP
protocol is responsible for the data packets sent over the
network. Source: http://en.wikipedia.org/wiki/Internet_protocol_suite

Team leader (TL) [*] The role assigned to a person allocated to lead a
development team. Generally this individual is involved
with administrative tasks, such as allocating tasks and
checking team member performance. This role needs
leadership skills and an understanding of the
organisation’s quality requirements.

Team member (TM) [*] A member of a development team.
Team workspace An ESAOA team workspace is an ESAOA workspace

that is shared by a team of engineers. It is usually the
master version of the ESAOA workspace that is
synchronized with team members’ personal workspaces.

TFTP [*] The Trivial File Transfer Protocol (TFTP) is a simplified
version of FTP that lacks authentication and relies on
UDP rather than TCP for transferring data. As for FTP,

 G-9

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Software_Platform
http://en.wikipedia.org/wiki/Internet_protocol_suite

 G-10

the system involves a TFTP client and TFTP server (the
client requests files to uploads or download to/from the
server). TFTP is easier to code than FTP. See also FTP.
www.idea-esolutions.com/glossary/index.php3

Tool chain [*] A tool chain is a set of software tools used to create a
software application. The tools may be used in a chain,
the output of each tool becoming the input for the next.
This term can refer to any set of linked development
tools. Source: http://en.wikipedia.org/wiki/Tool_chain

Tool knowledge [*] Knowledge related to a tool (e.g., the function of certain
command line arguments for a compiler). Tool knowledge
could also be categorised as data, process, or innovation
knowledge depending on which form of knowledge was
produced during the knowledge occurrence concerned.

Topology The way that components of a system (or a certain
subject matter) are arranged or interrelated.

Workflow [*] A sequence of activities carried out to achieve a certain
objective. A workflow can involve activities carried out by
people of different roles.

Workspace [*] See ESAOA workspace.
Workspace administrator
(WA) [*]

A role of ESAOA KMS version 2 responsible for
maintaining the integrity of a team workspace. The WA
supports other team members in terms of organising and
locating artefacts.

http://en.wikipedia.org/wiki/Tool_chain

	Preamble

	Title
	Declaration
	Acknowledgements
	Abstract
	List of Acronyms
	Contents
	List of Figures
	List of Tables

	Chapter 1: Introduction
	1.1 Terminology and definitions
	1.1.1 Embedded systems and embedded software development
	1.1.2 ES products and prototypes
	1.1.3 Computer engineering and embedded engineers
	1.1.4 Tasks and activities
	1.1.5 Implementation tasks
	1.1.6 Implementation artefacts, and soft/hard artefact classification
	1.1.7 ESAOA activities
	1.1.8 Data, Information and Knowledge
	1.1.9 Knowledge management
	1.1.10 Knowledge management systems

	1.2 Rationale: a KMS for ESAOA activities
	1.2.1 The growing demand for embedded software
	1.2.2 The rapid expansion of knowledge
	1.2.3 Knowledge management as a potential means to facilitate embedded software development
	1.2.4 The need for an ESAOA KMS

	1.3 Thesis Objective
	1.4 Problem Statement
	1.5 Focus
	1.5.1 Focusing on new product development
	1.5.2 Focusing on product prototyping during a proof-of-concept
	1.5.3 Focusing on ESAOA activities related to component integration

	1.6 Delimitations
	1.6.1 Task-oriented ESAOA activities
	1.6.2 Level of developers
	1.6.3 Team size and composition
	1.6.4 Number of experiments and case studies
	1.6.5 Time-frame for case studies
	1.6.6 Products developed

	1.7 Thesis Structure
	1.8 Summary

	Chapter 2: Literature review: Knowledge management and embedded system engineering
	2.1 Methodology of the literature review
	2.2 The ES development process
	2.3 Inefficiencies of ES development
	2.3.1 General software engineering difficulties
	2.3.2 Complex and lengthy learning processes
	2.3.3 The value and temporality of intellectual capital
	2.3.4 Decentralised development, speed of obsolescence and availability of new technology
	2.3.5 Embedded software maintenance issues

