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Abstract

The dissertation involves the design of a Cable Odometer that determines the position ,

direction and speed of a Radar as it surveys the subsurface. The Radar moves horizontally

across the surface or up and down a borehole.

The distance moved by the Radar as it surveys the subsurface is determined from the

rotations of a wheel, over which a cable passes. The Radar is attached to this cable.

Information on the distance moved is collected by Odometer and used for further analysis

on the Radar data.

The user requirement states that in some cases data collected by Odometer is used when

triggering Radar directly to make surveys at fixed interval. In other cases the Radar oper-

ates autonomously. For the latter case the data collected by both Radar and Odometer is

related by a time-stamp.

The Odometer is controlled on a web page. Depending on the mode of operation chosen

the user can transfer the time-stamped data to remote data storage via a network or store

it on board (i.e. in Dataflash) for later downloading.
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Chapter 1

Introduction

Radar can be used for almost any subsurface detection problem. It can either be de-

ployed on the surface or in a bore-hole, to survey the immediate surroundings. Some of

its applications are in mining geophysics, agriculture, concrete non destructive testing,

inspection of tunnels and pipelines and in archeology. The goal of this dissertation is the

development of a cable odometer for a subsurface radar. The odometer should be able

to determine the position and direction when a radar antenna echoed a signal. Figure

1.1 shows Radar deployed on surface while Figure 1.2 shows the Radar deployed in a

bore-hole.

ENCODER WHEEL

ODOMETER ENCLOSURE

TRIGGER LINK

TX RX

POINT TARGET

RADAR SYSTEM
OPTICAL

WINCH

MOVEMENT
CABLE

Figure 1.1: Radar deployed on surface

In this dissertation, the distance moved by the Radar antennas is measured from the rota-

tions made by an optical encoder wheel over which the cable passes (as shown in Figure

1.1 and 1.2). The encoder outputs quadrature signals to the Odometer [6]. These signals

represent the rotations made by the encoder wheel.
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Figure 1.2: Radar deployed in bore-hole

The user requirements determine the modes of operation supported by Odometer and

are discussed in detail in Chapter 3. All modes of operation are derived from two main

modes discussed below. One of the main modes is when Odometer triggers Radar to

make a survey at fixed intervals. The Radar and Odometer are in close proximity in this

case (as shown in Figure 1.1). The other mode is when the Odometer and the Radar run

autonomously. In the latter mode both sensors take measurements independently from

each other. The sensors communicate with other devices via an Ethernet connection (as

shown in Figure 1.3). The data collected from the sensors and is related by a time-stamp.

The time-stamp source is a Real Time Clock (RTC) on each sensor. The accuracy of

all of the clocks is maintained by implementing an Network Time Protocol (NTP) client

[RFC 1305] on each sensor. In this project, the NTP client was not implemented on the

Odometer and therefore, the RTC on board is set manually by a program. The data that is

timestamped is transfered in real time to a remote database or stored on a local storage in

cases when there is no network connection.

This project is a module of Geophysical Recording and Processing system that involves

sensors (i.e. Odometer, Radar and Orientation Sensors), databases, NTP server, pro-

cessors and an operator [17]. Figure 1.3 shows the setup of the Geophysical Recording

and Processing system. All components communicate via an Ethernet connection.
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Figure 1.3: Setup of Geophysical Recording and Processing system
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1.1 Objectives of Project

The main aim of the project is to design a processor board that can determine the position,

direction and speed of radar antennas. A summary of the functionality of the Odometer is

stated below:

• The Odometer should calculate the position, direction and speed from the digital

output of the optical shaft encoder.

• The Odometer should accommodate all modes of operation.

• The Odometer should be able to operate in harsh environments (e.g. in a mine).

1.2 Procedure taken in completion of project

1.2.1 Concept study

A pre-study was undergone to evaluate the user requirements of the project. The problems

encountered during a Kleinzee Trial Borehole Radar survey were taken into consideration

when reviewing the user requirements [20].

An investigation into the feasibility of the project was performed. The investigation in-

cludes selection of suitable microcontrollers, compatible peripherals and a suitable optical

shaft encoder. The optical shaft encoder is a position feedback device that converts real

time shaft angle and direction into digital quadrature output. A concept study is made on

how to reduce errors that result from the equipment used.

The feasibility of using open source software tools was made. An investigation into de-

veloping software that runs independent from an operating system yet meeting the user

requirements was made.

1.2.2 System Design

The system block diagram was drawn up including only the main sections of Odometer.

The design was based on an embedded web server development board designed by Atmel

corporation.

The new design uses an 8 bit AVR Atmega128 microcontroller as compared to the At-

mega103 used in the development board. A real time clock is used as on board time

source. An Ethernet controller is used to communicate with the rest of the world. Data-

flash memory is provided for local storage in cases when there is a network problem. A

serial communication interface is also provided. Since there will be a TCP/IP stack on the

processor board an external 32K SRAM is included.
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1.2.3 Schematic and PCB design

Due to the rate at which technology advances (as in the case of the Atmel Atmega103

which is now being replaced by the Atmega128), it was advisable to obtain the compon-

ents required before making any final decision on the schematic design.

The PCB design included four layers of which two were power planes. The board was

manually routed. An expansion connector was included to enable debugging of the board

and future expansions to be made. Most of the components used were surface mounted

type so as to conserve board space and keep cost low.

1.2.4 Software implementation

The software used on the Odometer board was ported from the development board. Even

though the Odometer board used an Atmega128 processor which is pin compatible with

the Atmega103, drastic changes had to be made during software development. The ex-

tended functionality of the Atmega128 which is necessary in order to accomplish the user

requirements necessitated the changes.

The option of using a free compiler such as an AVR-GCC compiler was considered. Since

it is still being developed, some functions (i.e. sprintf and sscanf) which were used in the

TCP/IP stacks [RFC 1180], ymodem protocol, FTP [RFC 959] and other protocols have

not yet been implemented in the compiler. Due to the complexity of implementing these

functions and the time limitation for the project, it was not feasible to implement the

functions on AVR-GCC compiler. An Imagecraft compiler [1] was used as an alternative.

1.3 Project limitations

Taking into considerations that it was my first experience of C language, using an oper-

ating system such as eCos was beyond the time scope of this project. The eCos would

be the ideal operating system for the processor board. It was therefore advisable to use

TCP/IP stack that run independently from an operating system. The TCP/IP stack used

was ported from the AVR embedded web server reference design. This TCP/IP stack is

not a complete stack [5].

Another setback is the limited supply of components that could be used in the project.

Most of the components had to be ordered from outside South Africa. It was difficult to

obtain most component as companies were reluctant to sell in small quantities. It took

months to get some of the components from overseas distributors. For this reason, one

had to make sure that the components are available before making any final decisions on

the schematic and PCB designs.

5



1.4 Outline of Dissertation

The dissertation consists of the following chapters outlined below:

Chapter 2 discusses the following issues:

• theoretical background of the project. The factors that motivated the project are

discussed here. The Kleinzee Trial Borehole Radar survey is one of the factors.

This project is a module of the Geophysical recording and processing system which

is also discussed in this chapter.

• states the user requirements of the project. This determines the modes and states

that should be supported by the system. A review on how the user requirements can

be achieved is explained. The specifications of the project are also stated.

• describes the pre-study that was carried out. The errors that might affect the per-

formance of the system are explained. The feasibility of the project is done taking

into consideration the errors that might be involved.

Chapter 3 discusses the hardware design of the project. A thorough explanation of the

components used and how they interface to each other is made in this section. The PCB

design and the protection of Odometer (when used in harsh environments) is also dis-

cussed.

Chapter 4 discusses the software design. Most of the software used has been ported

from the Atmel Embedded web server development board. An explanation on how this

software interacts with hardware and other programs in order to improve the performance

of system is made.

Chapter 5 describes the testing of the prototype board. The results of the test are discussed

in this section.

Chapter 6 is the final chapter where conclusions and recommendations for the project are

made.
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Chapter 2

Concept study

2.1 Theoretical background

For this project to be a success, it is crucial to understand how other equipment that will

be used with it operates. Applications of the Odometer can be two projects discussed in

the following sections.

2.1.1 Kleinzee Trial Borehole Radar System Survey

On the 22nd March 2001 part of the Remote Radar Sensing Group (RRSG) members

from University of Cape Town joined a team from Stellenbosch University to do a Trial

Borehole Radar Survey [20]. The survey was conducted at Kleinzee, a diamond-mining

region on the northern coast of South Africa. There are different layers of sand and

clay found in this region. Between this layers diamond ore may be found. The bedrock

that contains diamonds is very small, and its topography is of interest in the analysis of

diamond concentrated regions. These regions can be at depths of 40 - 60 metres [20]. If

these can be identified, the mining process would be selective and as a result costs and

destructions to the environment would be reduced.

