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ABSTRACT

Very High Speed Integrated Circuit Hardware Description Language (VHDL) is a

hardware description language that is gaining increasing popularity among digital

designers in South Africa, as it is both a synthesis and simulation language. Many

designers make use of the language’s synthesis ability but hardly tap into the power

of its simulation abilities. This dissertation primarily investigated the feasibility of

VHDL simulation during the design process. Secondary goals were to document the

design methodology as well as state-of-the-art of the tools required for FPGA

design and simulation. As a case study, a digital preprocessor for a synthetic

aperture radar (SAR) was designed and simulated. The design was targeted for an

FPGA in an attempt to determine the level of complexity of algorithm that can be

obtained in an FPGA. This was a hardware solution to the design requirement; a

completely software solution implemented in a DSP was attempted by Yann

Tréméac [19].

In July 1993, the US Department of Defence instigated a program known as Rapid

Application Specific Signal-processor Prototyping (RASSP). The purpose of this

program was to review the process used in creating embedded digital signal

processors in an attempt to decrease the time taken to produce a prototype by a

factor of four. The methods proposed by RASSP for achieving this goal included

the reuse of existing modules, concurrent design and virtual prototyping.

The virtual prototyping that the RASSP initiative refers to includes a process of

writing VHDL models to represent the system being designed. These models are

first written at an abstract level where the mathematical equations which describe

the processing are tested. Test data can be input to the model which will perform the

required processing. The output can then be verified to ensure that the equations are

correct. At this stage, the model contains no structural information as to how the

processing is achieved, nor even the numerical method used to implement the

equations.
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The level of abstraction of these models decreases with every model that is written.

Obviously the number and type of models that are written depends upon the design.

An example of the models which could be written are a mathematical model and an

algorithm model which models the numerical methods used in implementing the

mathematical equations. A behavioural or functional model can then be written to

break the system into a number of sub-components. The sub-components are

modelled so that their interfaces are correct but the internals contain no information

on the structure used to implement the algorithms. These models can then be further

refined to include implementation details until a final design is produced. At each

stage, the test data that is used in the more abstract model can still be used for

verification. This system of testing requires that testbenches be written. These are

simply pieces of VHDL code that can read and write data files as well as provide

known stimuli to the unit under test.

To investigate the feasibility of VHDL modelling, a preprocessor for the South

African Synthetic Aperture Radar (SAR) was designed and modelled. This

preprocessor was required to low pass filter the data received by the radar and then

sub-sample it safely to reduce the data rate of the data to be stored. Three methods

were considered for implementing this data reduction: Using a presummer, using a

FIR filter or a combination of the two. The last option was chosen since it produced

the highest azimuth resolution after SAR processing and it required the least

number of filter taps to produce. The method required a presummer which summed

three PRIs. The FIR filter was a 32 tap filter and incorporated a “skip”  factor of 4.

This method did not violate any constraints set by the SAR processing regarding the

sampling rate of the data, and it was feasible to implement.

Since the processing was divided into the presummer and prefilter, it was logical

that the hardware be similarly divided. One of the first design issues to be overcome

was how these two entities should interact. Both required the use of external RAM

to facilitate temporary data storage. The first method was to have separate

memories for each entity. The presummer would then output a presummed range

line to the prefilter for processing. The greatest disadvantage of this method was

that the prefilter would then have to store this data in its memory before processing
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could take place. This was inefficient as the prefilter would have to store the data

again in its memory and this would prevent it from processing during that time. The

second method was the one implemented. The implementation made use of dual

ported RAM. The presummer was connected to one port and the prefilter to the

other. The advantage of this method was that the prefilter did not have to perform

any data storage which increased the amount of time it could spend processing data.

An algorithm model was written for the presummer and prefilter operations to

verify the effects of the precision of the stored data, the filter tap weights and the

mathematical validity of the process. Test data was produced and read into the

model. The processed data was output and the results analysed. This data set was

then used to verify the operations of the other more detailed models.

The second model that was written was an abstract functional model. This modelled

the interfaces of the presummer and prefilter but contained no details of the internal

implementation or timing. The abstract functional model was however able to

process data and the test data which was used in the algorithm simulation was used

to verify the operation of the model. A model of the RAM had to be written to

allow the presummer and prefilter to store data. A functional model was written

which contained no timing information but contained the full functionality of the

device being modelled.

Finally the presummer and prefilter descriptions were written to allow synthesis. A

VHDL synthesiser was used to specify the logic required to implement the devices.