	2.4 Knowledge Management Terminology
	2.4.1 The Data, Information and Knowledge (D-I-K) Hierarchy
	2.4.1.1 Data, information and knowledge scenario
	2.4.1.2 Knowledge acquisition and limitations of the D-I-K hierarchy
	2.4.1.3 Tacit and explicit knowledge
	2.4.1.4 A definition of knowledge and where knowledge resides

	2.4.2 Knowledge management (KM)
	2.4.2.1 Knowledge-focused vs. information-focused streams of KM
	2.4.2.2 The overall goal of KM

	2.4.3 Knowledge Processes
	2.4.4 Knowledge Flows
	2.4.5 Knowledge Forms

	2.5 A typology of KM
	2.5.1 Transactional KM
	2.5.2 Analytical KM
	2.5.3 Management of knowledge assets
	2.5.4 Process-based KM
	2.5.5 Developmental KM
	2.5.6 Innovation management

	2.6 Knowledge management systems (KMSs)
	2.6.1 The two principle uses of a KMS
	2.6.2 Growth of a KMS
	2.6.3 Establishment and evolution of a KMS
	2.6.4 Structure of a generic KMS
	2.6.5 Visibility of a KMS
	2.6.6 Framework of a KMS

	2.7 Roles of people involved with KM
	2.7.1 Knowledge suppliers and knowledge consumers
	2.7.2 Chief Knowledge Officer (CKO)
	2.7.3 KMS user
	2.7.4 Knowledge worker
	2.7.5 Change agent
	2.7.6 Knowledge engineer
	2.7.7 Knowledge steward
	2.7.8 Knowledge analyst
	2.7.9 Knowledge broker

	2.8 KM in technical product development
	2.8.1 Managing development teams and their knowledge
	2.8.1.1 KM steering committee
	2.8.1.2 Communities of practice
	2.8.1.3 Team learning
	2.8.1.4 Team knowledge sharing
	2.8.1.5 Distributed teams
	2.8.1.6 Sub-contracting

	2.8.2 KM tools for managing individual and team knowledge
	2.8.2.1 Training workshops
	2.8.2.2 Yellow Pages
	2.8.2.3 Performance analysis
	2.8.2.4 Responsibility charts
	2.8.2.5 Status tracking
	2.8.2.6 AI tools
	2.8.2.7 Shared buffers

	2.8.3 Managing information in technical development projects
	2.8.3.1 Issues in information management
	2.8.3.2 Tools for information management

	2.8.4 Managing knowledge of technical development processes
	2.8.4.1 Development process knowledge: the input, in-situ and output knowledge types
	2.8.4.2 Input, in-situ and output knowledge in embedded software development projects
	2.8.4.3 Approaches to software engineering processes improvement
	2.8.4.4 Issues in software processes KM
	2.8.4.5 Tools for managing knowledge of software development processes

	2.8.5 Managing innovation in technical product development
	2.8.5.1 Management of innovation issues in product development
	2.8.5.2 Tools for managing innovation in product development

	2.8.6 Dealing with information overload
	2.8.6.1 Dimensions of information overload
	2.8.6.2 Addressing information overloading with infomediary tools

	2.9 Conceptual framework for researching a KMS
	2.10 Summary and conclusion

	Chapter 3: Researching embedded system artefact organisation and adaptation (ESAOA) knowledge
	3.1 Key concepts
	3.1.1 ESAOA knowledge
	3.1.2 Towards a study of directed KMS evolution
	3.1.3 Directed KMS evolution

	3.2 Research objective: A KMS for ESAOA activities
	3.2.1 Specific objective: Moving from an ad hoc to a formalised KMS
	3.2.2 Scope and delimitation: ESAOA during component integration
	3.2.2.1 Delimitation of tasks
	3.2.2.2 Delimitation of time
	3.2.2.3 Delimitation of team size

	3.3 Research problems
	3.3.1 Associative memory, time-limited knowledge, and repeated learning
	3.3.2 Information overload
	3.3.3 Research challenges: Confidence, confusion, and lost property

	3.4 Problem statement
	3.4.1 Research question
	3.4.2 Sub-problems
	3.4.3 Research assumption

	3.5 Research design
	3.5.1 Research design for evolving the ESAOA KMS
	3.5.2 Overview of Experiment 1
	3.5.3 Construction of the initial ESAOA KMS
	3.5.4 Overview of Experiment 2
	3.5.5 Construction of the refined ESAOA KMS