There are different methods that can be used such as Microgravity, GPR and AEM to

evaluate the bedrock channels. Bore-holes are drilled at 50m grids. At any region that is

promising, 25m grids were made. AEM has been the most reliable amongst these methods

even though it cannot be used for grids less than 25m. It is speculated that Borehole Radar

can be used in such cases[20].

As part of the exploration programme, the Borehole Radar (BHR) system was used. Fig-

ure 2.1 shows the diagram of the BHR. Boreholes of different depths were made at ap-

proximately 10m apart [20].

Measurements are taken at different heights as the Radar moves up and down within the

bore-hole. To achieve this movement a winch, pulley system and grasshopper are used as

shown in Figure 2.2. The heights at which the Radar antennas transmit or receive signals

are important during the analysis of the data collected. Cable markings of 0.5m spacing
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Figure 2.1: Block diagram of BHR (with reference to [20])
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were made on the optical fibre cable. These markings were used to determine the depth

of the antennas.

Grasshopper
Pulley
System

Winch
Grasshopper

Optic fibre cable

Receiver
(cross-hole)

Transmitter

ReceiverUnderground

Movement 

Point
target

height

Figure 2.2: Geometry of bore-hole survey (with reference to [20])

The following problems were encountered when using the above-mentioned method:

• the markings on cable became unclear after taking a few readings;

• jittering movements could not be detected;

• as the Radar moves down the bore-hole, before it takes a reading the mark on the

cable had to be checked that it coincides with the reference point. Therefore, the

method was time consuming;

• the speed at which the antennas in the different boreholes moved up and down could

not be monitored.

All these factors affected the accuracy of the whole system. Solving these problems

constitute some of the user requirements that will be discuss later.

The Odometer should communicate with other devices included in Geophysical Record-

ing and Processing System. The following section states how the devices involved relate

to each other.
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2.1.2 Geophysical Recording and Processing System

The system consists of sensors (i.e. Odometer, Orientation Sensor and Radar), databases

and processor which all communicate via an interconnection cloud (i.e. Ethernet) [17].

Figure 2.3 shows the block diagram of the components involved. The sensor’s data will

be related by a time-stamp. Each of the sensors has a Real Time Clock (RTC) that is used

to time-stamp the data. A Network Time Protocol (NTP) server, which is accessible to

all subsystems via the interconnection cloud, is used to correct and synchronize all of the

RTCs. The database is the central storage for all data produced by the sensors. The system

console allows full access to all on line sensors and databases [17]. The Signal processor

provides processing as requested by system console. All the equipment deployed in the

mine can be controlled by an operator’s console.

NTP
server

Orientation
sensor

Odometer

Radar

Signal
Processor

Interconnection
cloud

Operator’s
console

Data base
Signal processor

console

Local
storage

Equipment deployed in mine

Figure 2.3: Geophysical recording and processing system (with reference to [17])
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2.2 User Requirements, Requirements Review and Spe-

cification

This section discusses the user requirements that were drawn from the problems en-

countered at Kleinzee Trial Borehole Radar survey and the requirements of the Geophys-

ical Recording and Processing system. The requirements are reviewed and specifications

for the system are made.

2.2.1 User Requirements

The University of Cape Town and University of Stellenbosch have designed a Borehole

Radar system that was used in a Trial Borehole Radar survey at the Kleinzee alluvial

diamond mine. In order to determine the position of the Borehole Radar as it moves up

and down the bore-hole, the optical cable was marked at 0.5m spacing on the cross-hole

receiver. The transmitter and receiver pair cable were marked at 1m spacing [20]. The

cable markings were sometimes worn off completely by the cable guide on the winch.

The procedure used to transfer data from the Psion work-about [20] to the laptop PCs

delayed the survey.

The Trial Borehole Radar Survey is an example of an application of this dissertation.

Therefore, solving some of the problems experienced during survey is part of the user

requirements. The project involves the design of a controller board (called Odometer)

that will determine position, direction and speed of the Radar at any time as it move up or

down the bore-hole. The system should also be applicable for cases whereby the Radar

surveys by moving horizontally above surface. In the latter case the Radar will be in the

proximity of the Odometer. Therefore, methods of triggering the radar directly can be

used. The data collected should be transfered via a network connection to some remote

data storage in real time or store on board in cases where there is no network connection.

Considering that the system can be used in a mine, conditions such as safety, ruggedness,

EMI, reliability and transportability should be taken into consideration when designing

the system.

2.2.2 Requirements Review

The user requirements are analyzed below. The analysis is divided into two sections, the

data collection section and the data processing section.

Data collection section

1. The system must be able to determine position, speed and direction of the Radar at

any instant.
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2. The distance measured should be accurate to centimetres.

3. The interval of taking readings should be set by user and should be in centimetres.

4. The smallest interval at which the Radar makes a survey is 5cm [11]. Therefore, a

system that can achieve a resolution of 1cm is required.

5. Considering the fact that the equipment can be deployed in a mine, a rugged and

portable device should be used.

6. An optical shaft encoder that is designed for heavy-duty applications should be

used as the system can be used in a mine. The optical shaft encoder should serve

as a position feedback that converts real time shaft angle, speed and direction into

a digital output signal.

Data processing section

1. There should be an option of selecting the size of the wheel that the optical shaft

encoder is attached to.

2. The microcontroller used should have a high throughput such that there are no

losses in the data received and transfered via a network connection. There should

be enough RAM for a TCP/IP stack to run on.

3. The Ethernet controller used should comply with the network protocols needed to

create a network connection (i.e. TCP, IP, UDP, etc).

4. In cases when there is no network connection (i.e. in mines) data storage should be

provided on board.

5. The data should be time-stamped by time from a clock source (i.e. RTC) on board

that is corrected by another clock source (i.e. NTP server), which is standard for all

systems that need a time-stamp.

6. Provide serial communication (i.e. via RS232).

7. System should accommodate these modes of operation:

• Sound of buzzer should alert user to trigger Radar or there should be a Microswitch

connection that triggers radar directly.

• There should be an optical fibre connection that is used when triggering Radar

directly.

• An LED switching on and off should alert user to trigger Radar.

12



2.2.3 Specification

1. The optical encoder should operate from a 5V power supply since it is powered by

the Odometer.

2. The resolution of the optical shaft encoder should be at least 1cm.

3. The microcontroller should have at least one 16-bit counter used as an interface for

the quadrature output signals from optical shaft encoder.

4. The RTC used should have a backup power supply such that it maintains time in

the absence of primary power on Odometer.

5. An NTP client should be implemented to correct the clock source on board.

6. A web page should be used as a user interface when selecting modes of operation.

7. An SRAM chip should be included on board as to increase the RAM needed for

running a TCP/IP stack.

8. A dataflash memory chip should be provided on board as non-volatile memory

storage.

2.3 Literature review

In most cases a GPR or BHR are used to survey the ground. The Radar antenna is either

moved horizontally across the surface to be surveyed or up and down a bore-hole (as

shown in Figure ??). The position at which results were taken by Radar is very important

when making analysis. In this dissertation a processor board is designed to keep track of

the position of the Radar at any time. The errors that will affect the accuracy of the system

are discussed in this section.

2.3.1 Distance Error

The distance measurement that is obtained will consist of errors that result from the

methods and components used to determine distance. The different types of errors are

discussed below.

Digitization error

A Radar antenna moving in the x direction surveys the ground at intervals ∆xcm. The

Odometer records each interval where Radar made a survey. The accuracy of the Odo-

meter can be improved by using a high-resolution optical encoder and therefore, reducing

quantization of distance errors.
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Figure 2.4: Digitization error

Considering Figure 2.4, if a distance resolution of 5cm is used, any survey taken between

5cm and 10cm will be considered to be at 5cm. If the resolution is increased to 1cm,

a survey between 10cm and 11cm will be considered to be at 10cm. When considering

the worst case, the quantization error for a 1cm and 0.5 cm resolution is 1cm and 0.5 cm

respectively.

Initialization error

When the optical shaft encoder is turned on, the slot (that result in a pulse) on the disk

of the encoder may sometimes not be aligned with the initial position (as shown in the

Figure 2.5). This may result in an error that depends on the resolution of the encoder. As

the resolution increases the error decreases.

Time-stamp error

The positive or negative edge of the pulses (representing distance moved) produced by

the encoder can sometimes not be synchronous to the time assigned to it (referred to as

time-stamp). This result in an inaccurate measure of the time taken between pulses (as

shown in Figure 2.6).