FPGA design software was then used to place-and-route the logic and finally a

FPGA configuration file was produced. Back-annotated VHDL source code was

also produced by the FPGA design software. This was a gate level VHDL model of

the device and included timing information which reflected the internal delays of

the FPGA. This model was used in the test bench for the functional model since it

contained the same I/O ports. The same test data was again used and the results

compared to the functional simulation for verification.

In conclusion, the modelling provided a method of verification that would normally

only be achievable with a physical prototype. The largest problem encountered with
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the virtual prototyping was the simulation time of the gate level models. These

would have taken up to 60 days on an Intel PII-300MHz processor with 196MB

RAM to perform – longer than the time required to build and debug a physical

prototype. The second problem was the availability of VHDL models. Without

simulation models of all the components used, system level simulation was a

pointless exercise. There are some web sites which contain a number of free models

but the majority of available models are commercial and are therefore expensive.

For companies starting out in the field of VHDL modelling, the cost of a VHDL

simulator package can also be prohibitive. If the required models are available and

software to simulate and synthesise them, the goals of RASSP can be achieved.
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Chapter 1:  Introduction

VHDL is a hardware description language that is gaining increasing popularity with

digital designers, as it is both a synthesis1 and simulation language. The majority of

users in South Africa today use only the language’s synthesis abilities, hardly ever

tapping into the power of simulation. Their systems design is modular and although

their modules are tested, it is not known before the design is prototyped how the

modules will function in the completed system. In South Africa, VHDL is used

mostly for FPGA design. Most of the more popular FPGA design software

packages have very limited VHDL simulation abilities. The system therefore cannot

be tested before it is completely implemented.

With the fierce competition between companies to get their products onto the

market, the design’s time-to-market must be minimised. Finding design errors

during physical prototyping leads to costly delays, both financial and timely. It

would be far cheaper if the designs could be debugged and tested before reaching

silicon for the first time. The solution is Virtual or System Level Prototyping.

Virtual Prototyping involves the simulation of the entire system. The level of

complexity can be from a behavioural (top level), right down to a gate level

simulation. The lack of use of Virtual Prototyping in smaller companies often is due

to them not having sufficient resources to develop their own models of the

components they wish to simulate. This is becoming less of a problem due to the

rapidly increasing popularity of the World Wide Web. VHDL models can now be

obtained for a variety of digital devices, from TTL and CMOS gates to models of

processors that will execute given instruction code. Many specialist companies are

publishing on the Web with their sole area of business being the development of

such models. Companies are now able to purchase the models they require, rather

than spending hundreds of man-hours developing them.

                                               
1 Synthesis is the process of specifying digital logic gates that will be functionally equivalent to a specification of

hardware described in a hardware description language.
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This thesis will attempt to investigate the feasibility of VHDL simulation. As a case

study, the design of a digital preprocessor for a synthetic aperture radar was

attempted. The preprocessor was designed and simulated in VHDL.

The preprocessor was targeted for a Field Programmable Gate Array (FPGA). The

reason for this was to investigate the level of complexity of algorithm that could be

achieved in such a device. This solution was completely hardware based. A

software based digital signal processor (DSP) solution is being investigated by

Yann Tréméac [19].

1.1 Thesis Outline

This thesis is divided into 9 chapters and 4 appendices. A brief overview of each

chapter and appendix follows:

Chapter 2 introduces Virtual Prototyping, which is part of a new design process

called RASSP. Rapid Application Specific Signal-processor Prototyping is a design

methodology which aims to reduce the typical development time of a DSP system

from months to a period of weeks. Virtual prototyping is also becoming a necessity

owing to the increased pin counts of some of the new high density IC packages. It is

no longer feasible for a “bed-of-nails”  tester to test boards containing such devices

and plugging a logic analyser into the system is almost impossible as the new

packages often contain no pins e.g. Ball Grid Arrays. Virtual prototyping is required

to test the internals of each of the PLDs while boundary scan techniques will test

their interconnection. The chapter also introduces VHDL, a Hardware Description

Language which can be used for both the simulation and synthesis of digital

circuits. System components can be modelled with VHDL and chapter 2 describes

the different levels of abstraction of these models. How each is used in the virtual

prototyping process is also described.

Chapter 3 describes Field Programmable Gate Arrays and the design process

required to produce the configuration files for programming them. Most FPGA

manufacturers have design software for their specific devices. These packages will

often compile a VHDL description of the device and then synthesise the logic
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required to implement it. This logic is then place-and-routed and a configuration file

for the FPGA is produced. Many of the new FPGAs are SRAM based and required

a specialised serial ROM to load their configuration on power up. The use of

FPGAs in a DSP environment is also discussed.