	3.6 Selection criteria: ESAOA activities
	3.6.1 ESAOA project selection and project briefs
	3.6.2 Site selection
	3.6.3 Selection of embedded platform, cross-compilers, and IDE
	3.6.3.1 The CSB337 embedded platform
	3.6.3.2 GCC cross-compiler tool-chains
	3.6.3.3 Integrated development environment

	3.6.4 Participant selection
	3.6.5 Reviewer selection

	3.7 Ethical considerations in the ESAOA activities
	3.8 Data collection
	3.8.1 Code and design reviews
	3.8.2 Email archive
	3.8.3 Group forums
	3.8.4 Project meetings
	3.8.5 Developer logs
	3.8.6 Product demonstrations and project evaluations
	3.8.7 End-of-project survey
	3.8.8 Limitations of the data capture methods

	3.9 Data analysis
	3.9.1 Overview of data analysis
	3.9.2 Systematising the data (step 1)
	3.9.2.1 Annotating printouts
	3.9.2.2 Building knowledge registers

	3.9.3 Categorising knowledge events by knowledge type (step 2)
	3.9.4 Mapping problems and solutions (step 3)
	3.9.5 Categorising productive vs. non-productive knowledge (step 4)
	3.9.6 Finalizing the knowledge register (step 5)
	3.9.7 Analysing trends
	3.9.7.1 Productivity graphs
	3.9.7.2 Knowledge occurrence graphs
	3.9.7.3 Knowledge occurrence tables
	3.9.7.4 Comparisons across experiments

	3.9.8 Analysing other forms of data
	3.9.8.1 Code and design reviews: ESAOA activities
	3.9.8.2 Project meetings
	3.9.8.3 End-of-product questionnaires

	3.10 Data synthesis
	3.11 The ESAOA Conceptual Modelling Language
	3.11.1 ESAOA modelling atoms
	3.11.1.1 Role atoms
	3.11.1.2 Artefact atoms
	3.11.1.3 Process atoms
	3.11.1.4 Knowledge atoms

	3.11.2 Connectors
	3.11.2.1 Flows and associations
	3.11.2.2 Connector junctions
	3.11.2.3 Connector labels and multiplicity

	3.11.3 Spaces
	3.11.4 Comments and constrains
	3.11.5 External processes and artefacts

	3.12 Comparing artefact and prototype quality with KMS analysis results
	3.13 Conclusion

	Chapter 4: First experiment findings and ESAOA KMS version 1
	4.1 The First Experiment
	4.2 Preliminary study to establish the data analysis method
	4.2.1 Denoting artefacts and ESAOA activities in the data
	4.2.2 Verification of KM models
	4.2.3 Problem-solution cycles
	4.2.4 Trivial and non-trivial solution cycles
	4.2.5 Knowledge events
	4.2.6 Knowledge event types (KETs)
	4.2.7 Data, process and innovation knowledge categories
	4.2.8 Productive and non-productive knowledge categories
	4.2.8.1 Definition of non-productive and productive knowledge
	4.2.8.2 Using dead-ends to determine non-productive knowledge
	4.2.8.3 Backwards tracing to classify knowledge events as productive or non-productive

	4.2.9 Productive time and non-productive time
	4.2.10 Knowledge event chains
	4.2.11 Visualizing event chains using event chain graphs
	4.2.12 Development of the KMS analysis strategy

	4.3 Results
	4.3.1 Results of data synthesis (step 1): Initial knowledge registers
	4.3.2 Results of categorising knowledge events (step 2)
	4.3.3 Results of problem/solution mapping (step 3): Event chains and event chain tables
	4.3.4 Categorising knowledge events according to productive and non-productive knowledge (step 4)
	4.3.4.1 Classifying knowledge events as productive or non-productive
	4.3.4.2 Calculation of non-productive and productive time

	4.3.5 Finalizing the knowledge registers (step 5)

	4.4 Trend analysis and graphing
	4.4.1 Results of P1-1 (SoSiG)
	4.4.1.1 Productivity graphs
	4.4.1.2 Productive and non-productive time summary tables