When considering the worst case, an RTC with a resolution of 1s has a time-stamp error of

1s. Implementing a software clock with a high resolution on a microcontroller can reduce

the error. The software clock resolution is calculated as shown below with the following

assumptions [14]:

clock frequency = 16 MHz
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8-bit timer

timer interrupts rate t:

t =
16 × 106

28

= 62500ticks/s (2.1)

resolution r:

r =
1

62500
= 16us (2.2)

Therefore, the time-stamp error will be 16 us when considering the worst case.
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Other errors

The mechanical setup of the system can result in the following errors. The slippage

between the shaft wheel and the cable tied to the Radar, the stretching of the cable due to

the weight of the Radar can result in an inaccurate measurement.

The local clock has to be synchronized to other more accurate clocks on the Internet using

NTP. This is done to correct the drift error that depends on the type of oscillator used and

environmental factors (i.e. temperature) [22].

Another error that results is the synchronization error due to the delay when synchronizing

a local clock to an NTP server.

2.3.2 Distance and Time Resolution

In order to be able track the movement of the Borehole Radar as it moves up or down

the bore-hole, the time sampling interval should be as small as possible. In Figure 2.7,

between 5 - 25 ms the Radar is expected to move smoothly without jittering through the

bore-hole. The dotted line represents a smooth movement. But, due to the irregularities in

the bore-hole, the Radar can follow the trace shown by the solid line. The latter can only

be noticed if the resolutions of both distance and time are as small as possible. Distance

resolution depends on the settings on the optical shaft encoder and most encoders can

achieve a resolution of fractions of millimetres when a wheel attached to the shaft encoder

has a diameter of less than 20 cm (as shown in Figure 2.9).

Time resolution depends on the clock used. Most RTC has a resolution of 1 second. To

improve this resolution a software clock that can attain resolution of microseconds can be

implemented.

The data from the shaft encoder needs to be timestamped in order to determine time taken

and speed. The test made by the team involved in the Kleinzee survey showed that the

radar could move at maximum speed of 0.25 m/s (25 cm/s) up and down a bore-hole.

For a distance resolution of 0.5 cm, time resolution should be at least 0.5/25 seconds (20

milliseconds) in order to time-stamp each pulse produced by the encoder. Most RTCs

have a resolution of 1 second. This implies that a software clock with a resolution less

than 20 ms will have to be implemented.

The software clock can achieve time resolution of less than 20 ms but will be limited

by NTP server resolution on LAN, which are a few milliseconds. NTP server is used

to synchronize the clock with other accurate clocks on the Internet. An NTP secondary

(stratum-2) time server can achieve an accuracy of 3 ms when installed on distant LAN

[22]. In the reconstruction of the image formed by the Radar survey, tolerance of up to 10

cm [11] in distance error is acceptable. This implies that the distance resolution of 1 cm

can be used. The time resolution should be less than 40 ms in this case and considering

that the NTP server has an accuracy of 3 ms, a time resolution of 10ms will be used. The

above analysis applies for the case when an NTP client is implement on the Odometer.
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Figure 2.7: Movement of radar

2.3.3 Shaft encoder

The number of revolutions that the shaft make is used to calculate the position of anything

tied to the cable that rolls around the shaft wheel. Changing the diameter of the shaft

wheel can vary the resolution of the position measurement. As shown in Figure 2.8 and

2.9 when the diameter increases the resolution decreases. Another factor that affects

resolution is the number of electrical cycles per revolution (CPR). As the number of CPR

increase the resolution increases.

Choosing the shaft encoder

The following factors were considered when choosing a shaft encoder:

• resolution

• cost

• robustness

Table 2.1 shows different types of encoders from different companies.

The shaft encoder designed by USDigital Corporation satisfied most of the above-mentioned

features. Other companies that design incremental shaft encoders are Dynamics Research

Corporation (DRC), Hohner Corporation, BEI Duncan Electronics Division.

Figure 2.8 shows the number of CPR as 100 while Figure 2.9 shows the number of CPR

as 2048. This is the range for the HD25 optical encoder. When using HD25, a resolution
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Table 2.1: Incremental Encoder

Features US digital D.R.C. Hohner
HD25 Model 25D series 02

CPR (max) 2048 5000
PPR(max) 8192 20,000 1024

Supply voltage +5, 9.5 -32V +5,12,15V +5 - 24V
Price/unit $280 $425 $321

Shaft sealed yes yes no
Operating temp -40C- 100C 0C- 70C -20-100C

Housing and anodized die cast die cast
cover material aluminum aluminum zinc alloy

of 5 mm can be obtained even if the diameter of the shaft wheel is increased to about 30

cm. The radius of curvature of the optic fibre cable used is 15 cm. This implies that for the

cable to be rolled around the whole circumference of the wheel (i.e. to reduce slippage),

the diameter of wheel should not be less than 30 cm. A resolution of 5 mm can still be

achieved considering that for 2048 CPR at 20 cm the resolution is 0.3 mm as shown in

Figure 2.9.

The housing and cover material is made of anodized aluminum to protect it against shock.

The encoder is also sealed to protect it against fluids. It is the cheapest as compared to the

two shaft encoders shown in Table 2.1.

2.3.4 Investigating a suitable Microcontroller and peripherals

There are a number of microcontrollers and peripherals that can be used. The section

below discusses the microcontroller that is suitable for this project.

Atmel microcontroller family

Atmel products are easily available. An Atmel ARM Thumb microcontrollers would be

suitable if a Real Time Operating System (RTOS) is to be implemented. A suitable RTOS

would be eCos since there are ports to some of the ARM microcontrollers. Due to the

time constraints, designing a PCB and implementing eCos was not feasible for someone

who is still learning C language. A better option was to use an Atmel 8-bit AVR micro-

controller since there is a lot of support in software development (i.e. AVR mailing list for

support). A TCP/IP protocol suite that runs independently from an operating system can

also be implemented on an AVR microcontroller [5]. The Atmega128 is suitable for this

application. It is a CMOS 8-bit microcontroller based on the AVR RISC architecture. It

has a 128K bytes ISP flash, 4K bytes EEPROM, 4K bytes SRAM, real time clock (RTC),

four timers/counters and other features.
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Memory

The system had to provide temporary storage and non-volatile data storage. The types of

memory used are discussed below.

In cases when there is a problem with the network and data cannot be transfered to the

data storage, dataflash memory will be provided.

The size of the dataflash memory that will be used to store data is 2 Mbits. The cal-

culations below show how the size was determined. For 60 minutes of continuous data

processing, 1.15 Mbits would be required. Since the web page and files that contains

MAC and IP address are also stored in dataflash, 2 Mbits storage would be suitable.

       size of position data (unsigned long)      = 4 bytes

size of timestamp (unsigned long)          = 4 bytes

size of timestamped data per radar reading = 8 bytes/reading

minimum interval of taking readings        = 5cm

maximum speed of radar                     = 25 cm/s

rate of taking readings                    = 5 readings/s

timestamped data stored per second         = 5 readings/s * 8 bytes/reading

                                           = 40 bytes/s

no. of bytes in an hour                    = 40 bytes/s * 3600s

                                           = 144 Kbytes

The dataflash will be used to store frequently changing data. Therefore, small sectored

flash will be desirable. An Atmel AT45D021B dataflash was used.

SRAM will be used for temporary storage of data, stacks, and program workspace. A

capacity of 32K bytes is sufficient. An IDT71256S CMOS SRAM can be used. It has a

32K * 8 memory organization.

Ethernet controller

When considering the mode of operation of system data should be time-stamped and

transfered via an Ethernet connection to some data storage on another location. To achieve

this transfer an Ethernet controller is interfaced to the microcontroller.

There are two models of Ethernet controller that were considered. These are CS8900A

and a LAN91C111. Both these controllers can achieve the transfer. They have both been

used in the RRSG group (which I am member of) and are readily available. CS8900A has

been used on the development board that will be used for software development, therefore

it is the suitable Ethernet controller in this case. The network interface is a 10base-T

physical layer (PHY). It uses a 20 MHz reference clock for both PHY and media access

control (MAC).
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2.3.5 Real time clock

In order to relate the data obtain from the shaft encoder to some data obtained on a remote

sensor (i.e. the radar system), the data is time-stamped. This data will be time-stamped by

time obtained from a software clock on board. An on board clock is used during bootup

as the NTP server compares the time on board to its time which is much more accurate.

The Atmega128’s RTC can be implemented. The disadvantage of this RTC is that when

the Atmega128 is not powered it looses time. These will happen several times considering

the cases when the board and other equipment are transfered into a mine. A solution to

this problem would be to use a DS1286 Dallas Semiconductor chip that can be used to

provide time to the Atmega128 [2]. It consists of an embedded lithium energy source

and a 32.768 KHz crystal and drift by less than 1 minute per month at 25 degree celsius.