Chapter 4 introduces some basic synthetic aperture radar theory. Since the focus of

this thesis is not SAR processing, the theory contained in this chapter will not be

very detailed. An overview of the workings of a pulsed radar will be described.

Once the transmitted data has been received, it requires processing to convert it into

a focussed image. In order to do this, the data has to be compressed in azimuth, so

that the individual targets can be seen. Chapter 4 describes this process.

Chapter 5 details the filter development. This chapter begins by looking at why the

preprocessor was needed and how its specifications were decided upon.  At this

stage of development, no consideration was given to the hardware. The

preprocessor was required in an existing radar to reduce the data rate of the data

being stored. By low pass filtering the data, it could safely be subsampled. Three

main methods were examined: Using only a presummer, using a presummer before

a FIR filter and using just a FIR filter. All of these methods were tested and the

results are included. Using a presummer before the FIR filter was the method

decided upon as it allowed for the use of a filter with a better cutoff. This produced

a better focussed image.

Chapter 6 discusses the preprocessor’s hardware development. A top down

approach was used during development to keep in line with the principles of

RASSP. Without specifying the internals of either the presummer or prefilter, some

decisions had to be made regarding the hardware requirements, especially for the

memory. The expandability of the solution had to be determined as the processing

speed of the presummer and prefilter would not be known until it was designed.  A

solution which could be made to meet the speed requirements had to be found.

Chapters 7 and 8 describe the design of the presummer and prefilter FPGAs. A top

level, behavioural simulation was first performed to verify the correctness of the

algorithms. Once this was verified, separate high level models of the presummer
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and prefilter were constructed. This allowed the interaction of the components to be

tested and the system could then be compared with the original algorithm. The

presummer and prefilter were then implemented separately as synthesisable VHDL

models. Once implemented, the components were then tested against the results

produced by the original algorithmic simulation. The final design could therefore be

verified without the need for physical prototyping.

Chapter 9 contains the conclusions. Virtual Prototyping has distinct advantages

when building systems, whether it be simple micro-controller boards to complete

digital radars. The ability to simulate each of the devices and to be able to probe any

point in the system saves a great deal of time when debugging systems. Finding

errors is far quicker when looking at the results of a simulation than having to use

conventional hardware techniques such as logic analysers. Correcting errors is also

far cheaper when discovered before the printed circuit boards are made. Depending

on the simulator used, the number of existing VHDL models available to the

designer varies.  Producing models is a time consuming task and it would be

pointless for small companies to employ a designer to code only the models

required.

Appendix A contains the specifications for the different filters considered. The

specifications include the tap weights, sampling frequency and cut-off frequency.

Appendix B contains brief description of the JTAG standard for programming

FPGAs and for use in Boundary Scan.

Appendix C contains the MathCAD simulation used for comparing the effects of

the filters on the SAR processing.

Appendix D contains the VHDL source code for the simulations and synthesised

FPGA.
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Chapter 2:  Virtual Prototyping

Virtual prototyping is known by a variety of names including board level

simulation, system simulation and rapid prototyping. Virtual prototyping can be

defined as “simulating the functionality of one or several printed circuit boards built

with standard components, possibly incorporating Application Specific Integrated

Circuits, ASIC, and Application Specific Standard Products, ASSP” [8]

2.1 Rapid Application Specific Signal-processor

Prototyping (RASSP)

Virtual prototyping is the basis for Rapid Application Specific Signal-processor

Prototyping (RASSP). This program was initiated by the Defence Advanced

Research Projects Agency (DARPA) in July 1993 with the aims of significantly

improving the process by which embedded digital signal processors are developed

and supported [17]. The program also emphasises design reuse in an effort to

further reduce the development time of subsequent projects or upgrades. RASSP

aims at reducing the time taken to field a prototype by a factor of four with respect

to conventional design methodologies. One of the main reasons behind this program

was that systems were designed using state-of-the-art devices, but by the time the

system went into production, the devices were obsolete [15].

The RASSP methodology is based on two principal ideas: Concurrent design and

design reuse [13]. The former specifies the idea that software and hardware should

be developed in parallel and not serially, as is often the case. The hardware should

also be developed in parallel with separate teams designing different modules of the

design. Design reuse is also critical to this program as it is pointless repeating work

which has already been done.
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To test the claims of the RASSP program, a series of benchmarks were established.

The first two required the development of a virtual prototype and a hardware

prototype respectively for a Synthetic Aperture Radar Processor.

2.2 Benefits of Virtual Prototyping

Virtual prototyping encourages a top-down design methodology. This allows the

entire system to be modelled at first on a very abstract level where the basic

workings of the system can be verified. Once it is determined that the system will

meet the processing requirements i.e. the algorithm to be implemented is correct,

more specific and detailed models can be developed to replace the abstract ones.