	4.4.2 Results of P1-2 (ANTCON)
	4.4.2.1 Productivity graphs
	4.4.2.2 Productive and non-productive time summary tables

	4.4.3 Synopsis of Experiment 1 results

	4.5 Design of the second iteration of framework analysis
	4.5.1 Refinements to data capture methods for Experiment 2
	4.5.1.1 Focusing on the knowledge-rich data sources
	4.5.1.2 Changing the unit of analysis to event chains
	4.5.1.3 Data capture supporting event chains

	4.5.2 Changes to the analysis methods
	4.5.2.1 Refinements of data synthesis methods – using knowledge occurrence
	4.5.2.2 Refinements to graphing methods – knowledge occurrence graphs

	4.5.3 Establishing a basis for comparison between experiments using knowledge occurrences
	4.5.3.1 Knowledge occurrence tables and graphs for P1-1 (SoSiG)
	4.5.3.2 Knowledge occurrence tables and graphs for P1-2 (ANTCON)

	4.5.4 Overall results of Experiment 1 in knowledge occurrences

	4.6 First application of framework construction: ESAOA KMS version 1
	4.6.1 Overview of ESAOA KMS version 1
	4.6.2 ESAOA workspaces and workstations
	4.6.2.1 ESAOA workspaces
	4.6.2.2 ESAOA workstations

	4.6.3 The ESAOA knowledge ontology
	4.6.3.1 Levels of the ESAOA knowledge ontology
	4.6.3.2 Top-level terms of the ESAOA knowledge ontology
	4.6.3.3 Knowledge artefacts and boundary artefacts
	4.6.3.4 Evolving the ESAOA knowledge ontology

	4.6.4 Roles
	4.6.4.1 Representation of roles in the ESAOA modelling language
	4.6.4.2 General relations between the roles
	4.6.4.3 Maximising support for the IE using a feed-forward approach

	4.6.5 ESAOA artefacts for knowledge representation and transfer
	4.6.5.1 Artefact form classifications: hard and soft artefacts
	4.6.5.2 Artefact functionality classifications and functionality hierarchy
	4.6.5.3 Artefact role and workspace classifications
	4.6.5.4 Artefact organisation
	4.6.5.5 Specialised KM artefacts

	4.6.6 ESAOA KM workflows and processes
	4.6.6.1 Processes of the chief knowledge officer (CKO)
	4.6.6.2 Processes of the communal knowledge steward (CKS)
	4.6.6.3 Processes of the team leader (TL)
	4.6.6.4 Processes of the data steward (DS)
	4.6.6.5 Processes of the process engineer (PE)
	4.6.6.6 Processes of the innovation engineer (IE)

	4.6.7 Software design of ESAOA workspaces
	4.6.7.1 ESAOA scripts and tools
	4.6.7.2 The Kit for Information Technology (KIT)
	4.6.7.3 The central server and the networking infrastructure

	4.6.8 Implementation and distribution of ESAOA workspaces
	4.6.8.1 Implementation of the ESAOA communal workspace
	4.6.8.2 ESAOA team and personal workspace
	4.6.8.3 ESAOA workstation distribution
	4.6.8.4 Sample installation of ESAOA workspaces

	4.7 Towards Experiment 2

	Chapter 5: The Second Experiment
	5.1 Overview of the second experiment
	5.2 Results of the second experiment
	5.2.1 P2-1 Location-aware Tourist Information System (TIS)
	5.2.2 P2-2 GPS Bus Tracker (GBT)
	5.2.3 P2-3 Vibynet
	5.2.4 P2-4 MyIP Phone Station (MPS)
	5.2.5 P2-5 Home Automation System (HAS)
	5.2.6 P2-6 Automation Headlights Dimmer (AHD)
	5.2.7 P2-7 Field Sensor for Maglev Trains (FSMT)
	5.2.8 P2-8 Cordless Stereo (CST)
	5.2.9 P2-9 Central Alarm Clock (CAC)
	5.2.10 P2-10 Voice Activation System (VAS)
	5.2.11 P2-11 Supermarket Query Device (SQD)
	5.2.12 P2-12 Personal Protection Device (PPD)
	5.2.13 P2-13 Vehicle Usage Tracker (VUT)

	5.3 Summary of knowledge occurrences
	5.4 Evaluations of artefacts, prototypes and demonstrations
	5.4.1 Evaluations of code and design reviews
	5.4.1.1 Results from evaluation forms
	5.4.1.2 Comments from knowledge production questions
	5.4.1.3 Notes from design review 3