The embedded lithium energy maintains time for over 10 years in the absence of external

power.

2.3.6 Network Time

The geographical locations of the sensors, signal processors and data storages (i.e. shown

in Figure 2.3) indicate that these devices may sometimes not be close to each other. To

relate the information collected from all this devices an accurate time-stamp is appended

to the data collected. When the time-stamp source (i.e. an RTC on odometer) is accurate,

the data collected can be integrated precisely with data from other sensors. To achieve

this, the time-stamp source must be synchronized to the other time-stamp sources.

A method that can be used is to distribute the time whilst maintaining local time source

on each device [18]. This can be achieved by requesting time from a server (i.e. Net-

work Time Server) and using it to correct the local time source (i.e. RTC) taking into

considerations the delays involved. Network Time Protocol (NTP) uses this principle.

NTP is implemented on LAN therefore, it is subjected to problems that data using net-

work encounter. Factors such as packet collision and random delay due to network traffic

result in delaying of time. Apart from the delay due to transferring a time-stamp from

one source to another, there are some effects related to the oscillator of the time source.

Factors known to affect the oscillator are physical vibrations, crystal aging, fluctuations

in temperature and power supplied [18].

The time of any time source at time t can be represented as

T (t) = T (t0) + Rt(t − t0) +
D

2
t2(t − t0) + x(t) (2.3)

where T is time offset at time t0, R is the frequency offset, D is the drift due to aging and

x is jittering effect [18]. T(t) includes the effects of propagation delay and x(t) includes

the uncertainty due to jitter in the network and measurement process.

There are other protocols such as Probabilistic Clock Synchronization (PCS) and Digital
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Time Service that can be used to correct the timing errors illustrated in the equation above

[18]. Network Time Protocol has an edge over these two protocols, as it is able to correct

most of the timing errors in equation above [18].

NTP operation

The NTP client resides on the Odometer and is used to synchronize the time of the RTC

on Odometer to the time of an NTP server which could be on a Global Positioning Ser-

vice (GPS) receiver. The NTP program measures round-trip delay jitter and oscillator

frequency offset and then adjust the RTC. The RTC is adjusted in small steps in order

to keep the timescale continuous. NTP client exchanges information with one or more

servers at certain poll intervals. Under normal operations the poll interval is between 64s

and 1024s [19].

2.4 Conclusions

The radius of curvature of the optical fibre cable is 15cm. A HD25 encoder with 2048

CPR has a resolution of 0.05cm when attached to a wheel of diameter 30cm. This is more

than the required 1cm.

DS1286 RTC has a resolution of 10ms. Therefore, a software clock will not be implemen-

ted since the RTC achieves the required resolution for timestamping each pulse produced

by the encoder.

Most of the distance errors depend on the distance resolution. A higher resolution will

reduce the distance error. The error due to slippage was not quantified in this project.
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Chapter 3

Hardware design

This chapter explains the functionality of the main devices. Details of how the devices

communicate with each other are discussed. The PCB design is also discussed.

3.1 Encoder hardware

An incremental shaft encoder of type HD25 (which is an industrial rugged metal optical

encoder) is used in this project. A HD25 encoder’s CPR ranges from 100 to 2048 [6].

Output signals of shaft encoder

HD25 encoder’s output signals options are either two quadrature signals (CH A and CH

B), clock and direction signals (Clock and Up/Dn) or up and down clock signals (UpClk

and DnClk) as shown in Figure 3.1. In this case the option of clock and direction as output

signals was selected.

Encoder to Microcontroller interface

The HD25 signals cannot be interpreted by the Atmega128, therefore some logic gate

circuitry is introduced as an interface between the encoder and microcontroller. The logic

interface outputs signals T1 and IC1 (shown in Figure 3.2) are inputs to a microcontroller.

The pulses on T1 in Figure 3.2 represent the distance moved while that on IC1 represent

a change in direction. The logic gate circuit diagram is included in Appendix B.

3.2 Processor hardware

Figure 3.3 shows a block diagram of the main components. A detail discussion of the

components functionality and how they interconnect is made in the following section.
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Figure 3.1: Timing diagram for the encoder to microcontroller interface
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Figure 3.2: Encoder signals converted to input signals for Atmega128 counter

24



AD7:0

D7:0
A7:0

A7:0
A15:8

Encoder

Encoder

Multiplexer

Prog. RS232

Dataflash RTC SRAM

Ethernet
controller

CPLDAtmega128

Network
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3.2.1 Microcontroller

The Atmel Atmega128 is a high performance, low power 8-bit AVR microcontroller. It

has an advanced RISC architecture with up to 16 MIPS throughput at 16 MHz [10].

It also has up to 64K bytes of optional external memory space. There are two 8-bit

timers/counters, two 16-bit timers/counters with separate prescaler, compare mode and

input capture mode [10]. Some of its peripheral features that will be used in this project

are the serial USARTs, master/slave SPI serial interface and byte-oriented two-wire serial

interface[10].

Functionality of the Atmega128

The Atmega128 obtains two signals T1 and IC1 from encoder. T1 is an external clock

source for the Atmega128 16-bit counter. The value of the counter is stored in the TCNT1

as shown in Figure 3.4. TCNT1 can be accessed by the Atmega128 CPU for further

processing (i.e. determining position of the Radar) [10]. The IC1 signal is applied to the

Input capture pin (ICP) of the counter. Figure 3.5 shows the input capture unit. When

there is an IC1 pulse on the ICP1 pin a capture is triggered. The 16-bit counter value in

TCNT1 is written to ICR1 register. An input capture interrupt is generated at this stage.

The interrupt routine is used to time-stamp the counter value. Hence, the position and

time when there was a change in direction will be known.

Control
logic

edge
detector

Temp(8 bits)

clock select

(prescaler)

count

clear

direction

clk

DATA BUS (8 bits)

 T1
TCNT1L (8bits)TCNT1H

TCNT1 (16 bit counter)

Figure 3.4: Counter unit (with reference to [10])

3.2.2 CPLD

The external memory interface of an Atmega128 is designed in compliance with the 74HC

series latch [10]. When the Atmega128 operates at a frequency above 8 MHz @ 4V or 4

MHz @ 2.7V the 74HC latch cannot be used [10]. As an alternative, an Altera EPM 7064S

44-pin PLCC CPLD device is used. This CPLD complies with the timing parameters for

a suitable address latch for the microcontroller. It has a total of 36 I/O pins of which
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Figure 3.5: Input capture unit (with reference to [10])

four are dedicated for JTAG interfacing [7]. The JTAG interface is used for in-system

programming of the device.

In this project, the SRAM is memory mapped to the Atmega128 by the CPLD as shown

in Figure 3.7 [10]. The RTC is also memory mapped to the Atmega128 from base address

0xA000 by the CPLD.

CS8900A operates in I/O and memory mode [4]. The decode logic in the CPLD maps the

upper memory space of Atmega128 to the CS8900A. Address lines A15, A14, A13 and

signals nRD and nWR from the Atmega128 are used for decoding the I/O and memory

mode. A15 and A14 select the base address for the two modes as follows:

Mode A15 A14 Base

I/O 0 1 0x8000

memory 1 1 0xC000

The default values of the I/O base and memory base addresses are 0x0300 and 0x0000

respectively [4]. In this project, memory base address 0x0000 is changed to 0x1000. For

the two modes, the base address are actually accessed in Atmega128 memory space at the

following addresses.

Mode Base address decoded by CPLD Offset Actual base address in Atmega128

I/O 0x8000 0x0300 0x8300

memory 0xC000 0x1000 0xD000
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3.2.3 Ethernet controller

CS8900A is a full duplex Ethernet controller consisting of all analog and digital cir-

cuitry needed for communicating via Ethernet. It is configured for a 10Base-T inter-

face. The built-in transceiver includes filters that eliminate the need for external filters

or filter/transformer hybrid. Since the CS8900A is supplied with 5V, the ratio between

primary and secondary windings for the isolation transformer is 1:1 on the receiver side

and 1:1.414 on the transmit line [4].

The CS8900A is suitable for 16-bit data transfer, operating in either I/O space, memory

space or DMA slave. It can also be used in 8-bit mode. The 8-bit mode will be used in

this project. Since the DMA engine only uses 16-bit memory access, it is not support in

8-bit mode [13]. Interrupts are also not supported in 8-bit mode [13].

In this project, CS8900A will be used in I/O and memory mode. The default mode of op-

eration of the CS8900A is I/O mode. Memory mode is enabled by configuring CS8900A

through the I/O registers during initialization.