During this process, the system can be divided into modules and the specifications

of each can be defined. By doing this at an early stage, the functionality of the

modules can be tested, as well as their ability to interact with the other modules. By

moving to lower levels of model abstraction, different architectures can be

evaluated before one is finally chosen.

Virtual prototyping also allows for the simulation of subsystems which have not

been fully implemented. This allows designers to test their individual modules with

the modelled system, even if the entire system has not been implemented. Doing

this enables the verification of each model within the system environment. As more

modules are implemented, so their models are updated with more accurate ones

(lower abstraction level).

Hardware and software partitioning has also been improved with the use of virtual

prototyping. Under “traditional”  development, once the hardware had been

prototyped, the software could be developed.

Virtual prototyping allows a more thorough verification of the hardware than would

be achieved using conventional hardware testing methods. One of the reasons for

this is that virtual prototypes can be probed in many more places than conventional

test hardware. Using these models will also allow the test engineer to test for

conditions that are difficult to produce in the real hardware.
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2.3 VHDL

Very High Speed Integrated Circuit Hardware Description  Language is a hardware

description language (HDL) which is rapidly gaining popularity as both a

simulation and synthesis language.

2.3.1 The History of VHDL

In 1980 the US Department of Defence (DoD) funded a project under the Very

High Speed Integrated Circuit (VHSIC) project to create a standard Hardware

Description Language (HDL). The reason for this was the DoD’s desire to obtain a

standard design and documentation tool. The result of this was the creation of the

VHSIC HDL, or VHDL as it is now commonly referred to [11].

2.3.2 VHDL Standards

VHDL is an IEEE standard and had undergone one revision. VHDL was

standardised in 1987 by the IEEE and was referred to as VHDL 1076-87. It was

revised in 1993 (VHDL ’93) and most VHDL software packages use this version

today. There are not many significant differences between the two versions except

for file I/O. Under VHDL ’87 there was no way to explicitly open and close a file.

This has been remedied in VHDL ’93.

Synopsys, a company who are the industry leaders in ASIC design software

including VHDL compilers and synthesisers, have written some VHDL libraries

which have now become fairly standard and are packaged with most VHDL

simulators. These additions deal mostly with the file I/O of formatted text.

2.3.3 VHDL Software

Once compiled, VHDL source files can be synthesised or simulated. These two

processes are very different and often not both fully supported in some software

packages.

VHDL synthesis involves taking a VHDL source file and synthesising the digital

logic that the source file describes. Not all synthesisers are created equal and one of

the characteristics which separates the good from the bad synthesisers is their ability
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to optimise the logic they have created. Thus, the logic that they produce will be

less efficient than from a good compiler in speed and/or area. Many FPGA

manufacturers provide VHDL synthesisers with their FPGA design software but

licences for these often have to be purchased separately.

A full simulator should be either VHDL ‘87 or VHDL ‘93 compliant. VHDL

simulators are sometimes packaged with synthesisers but often in a stripped down

version. These simulators are normally graphical simulators where the inputs have

to be entered graphically – not written as a VHDL input file. This is very limiting in

that writing a VHDL description for a given waveform is far easier than entering it

graphically, especially when it is repetitive. These simulators usually do not have

any support for file I/O and so test benches cannot be written to verify any data

produced.

A number of different vendors produce VHDL Simulators. Some of these have

demonstration versions of their software which may be evaluated for a short period.

All except Ptolomy and Alliance are commercial packages.

• ActiveVHDL (http://www.aldec.com/ActiveVHDL)

• Alliance. This is a freeware VHDL teaching aid which supports some of the

VHDL subset. (http://www-asim.lip6.fr/alliance/index.gb.html)

• Mentor Graphics (http://www.mentorg.com)

• Model Technology’s ModelSim (http://www.model.com)

• PeakVHDL (http://www.acc-eda.com)

• Ptolemy. This is written by the Ptolemy Project at the University of California

at Berkeley. (http://ptolemy.eecs.berkeley.edu/)

• Synopsys (http://www.synopsys.com)
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2.4 VHDL Coding

Describing the VHDL language is far too great a task to perform here. What follows

is a brief introduction into the structure of the language. The main programming

unit in VHDL source is the entity-architecture pair (see Figure 1). An entity is the

description of the interface ports of a design e.g. the pins on an IC. This entity has

an architecture associated with it that describes the working of the entity. If an

entity is required as part of another entity, it is referred to as a component and is

declared as such.