	5.4.2 Review panel’s evaluations
	5.4.2.1 Demonstration check sheet results
	5.4.2.2 Requirements check sheet results

	5.5 Comparisons
	5.5.1 Comparing requirements and demonstration check sheets scores
	5.5.2 Comparing design reviews ratings to check sheet scores
	5.5.3 Comparing design reviews to knowledge production statistics
	5.5.3.1 Comparing code and design reviews to productive knowledge occurrences
	5.5.3.2 Comparing code and design reviews to knowledge occurrences

	5.5.4 Comparisons with productive innovation knowledge
	5.5.4.1 Comparing productive innovation knowledge and averaged scores for check sheets
	5.5.4.2 Comparing productive innovation knowledge to demonstration check sheet scores
	5.5.4.3 Comparing productive innovation knowledge to requirements check sheet scores

	5.5.5 Comparing check sheet scores and knowledge occurrences
	5.5.6 Comparing check sheet scores and proportions of knowledge

	5.6 Team members’ evaluation of ESAOA KMS
	5.6.1 Quantitative data: 5-point scale rankings
	5.6.2 Qualitative data: comments from participants
	5.6.2.1 Difficulties
	5.6.2.2 Benefits

	5.7 General conclusions for ESAOA KMS version 1
	5.7.1 Summary of knowledge occurrences
	5.7.2 Process knowledge components: role, logistics and innovation knowledge
	5.7.3 Comparison of Experiments 1 and 2
	5.7.4 Trends noted from application of ESAOA KMS (version 1)
	5.7.4.1 Emerging relationship between innovation knowledge and quality of prototype
	5.7.4.2 Emerging trends across event chains
	5.7.4.3 Progression towards innovation

	5.7.5 Variables that affected the ESAOA KMS (version 1)
	5.7.6 Effect of the ESAOA KMS (version 1)
	5.7.7 Study of knowledge forms contributed by roles
	5.7.8 Tool versus component knowledge occurrences
	5.7.9 Logistics and role process knowledge

	5.8 Implications for ESAOA KMS version 2
	5.8.1 ESAOA distribution
	5.8.1.1 ESAOA tools – technical installation guidelines (version 2)
	5.8.1.2 Increased flexibility in ESAOA tools (version 2)

	5.8.2 ESAOA roles
	5.8.2.1 Training

	5.8.3 ESAOA technical manual
	5.8.4 ESAOA project management
	5.8.5 Team workspace
	5.8.6 Towards ESAOA version 2

	Chapter 6: ESAOA KMS version 2
	6.1 Overview of ESAOA KMS version 2
	6.1.1 Use of ESAOA workspaces and workstations
	6.1.2 Changes to roles and role support structures
	6.1.2.1 Reducing priority of innovation and flattening the role hierarchy
	6.1.2.2 Towards a bi-directional flow of innovation

	6.1.3 Revised roles and artefact classifications
	6.1.3.1 Component researcher (CR) and workspace administrator (WA)
	6.1.3.2 Revisions to the PE and IE roles
	6.1.3.3 Revision to the TL role
	6.1.3.4 Role extension

	6.1.4 Upgrading of support tools
	6.1.5 Improving ESAOA documentation

	6.2 ESAOA knowledge ontology
	6.2.1 Additions to the ESAOA knowledge ontology
	6.2.2 Evolving the ESAOA knowledge ontology
	6.2.2.1 Maintaining the lower level of the knowledge ontology
	6.2.2.2 Maintaining the upper level of the knowledge ontology

	6.3 ESAOA version 2 workspaces
	6.3.1 Definition of an ESAOA workspace
	6.3.2 Definition of an ESAOA workstation
	6.3.3 ESAOA workspaces implementation and access levels
	6.3.4 Installing workspaces using ESAOA distributions
	6.3.5 GUI installation tool for ESAOA personal workspaces
	6.3.6 ESAOA version 2 distribution support documentation
	6.3.7 ESAOA version 2 workspace directory structures
	6.3.8 The knowledge base within ESAOA workspaces