The Ethernet controller has 4K bytes of internal RAM (known as PacketPage memory)

for its internal registers and for buffering the received and transmitted frames [4]. Its ar-

chitecture uses a method called PacketPage to access its internal registers or for buffering

the frames. The internal registers are accessed directly using memory mode or indirectly

using I/O mode.

I/O mode

The PacketPage memory is accessed through eight 16-bit I/O ports that are mapped to 16

I/O addresses from 0x8300 - 0x830F in the Atmega128 I/O space [4]. For an I/O read or

write operation, the AEN pin must be low, the I/O address of the Atmega128 must match

the I/O address space of the CS8900A and either nIOW or nIOR must be low.

Memory mode

When the CS8900A is configured for memory mode, the PacketPage memory is mapped

directly into 4K bytes of the Atmega128 memory space [4]. Since 4K bytes of address

space is needed, only lines SA0 - SA12 are used. Memory mode operations are mapped

into addresses 0xD000 - 0xDFFF. Memory mode access is achieved when AEN pin is

low, the address of the Atmega128 matches the memory address space of the CS8900A

and either nMEMR or nMEMW pin is low [4].
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3.2.4 Memory

External SRAM

The microcontroller will be performing a lot of applications and to compliment this, an

IDT71256 SRAM is used as an external memory. The IDT71256 is a high speed static

RAM organized as 32K x 8. It can accomplish an address access time of up to 20 ns [3].

The external SRAM is connected to the Atmega128 as shown in Figure 3.6. It is mapped

above the internal SRAM as shown in Figure 3.7.

Atmega128

AD7:0

ALE

A15:8

nRD
nWR

D[7:0]

A[7:0]

A[15:8]

nRD
nWR

CPLD

IDT71256

Figure 3.6: Atmega128 interface with SRAM

Dataflash

An AT45DB021B is an Atmel 2 megabits Dataflash memory [9]. The memory is organ-

ized as 1024 pages of 264 bytes each. It has two SRAM data buffers of 264 bytes each

which allow data to be received while the main flash memory is being reprogrammed.

The Dataflash is used to store configuration files (i.e. files that contain MAC and IP

address), web-pages and time-stamped data. The web-page is used when remotely com-

municating with the Odometer via the Ethernet.

3.2.5 RTC

The DS1286 watchdog timekeeper is a real time clock, alarm, watchdog timer and interval

timer in 28-pin JEDEC DIP package [2]. The 64 eight bit registers can be accessed in the

same manner as a byte-wide SRAM. The lithium energy source of the timekeeper enables

it to retain real time for 10 years in the absence of external power supply. Information that

can be obtained include hundredths of seconds, seconds, minutes, hours, day, month and

year.

29



Internal memory

External

memory

(unused)

0x0000

0x10FF
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atmega128 memory
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Figure 3.7: Atmega128 memory map(with reference to [10])
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Figure 3.8 shows some of the 64 registers in the DS1286 [2]. The time of the day in-

formation is stored in BCD format. This registers are directly accessed by the Atmega128

microcontroller since they have been memory mapped to it at base address 0xA000.

A/P
10 10HR12/240

0

0

DAYS00000

DATE10 DATE00

MONTHS10M0ESQWEOSC

YEARS10 YEARS

TDFWAFTDMWAM
PU
LVL

IBH

LOIPSWTE

0.1 SECONDS 0.01 SECONDS

SECONDS10 SECONDS

10 MINUTES MINUTES

HOURS

BIT7 BIT0

0

1

2

4

6

8

9

A

B

E

3F

.

TIME OF DAY
REGISTERS

COMMANDS
REGISTERS

USER
REGISTERS

ADDRESS

Figure 3.8: DS1286 registers

The minimum read and write access time of DS1286 is 150 ns. This implies that At-

mega128 access time to DS1286 should be at least 150 ns or greater.

3.2.6 Serial Interface

The Atmega128 has two USARTs, USART0 and USART1[10]. In this project only

USART0 will be used for serial communication. Asynchronous mode of operation is

used and therefore only two signals (receive and transmit signals on PE0 pin and PE1pin

respectively) are used for serial communication. Both this signal together with a clock

signal on PB1 pin are alternatively used for serially programming the Atmega128. To

accomplish both tasks, a multiplexer is placed between the Atmega128, in-system pro-

grammer and RS232 transceiver as shown in Figure 3.9.

For the initial configuration of the Odometer, the web-page and file that contains the MAC
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Figure 3.9: Serial interface

and IP address of the CS8900A are transfered to Dataflash via the RS232 transceiver. The

protocol that is used to transfer the files is y-modem protocol [5]. Any x-terminal that

supports this protocol can be used.

3.3 PCB design

The PCB design was done using the Protel Design Explorer 99. The board is 4 layered

and two of the layers are power planes. Most components are surface mounted (SMT)

packages. The schematics and PCB layouts are shown in Appendix B.

3.3.1 Routing Nets

The PCB board was manually routed as to reduce any loops that might result in Electro-

Magnetic Interference (EMI). The address and data bus nets were aligned together making

it easier to trace the signals between components. The track size for the power nets from

the power connector up to the regulator is 40 mils. The other nets track size were 8 mils

and 10 mils. The vias pad size was 25 mils while the hole size was 15 mils. Figure 3.10

and 3.11 shows top and bottom layers of an unpopulated board.

3.3.2 Component Placement

Most components were placed on the top layer. Some decoupling capacitors were placed

on the bottom layer. This was to ensure that the capacitors are as close as possible to the

components they are decoupling. The microcontroller was placed towards the middle of

the board with Ethernet controller, SRAM, RTC and CPLD close by as they shared the
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Figure 3.10: Unpopulated PCB (top layer)
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Figure 3.11: Unpopulated PCB (bottom layer)
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address and data lines. Figure 3.12 shows the PCB board. The Ethernet analogue circuitry

was placed as far as possible from the Ethernet digital circuitry and other digital devices

so as to reduce noise.

Figure 3.12: Populated PCB

3.4 Protection of Odometer

There are some cases when the Odometer will be used in mines where it could come

into contact with dust and fluids. In such cases the Odometer needs to be protected from
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such an environment for it to operate correctly. Figure 3.13 shows how and where the

Odometer is mounted on the box which is used for protection.

Figure 3.13: Enclosure of Odometer

The PCB is of dimensions 150mm x 100mm. A Polycarbonate box of dimensions 240mm

x 160mm x 90mm fits the PCB board with enough allowance for the coaxial connector

mounted on the walls of the box as shown in Figure 3.13 .

In order for the box to be shower proof, all the connectors on the box must be shower

proof and connected firmly to the box.

3.5 Conclusions

The analogue circuitry is placed as far as possible from the digital circuitry to avoid

electro-magnetic interference and therefore performance is increased.

The distance moved by radar is determined from the encoder pulses. The 16-bit counter

counts these pulses. It covers a distance of 32m (when the resolution of the encoder is

0.05cm) before it overflows. The Odometer will be used for much longer distances. This

problem will be solved in software.
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Chapter 4

Software design

The software developed in this project was mostly written in C programming language.

VHDL was also used for the CPLD chip. The C code was compiled using an Imagecraft

compiler while VHDL was compiled by the Altera max plus 2 version 10.2 compiler.

No operating system was used in this project. The PC software was written in HTML

language. The modes of operation and software design are discussed in this chapter.

4.1 Modes of operation

The modes of operation of the system are the core specifications for software design.

There are two main modes of which the others are derived from. The source code that

implements the modes discussed below is included in Appendix A under /Odo/EIT128a

directory in the main.c and script.c file.

4.1.1 Timestamped data

A flow chart shown in Figure 4.1 applies for both modes discussed below. Count is the

value obtained from the 16-bit counter. Direction is chosen as up or down when there

is an input capture interrupt. Max. down and up are counter values at which directions

changed. x is the interval at which Radar makes a survey.

Transfer to remote data storage

In this mode, the encoder data is used to determine position and direction the Radar is

moving in. The data is then timestamped by RTC on board and then transfered to a

remote data storage. The data storage could be the database shown in Figure 2.3.

Data stored on board

This mode is similar to the above mode except that the timestamped data is stored on

board in the Dataflash. This mode is used for cases when there is no network connection.
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Figure 4.1: Flow chart for time-stamping the data
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When buffer gets full the timestamped data is transfered to Dataflash.

4.1.2 Non timestamped data

The flow chart shown in Figure 4.2 applies for the three modes discussed below. In these

modes, the data is not timestamped as it is not stored or transfered to a remote database.

The data is used to trigger the Radar directly.

count ++

count = x

direction = up

direction = up

count = 0
direction = down
max. up

count ++

direction = 
down

direction = 
down

count = 0
direction = up
max. down

 count = x
trigger radar 

trigger radar 

 Y

N
N

Y

N

Y

N

Y

N

Y

Y

N

Figure 4.2: Flow chart for non timestamped data

Trigger Radar via optic fibre

In this mode there is a direct link between the Odometer and Radar. The Odometer trig-

gers the Radar via an optic fibre link.
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Trigger Radar by switching LED on/off

An LED switches on and off to signal the person operating the Radar system to trigger

it. This mode is used when Radar and Odometer are close to each other (i.e. when Radar

surveys a horizontal surface as shown in Figure ??(b)).

Trigger radar by Microswitch or Buzzer

In this mode a Microswitch (i.e. relay) connected to Odometer is used to trigger Radar.

Another option is to connect a Buzzer to the Odometer. The sound of Buzzer signals the

person operating Radar to trigger it.

4.2 Odometer software

All of the software discussed in this section resides in the memory space of the At-

mega128. The subsections below discuss the softwares implemented on main components

of the Odometer. The source code for the subsections below is also available in Appendix

A under the EIT128a directory.

4.2.1 Encoder software

Signals T1 and IC1 shown in Figure 3.2 are used to determine the position and direction

of Radar as it moves up or down a bore-hole or horizontally above the surface. The

encoder outputs pulse T1 that depend on the CPR of encoder. The resolution of encoder

is determined from its CPR. Knowing the resolution of encoder and number of pulses

generated by encoder, the exact position of Radar can be determined. IC1 signal triggers

the input capture interrupt to signal a change in direction.

The position at which Radar surveys the ground of interest is stored in an array called

ring buffer shown in Figure 4.3. This position is stored with a time-stamp obtained from

a time source (DS1286 chip) on board. The ring buffer is used because the rate at which

data is received from encoder might differ from the rate it is transfered to a data storage.

Received data is appended at the end of ring buffer while data being transfered is removed

from the start of ring buffer. All the above operations are done in software.

4.2.2 Ethernet software

The TCP/IP protocol suite used in this project consists of four main layers [5]. These are

the application, transport, network and link layer. A brief explanation of these layers is

given below:

• Application layer: handles the details of certain applications such as telnet, browser,

file transfer application and email applications.
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Figure 4.3: Structure of a ring buffer

• Transport layer: TCP insures that there is a reliable flow of data between two

hosts. The data is divided into small TCP segments that can be transfered over the

network. It also acknowledges received packets and retransmits lost packets. UDP

sends packets, with no guarantee that the other host receives them. In this case, the

application layer above is responsible for insuring that packets are received.

• Network layer: These layer is responsible for routing the frames through the phys-

ical network. The mapping of the IP address to the physical address is done in these

layer.

• Link layer: These layer includes the device drivers (i.e. CS8900A driver in these

case) used for connecting to the network and the physical wires or medium in which

data is transferred.

Figure 4.4 shows the four layers used in these project with the various protocols imple-

mented. It also shows the dependency of the protocols on others.

CS8900A driver

The CS8900A Ethernet driver is included in the link layer as part of the TCP/IP stack.

Since the Ethernet controller is used in 8-bit mode, interrupts are not supported [13].

Therefore, polling mode is used. But before the CS8900A can be in this mode, the driver

has to initialize it to its default configuration or load configuration from an external EE-

PROM. Figure 4.5 shows flow chart of how the CS8900A is initialized. The calibration

of the on chip analog circuitry takes approximately 10 ms [4]. In this project there is no

external EEPROM, therefore the default configuration is used.
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Figure 4.5: Initialization of CS8900A
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When the CS8900A comes out of reset with default configuration, the following steps are

taken as part of the initialization routine:

1. wait for the RESET bit in Self control register to be cleared;

2. wait for initialization done bit in Self status register to be set;

3. configure the MAC engine and physical interface;

4. set the test modes of the CS8900A;

5. determine what type of frames to accept and configure how to filter destination

address;

6. write Ethernet address;

7. enable I/O and memory mode.

When initialization is complete the Ethernet controller is ready to enter the polling mode.

Figure 4.6 shows a flow chart that describes the polling mode up to the stage control is

transfered to the Network layer (i.e received IP).

Control of board over network

The Odometer is controlled via a web-page stored in the Dataflash on board. The HTTP

client (i.e. a web browser on PC) requests services from the server (i.e. the odometer)

via network using HTTP protocol. Table 4.1 shows commonly used request methods

implemented on a HTTP daemon.

Table 4.1: HTTP request methods

Method Description

GET Request to read a web page on server (i.e Odo.htm) or any HTTP URI
POST Transmits data or any form input information to

the requested web page on server
HEAD Request to read web page’s header
PUT Request to store web page on server

DELETE Remove web page from server
LINK connect two existing web pages

UNLINK disconnect an existing connection between two web pages

The GET and POST request are available in the HTTP daemon implemented in the ap-

plication layer. In this project they are used for providing the diameter of the wheel for

the optical shaft encoder, the interval at which radar takes readings, selecting the mode of

operation of odometer and transferring the file that contain timestamped data to client.
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4.2.3 CPLD software

A CPLD is used in this project for memory mapping other devices to the Atmega128. The

devices mapped are CS8900A Ethernet controller, IDT71256S SRAM and DS1286 RTC.

The CPLD acts as logic gates which select the device to be mapped to the Atmega128.

Max+Plus 2 is a development software that was used for designing the logic. The lan-

guage that is used for designing this logic is VHDL. VHDL is completely integrated into

the max+plus 2 software package.

Address lines A15, A14, A13 with signals WR and RD from the Atmega128 are used

as inputs to the logic when selecting the devices to map. Since CS8900A operates in two

modes ( I/O and memory mode) the modes are used to select the device instead of the

chip select input pin. For the SRAM and RTC, their chip select input pins are used when

selecting the devices. The following logic is implemented in the CPLD and used to select

the devices.

IOR = A15 · A14 · A13 · RD (4.1)

IOW = A15 · A14 · A13 · WR (4.2)

MEMR = A15 · A14 · A13 · RD (4.3)

MEMW = A15 · A14 · A13 · WR (4.4)

CE = A15
(

RD + WR
)

(4.5)

CE2 = A15 · A14 · A13
(

RD + WR
)

(4.6)

All three devices are active low. IOR and IOW select I/O mode while MEMR and

MEMW select memory mode operations for the CS8900A. CE selects the SRAM

and CE2 selects the RTC. From the above equations the base addresses at which the

devices are map to the Atmega128 are determined by the the three address lines. The

VHDL source code that is used to implements this is included in Appendix A in directory

/Odo/cpld.

4.3 XML and HTML

In this project either XML or HTML could be used to view the web-page used as an

interface for controlling the Odometer and the timestamped data stored on the Odometer.

Since the data has already been processed (i.e. position and direction determined) on

the odometer, a method of only displaying this data was needed. HTML was designed

to display data, therefore it is used in this project. The source code for the web-page is

included in Appendix A under directory /Odo/webpage.
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4.4 Conclusions

All modes of operation have been implemented independent from an operating system.

When there is a network connection, timestamped data is transfered to a remote database

in real time. When there is no network connection or buffer is full, the timestamped data

is transfered to local data storage. The tests performed are discussed in detail in the next

chapter.
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Chapter 5

Testing the prototype Odometer board

All the tests that have been performed are discussed here. These tests include power sup-

ply level and testing functionality of components individually. To verify that the design

fulfills that user requirements an acceptance test procedure is performed. The amount of

data the board can store, speed at which the radar can move and the maximum distance

that the Odometer can measure are also discussed in this chapter.

5.1 Hardware and Software verification

5.1.1 Power supply

The first step was to inspect the PCB. The continuity of address and data bus, control nets

with the relevant components was tested. A 5V voltage regulator was mounted and the

voltage level at all components being supplied by 5V was measured with an multimeter.

The tests were made before any of this components was placed on the PCB.

Table 5.1 show the components that consume most of the current supplied to the Odometer

board. The current is approximately 550mA. This is less than the 1A current rating of

the voltage regulator. A heat sink may be attached to the regulator to reduce the heat

dissipation.

5.1.2 Testing individual components

The functionality of most of the components was tested but only the tests performed on

the main components will be discussed below. The main components were mounted to

PCB by a company called Rhomco that specializes in assembling PCB. The programs

used to test the main components are available in Appendix A under directory /Odo/test.