	6.4 ESAOA support tools
	6.4.1 The ESAOA file classification (fclass) tool
	6.4.1.1 Review of version 1 of fclass
	6.4.1.2 Version 2 of fclass and addition of the PEP service
	6.4.1.3 Speeding-up the operation of fclass using the PEP service
	6.4.1.4 Operation of the PEP service
	6.4.1.5 Improvements to the CSV files for storing file metadata
	6.4.1.6 The fclass HTML generator mode

	6.4.2 Addition of the hotspot logging (hsl) tool
	6.4.3 Improvement to the esaoa-project tool
	6.4.4 Tools for synchronizing team and personal workspaces
	6.4.5 Workstation-side scripts

	6.5 ESAOA roles
	6.5.1 The WA and CR roles
	6.5.2 Chain of command
	6.5.3 Role responsibilities
	6.5.4 Division of labour in development team
	6.5.5 Role interrelations and workspaces

	6.6 ESAOA Processes
	6.6.1 Processes of the chief knowledge officer (CKO)
	6.6.2 Processes of the communal knowledge steward (CKS)
	6.6.3 Processes of the team leader (TL)
	6.6.4 Processes of the component researcher (CR)
	6.6.5 Processes of the process engineer (PE)
	6.6.6 Processes of the workspace administrator (WA)
	6.6.7 Processes of the innovation engineer (IE)

	6.7 Artefacts

	Chapter 7: Conclusions and Future Work

	7.1 Response to research questions and sub-problems
	7.1.1 Sub-problem 1 response: Different forms of ESAOA knowledge were identified
	7.1.2 Sub-problem 2 response: The relative complexities of ESAOA KM tasks were found to differ
	7.1.3 Sub-problem 3 response: Difficulty of producing different forms of ESAOA knowledge varied
	7.1.4 Sub-problem 4 response: the time to complete ESAOA activities depends on their complexity, their dependence on other activities and the provision and understanding of KMS support
	7.1.5 Sub-problem 5 response: developers encounter similar types of ESAOA KM problems and solutions in different projects
	7.1.6 Sub-problem 6 response: although dead-ends did occur in ESAOA knowledge production, their number was reduced
	7.1.7 Sub-problem 7 response: the degree to which the ESAOA KMS is used depends on the complexity of ESAOA activities concerned
	7.1.8 Sub-problem 8 response: benefit of the ESAOA KMS depends on the complexity, difficulty and duration of the activities performed

	7.2 Reflection of research findings and resolution of research question
	7.3 Summary of contributions
	7.4 Future work
	7.4.1 Testing ESAOA KMS version 2
	7.4.2 Testing ESAOS KMS on different type of ES engineering
	7.4.3 Phasing in a KMS within existing/ongoing projects
	7.4.4 Broadening the context for the ESAOA KMS
	7.4.5 A KMS that allows for future software and hardware developments
	7.4.6 Need for further research into KM in ES development
	7.4.7 Focus on ES innovation knowledge

	References
	Appendix A: Experiment 1 appendices
	A.1 Knowledge register for first case study (P1-1)
	A.2 Knowledge register for the second case study (P1-2)

	Appendix B: Experiment 2 appendices
	B.1 Knowledge register for Project P2-1
	B.2 Requirements check sheets for Experiment 2
	B.3 Comments from requirements check sheets for Experiment 2
	B.4 Evaluation forms used to rate code and design reviews
	B.4.1 Evaluation of concept creativity
	B.4.2 Evaluation of design quality
	B.4.3 Evaluation of artefact quality

	B.5 Design review 2 questions regarding knowledge production

	Appendix C: ESAOA KMS version 2 appendices
	C.1 Knowledge ontology for ESAOA KMS version 2
	C.2 Details concerning the ESAOA modelling language
	C.2.1 Further detail on connectors

	C.3 Design details related to ESAOA support tools
	C.3.1 Design issues of the Personal Expert Program (PEP)
	C.3.2 Detailed design issues related to fclass and related CSV files
	C.3.3 Hotspot logging (hsl) tool
	C.3.4 List of ESAOA support tools

	C.4 Kit for Information Technology (KIT)
	C.4.1 KIT modules and UML class model
	C.4.2 KIT sample application: esaoa-apps

	Appendix D: Case study participants
	D.1 Experiment 1 participants
	D.2 Experiment 2 participants

	Appendix E: Supplementary documentation
	E.1 A comparison of search results

	Glossary