There is a README file in this directory for more information on directories involved.
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Table 5.1: Current consumption

Components Current(mA)

Atmega128 200
CS8900A 65
IDT71256 150
EPM7064S 65

AT45DB021B 4
DS1286 15
HD25 20

MAX202 8
MAX707 20

Microcontroller

After the components had been placed, the voltage levels at the power connections of

Atmega128 were measured. A simple program that switches LEDs on and off was pro-

grammed to the Atmega128. Other tests included a program that transfered a string of

characters to a PC x-terminal via the USART interface.

CPLD

The EPM7064S is used to memory map the SRAM, RTC and Ethernet controller to the

microcontroller. To test the functionality of the CPLD all of the above above mention

devices should be accessed by the microcontroller.

Dataflash and SRAM

The functionality of the Dataflash was verified by writing and reading to a specific memory

location on the AT45DB021B. The value read was transfered via the USART to the PC x-

terminal. The source code is available in Appendix A under directory /Odo/test/Dataflash.

When the external memory control registers are enabled, the external SRAM is written or

read automatically by accessing an address location above 0x10FF [10]. A test program

(included in Appendix A under directory /Odo/test/sram) that writes and reads from a

memory location above 0x10FF was used.

Ethernet controller

To test that the CS8900A has been mounted properly, a boundary scan test was performed.

This test checks the orientation and if there are any open or short circuits [4]. Boundary

scan test consist of two cycles, output and input cycles. Both tests were performed. The

next test done on the CS8900A was to check if the internal registers were accessible. To

verify these, the product identification register should contain a unique 32 bit code that

48



identifies the chip as a CS8900A. The first two bytes of this register contain the signature

code (i.e. 0x630C) and the last two bytes contain the product ID number [4]. The “ping”

program was then run as a test that the CS8900A can communicate over the Ethernet.

RTC

The time and day of the year read from the DS1286 RTC chip was incorrect. A program

(included in Appendix A under directory /Odo/RTC) was designed to correct the time and

day of the DS1286 chip.

5.2 Acceptance test Procedure

To verify that the odometer fulfills the user requirements the following tests were carried

out. Figure 5.1 shows the set-up of the whole system. The Odometer on one side is

connected to an optical encoder mounted on a stand with a wheel while on the other side

the Odometer is connected to the network.

Figure 5.1: Setup of system during testing
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5.2.1 ATP table

Table 5.2 verifies that the user requirements mentioned in Chapter 3 have been fulfilled.

In Table 5.2 the numbers in first column refer to the section in Chapter 3 where the user

requirements were stated.

Table 5.2: ATP table
user requirements performance/achieved comments

3.2.1.1 yes when the radar changes direction the
distance is reset to zero at that instant

3.2.1.2 yes accurate to mm.
3.2.1.3 yes
3.2.1.4 yes resolution is 0.03 cm.
3.2.1.5 yes protection of odometer discussed in

section 5.5 .
3.2.2.1 yes diameter of wheel selected on web page.
3.2.2.2 yes external 32K SRAM included.
3.2.2.4 yes 2 Mb Dataflash included on board.
3.2.2.5 partly NTP client not implemented. RTC used

for times-tamping data.
3.2.2.8 yes all mode implemented. Only LED option

tested . The others use the same principle.

5.2.2 Accuracy

The Table 5.3 and a graph in Figure 5.2 show by how much the values determined by the

odometer deviate from the actual values.

Table 5.3: Circumference of encoder wheel (i.e. diameter is 20cm)

Frequency Calculated distance (cm)

2 62.73
2 62.77
2 62.80
6 62.83
5 62.86
2 62.89
1 62.95

The actual circumference of encoder wheel used during the tests is 62.8318cm. The mean

which is calculated using the values in Table 5.3 is 62.83 cm. The standard deviation is

0.05 cm. Figure 5.2 shows the Gaussian distribution and histogram of the values shown

in Table 5.3.
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Figure 5.2: Gaussian distribution and histogram of encoder wheel circumference

5.3 Performance

The Odometer board can be controlled remotely via a network connection. When the

Odometer is connected to network, the user (i.e. operator in Figure 2.3) can upload the

web-page by entering the IP number 137.158.131.7 on a web browser (as shown in Fig-

ure 5.3). The desired parameters should be entered else the default wheel diameter and

interval of taking readings which are 20cm and 5cm respectively will be used. The mode

of operation should also be chosen. Any request to the Odometer is made by pressing the

start button.

5.3.1 Remote data storage

In the presence of a network connection, the data timestamped is transfered to a remote

data storage from a temporary buffer which can contain up to 600 values. If the radar

takes readings at 5cm interval, the distance that can be moved before the buffer gets full

is 30m. Due to the limited SRAM size the HTML page that contains timestamped data

is limited to 1500 bytes. The page transfers an average of 45 timestamped data values

at once. At the top of each page the time and day of the year the data was recorded is

displayed (e.g. Figure 5.4). The time-stamp for each data on that page is relative to that

time.
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Figure 5.3: Odometer web page.
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Figure 5.4: Timestamped data at 100cm interval.
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5.3.2 On-board data storage (Dataflash)

A file system exit on the Dataflash. Any data that is stored on the Dataflash is stored in a

file format. Figure 5.5 shows how the files are organized. To access any file in Dataflash,

the file system makes a linear search for the file [5]. One read access is needed for each

file. For N number of files, average number of files accesses is n:

n =
N

2
(5.1)

One page size is 264 bytes. The number of pages for one file np:

np = 1 +

{

size

pagesize

}

= 1 +

{

size

264

}

(5.2)

SPI uses one fourth of the frequency of the microcontroller[10]. For each SPI clock cycle

one bit is read or written. Access time tp [5] for one page is:

tp =
fclk · 264 · 8

4
(5.3)

Average read time T [5] for one file :

T = (n + np) tp (5.4)

The file size is 1500 bytes. Average number of timestamped data per file is 45. When the

temporary buffer in SRAM get full the data is automatically transfered to the Dataflash.

The number of files needed to store this data is:

n =
600

45
= 13.3

≈ 14files (5.5)

For 14 files of size 14 x 1500 bytes = 21Kbytes, fclk = 4MHz:

np = 80.545 (5.6)

tp = 2.11ms (5.7)

Therefore, 14 files are written in:
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T = 28.86ms (5.8)

The size of the Dataflash is 2,162,688 bits which is 270 336 bytes. The size of the file

(server.ini) that contains the MAC, IP, password for FTP and other parameters is 223

bytes. The size of the two other files (odo.htm and odo.syn) that contain the web pages

is 2746 bytes. Free space for data storage is therefore 267367 bytes. One full buffer

occupies :

Buffer600 = 1500 ∗ 14

= 21000bytes (5.9)

The number of blocks B14 (i.e. one block is 14 files) that can be put into Dataflash before

it fills up is:

B14 = 12 (5.10)

When considering interval taking readings as 5cm, the buffer gets full when a distance of

30m is covered. Data that covers a distance of 360m can be stored in Dataflash.

file header
of 1st file

1st data block of
1st file

2nd data block of
1st file

file header of 
2nd file

1st data block
of 2nd file

Figure 5.5: Block organization in file system (with reference to [5])

5.3.3 Maximum distance

The maximum distance that can be measured is limited by the 16 bit counter (i.e 216 =

65536). When the counter reaches its maximum value 65536 an overflow interrupt oc-
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curs and the counter starts from zero again. For a wheel diameter of 20cm, the distance

resolution of encoder r20:

r20 =
π · d

2048
= 0.03cm (5.11)

This implies that for every pulse produced, a distance of 0.03 cm is moved. One count is

made by the 16-bit counter (shown in Figure 3.4). The 65536 counts (result in an over-

flow) cover a distance of 19.66m. This is not sufficient if the system is to be used in

mines. To overcome this problem a simple algorithm shown in Figure 5.6 was implemen-

ted where:

count - value used in calculating distance.

count_16 - counter value obtained from 16-bit counter.

count_over - value incremented by one when overflow interrupt occurs (i.e. when counter

reaches 65536).

where increment count is:

count = count
−
over + count

−
16 (5.12)

and increment overflow count is:

count
−
over = count + 1 (5.13)

The maximum distance now depends on the integral type of count (i.e. char, int or long).

In this case count is unsigned long which its maximum value is 232. To obtain distance,

count is multiplied by resolution. Therefore maximum distance D:

D = 232
∗ 0.03

= 128849018.9cm

= 1288km (5.14)

Figure5.7 shows timestamped data at 100cm interval of taking readings. Because of lim-

ited space where measurement were taken, only a distance of 32m could be measured.

5.3.4 Speed

The maximum speed at which a Radar can moves up and down bore-hole has a limit.

Apart from the main factor mentioned in Section 4.2.1 of this dissertation, other factors
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Figure 5.6: Extending the maximum distance that the Odometer can cover
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Figure 5.7: Maximum distance measured
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that affected speed are the interval at which Radar takes readings and the diameter of

encoder wheel. Tables 5.4 and 5.5 and graphs in figure 5.8 shows the relationship.

Table 5.4: Diameter of wheel is 20cm

interval (cm) max. speed(m/s)

5 0.33
10 0.34
15 0.37
20 0.40
25 0.44
30 0.48
35 0.52
40 0.53
45 0.58
50 0.63
55 0.78
60 0.88

From the graphs in figure 5.8 it is clear that a diameter greater than 23 cm has a greater

influence on the maximum speed at which the Radar can move up or down a bore-hole.

Table 5.5: Interval of taking reading is 10cm

diameter (cm) max. speed (m/s)

10 0.26
20 0.36
30 0.61
40 0.82
50 1.08
60 1.25
70 1.37
80 1.49

5.4 Conclusions

The power supplies for the different components were correct. The microcontroller and

its peripherals performed as expected. Most of the user requirements have been accom-

plished. When there is a network connection, an operator at remote location can have full

control of the Odometer. Diameter of the encoder wheel influence the maximum speed of

Radar more than the interval at which the Radar takes readings.
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Chapter 6

Conclusions and Future work

In this chapter a conclusion of the project is made considering the user requirements and

results obtained from concept study, hardware and software design and tests performed.

This is followed by a discussion of future work that can be done to improve the odometer

design.

6.1 Conclusions

The HD25 encoder provides a distance resolution of 0.03 cm that is much higher than the

required 1 cm. This reduces distance errors such as digitization and initialization error

that are associated with the resolution. The time resolution should be at least 20 ms and

DS1286 has a resolution of 10 ms. Therefore, it was unnecessary to implement a software

clock in the Atmega128.

The NTP client was not implemented in this project and DS1286 RTC drift by less than

1 minute per month at 25 degree celsius. This implies that the RTC had to be corrected

manually.

The Atmega128 has a throughput of up-to 16 MIPS at 16 MHz. But due to the slow access

time of the DS1286, the Atmega128 had to be used at a frequency of 4 MHz. This was

still sufficient for the processes running on the Atmega128.

The external 32K SRAM was sufficient for the temporary storage of the TCP/IP stack

and the buffer that holds up-to 600 timestamped data values. The buffer is large enough

to give time for data to be transfered via network to a remote data storage or else be stored

on board when buffer gets full.

The 2M bits Dataflash is sufficient for on board storage of timestamped data. When a

full buffer is transfered, it occupies 21Kbytes in Dataflash. With regard to the size of

Dataflash 12 blocks can be stored. This implies that 7200 timestamped data values can be

stored in Dataflash in the absence of a network connection. There is a file system on the

Dataflash. One full buffer is stored in 14 files in Dataflash. This implies that 12 blocks

contain 168 files. Transferring these files to remote data storage one at a time would be
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time consuming. FTP applications implemented during software development enable all

files to be transfered using a single command (i.e. mget).

The speed of the Radar can be calculated using the time-stamped data.

6.2 Future work

The aim of the project was to develop a system that fulfills the user requirements. Most of

the requirements have been fulfilled. But, the system can still be improved. Some points

that can be addressed for future work are:

• There is no operating system implemented in this project. Implementing an operat-

ing system such as eCos can solve some of the problems encountered in this project.

Most NTP clients need an operating system platform. Therefore with the presence

of eCos an NTP client can be ported to the odometer.

• NTP client should be implemented to correct the on board RTC.

• A complete TCP/IP stack should be implemented.

• The DS1286 has an access time of 150 ns. This implies that the Atmega128 cannot

use an oscillator greater than 6 MHz. An option would be to divide the SRAM into

sectors such that the external SRAM is configure for different wait states at different

sections of memory. The disadvantage of the latter is that DS1286 use only 64 bytes

whereas the smallest sector is 4 Kbytes. More than 3K bytes of SRAM will not be

used.

• The data stored in the data base of the Geophysical Recording and Processing Sys-

tem is in XML format. In this project data is stored in HTML format. Therefore,

this data should be converted to XML format in future work.
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Chapter 7

Appendix A

Software Source Code and Datasheets

Due to the size of the source code and number of Datasheets used, all of the Datasheets

and source code have been omitted from this report. All this information is available on

attached CDROM. The main directory has a README file used to explain briefly the

contents of the other directories.
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Chapter 8

Appendix B

Schematics and PCB layout
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Figure 8.5: Top layer for PCB
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Figure 8.6: Bottom layer for PCB
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Figure 8.7: Ground plane for PCB

73



Figure 8.8: Power plane for PCB
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Chapter 9

Appendix C

9.1 Interface specification document

This document discusses how the odometer is interfaced to other sensors, database and

processors included in the Geographical Recording and Processing System.

9.1.1 Hardware interface

This section discusses how the odometer hardware interfaces with other devices.

Encoder connectors

There are two EN3PF 8 ways waterproof coaxial female connectors (labeled Encoder

1 and 2) mounted on the side of the polycarbonate box. Two EN3CM 8 ways male

connectors interface the odometer to two optical shaft encoders. This encoders could

be attached to a wheel on the winch or the grasshopper wheel if used in the Kleinzee Trial

Borehole Radar Survey.

In this project only the female connector labelled Encoder 1 was used during the tests.

The 8 way male connector interfaces an optical shaft encoder mounted to a wheel on a

stand.

Power supply connector

An EN3PF 2 ways waterproof coaxial female connector (labeled power) is mounted on

the side of the box. A cable with an EN3CM 2 ways male connector interfaces a 12V DC

power supply from a battery or main supply.

RS232 connector

An FDE9S DB9 connector is mounted on the side of the box. This is used to interface a

PC to the odometer via an RS232 cable.

76



Ethernet connector

A standard RJ45 splash proof socket is mounted on the side of the box. This provides an

Ethernet connection to the odometer.

LED and Micro-switch connectors

There are two EN3PF 2 ways waterproof female connectors (labeled LED and Micro-

switch) mounted on the side of the box. The connectors provide 5V pulses that are used

to trigger radar system directly. Their pulse width is 20ms.

LEDs and reset button

On top of the box are LEDs and a reset button. The LEDs labeled LINK and LAN flicker

when there is a network connection to the odometer. The LED labeled Power indicates

that there is a power supply to the odometer while the one labeled Interval flashes at

fixed interval set when selecting the mode of operation. LEDs L1 to L4 are used during

debugging. The reset button resets the odometer.

Optical fibre connector

A HFBR 1414T optical fibre transmitter is mounted on the side of the box. It can attain

data rates of up to 160 megabaud. This is used to provide an optical fibre connection

when the radar is trigger directly.

9.1.2 Software interface

This section explains how the software implemented on the odometer communicates with

other devices.

Web page interface

A web page is used as a user interface when controlling or monitoring the odometer.

When odometer is connected to the network, the web page can be uploaded from a PC

connected to the network by entering the IP address 137.158.137.7 on a web browser.

On the web page there is an option of entering the interval at which the radar makes a

survey. The diameter of the encoder wheel used can also be set.

The mode of operation are discussed below.

Transfer to remote data storage

This option is used to upload data from the odometer to the PC once the data has been

processed. A maximum of 45 timestamped data values can be transfered at once.
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Read data stored on board

Data stored on odometer during the absence of a network connection is transfered to PC

using this option. A file with a maximum of 45 timestamped data values is transfered at

once. A file stored on odometer can be uploaded by entering its file number.

Position of radar at this instance

This mode is used to determine position of the radar system at any instance. It is displayed

in centimetres.

The following modes trigger the radar when it has moved the preset interval. The network

can be disconnected once a mode is selected.

Trigger radar via optical fibre

In this mode an optical fibre pulse is transmitted to radar system.

Trigger radar by LED

In this mode an LED labelled Interval flashes and a 5V pulse is transfered through the

connector labelled LED. Both actions occur simultaneously.

Trigger radar by micro-switch or buzzer

For this option, a buzzer is pulsed and a pulse transfered through the connector labeled

micro-switch. Both actions also occur simultaneously.

To initiate any of the above modes a start button must be pressed.

9.1.3 FTP transfer

There are 168 files that can be stored on board. Transferring one file at a time would

be time consuming. FTP can be used to transfer all the files at once. The user name is

odometer and password is odo when logging into the odometer.

9.1.4 RS232 interface

Data can be transfered serially between the odometer and PC. Any terminal on the PC

that utilises the ymodem protocol can be used.

In this project the odometer web page, IP and MAC address are transfered to the odometer

using a window based HyperTerminal package.
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