An entity can have multiple architectures associated with it, although only one

architecture may be used at any one time. A configuration is required to bind an

architecture with an entity (see Figure 1). If there is no explicit configuration, the

default configuration is used.

VHDL source written for simulation cannot always be synthesised. In fact, only a

small subset of the language is synthesisable. This alone is reason enough for

having multiple architectures. For the same entity, synthesisable and simulatable

architectures can be written. Depending on which process is being performed, either

of the two architectures can be selected in the configuration (see Figure 1).



Chapter 2: Virtual Prototyping

10

Entity

Component

Synthesis

Architecture

Entity

Architecture

Architecture

Simulation

Configuration

Figure 1: VHDL Entity Architecture Pairs

The style of writing VHDL will also affect the logic that is synthesised. Although

two ways of writing some code will have the same logical effect, the logic

synthesised could be completely different. For example, using a “case”  statement is

more efficient than using nested “if”  statements. The former is often synthesised as

a multiplexer while the latter results in a string of nested AND gates.

Writing synthesisable VHDL cannot be compared with writing a program in

another software programming language like “C” or even simulation VHDL. One

must always remember that one is writing hardware and that the source which is

written is going to be transformed into hardware. Writing code without considering

the hardware that will be generated will result in code with either does not

synthesise or does not perform as expected. An example of this causes latches to be

inferred if signals are not assigned default values.

2.5 VHDL Modelling

A VHDL model of a device is a description written in VHDL which describes the

operation of the device at a particular level of abstraction. To introduce

standardisation into the writing of VHDL models, the RASSP Taxonomy Working

Group (RTWG) was formed in 1995. Their mission was to “develop a systematic
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basis for defining VHDL model types and to use this basis for concisely and

unambiguously defining a terminology that describes the models that are used

within a RASSP design process” [14].

To describe a VHDL model, the RASSP Taxonomy differentiates between five

orthogonal model characteristics: Temporal detail, data value detail, functional

detail, structural detail and software programming level. Each of these

characteristics is applied to the internal and external views of the model. These can

be plotted on a set of axes [14] that describes the level of abstraction of each of

these model characteristics. A brief explanation of these characteristics can be

found below.

2.5.1 Temporal Resolution

The Temporal Resolution Axis represents the time scale of the events that are

modelled [14]. For example if one is wishing to capture the timing of the gate

delays, the temporal resolution of the model could be in the order of picoseconds.

If, on the other hand, the instruction cycles were to be modelled, the temporal

resolution of the model could be in the order of milliseconds.

2.5.2 Data Resolution

The Data Resolution Axis represents the resolution of the format of the data values

that are used [14]. For example, if the value 1 was to be represented, it could be

done so on a low level as a binary string “0001”. The same number could be

represented as an integer (1) or as an enumerated type e.g. Yellow. All these

representations are equally accurate, just increasingly abstract.

2.5.3 Functional Resolution

The Functional Resolution Axis represents the level of detail at which the model

describes the functionality of the component or system [14]. This can range from

Boolean expressions that specify the logic required to implement a function to the

mathematical representation of that function.
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2.5.4 Structural Resolution

The Structural Resolution Axis represents the level of detail that a model provides

about how it is constructed out of constituent parts [14]. For example, if the

structure of an IC were being modelled, a high resolution model would describe the

IC in terms of the logic gates which make it up. A low resolution model would

describe an IC in terms of ALUs, multiplexers and registers.

2.5.5 Software Programming Resolution

The Software Programming Resolution Axis represents the granularity of the

instructions a model can execute when running the target software [14]. The

resolution can range from microcode instructions to high level operations like an

FFT.

2.6 General Modelling Styles

For a complete discussion of VHDL modelling, the reader is urged to consult [14]

as it provides a complete reference for all types of VHDL models, not only the ones

introduced here. All VHDL models are described in terms of three primary classes.

Each of these uses the axes described in Section 2.5 to describe their resolution.

2.6.1 Behavioural Model

This model describes the functionality and timing of a component without

specifying a particular implementation. It can be thought of as a functional model

with timing. A behavioural model can exist at any level of abstraction – this being

determined by the resolution of the implementation details [14].

2.6.2 Functional Model

This model describes the function of the system without introducing timing. It is

essentially a behavioural model without the timing. Like the behavioural model, the

functional model can exist at any level of abstraction [14].

2.6.3 Structural Model

A structural model describes a component or system in terms of the interconnection

of sub-components. The model shows the structure of the physical implementation.
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For example, a structural model of a processor would show, among other things, an

ALU connected with some registers and a program counter. These sub-components

can be described behaviourally, functionally or structurally [14].

2.7 System Models

The RTWG defines three terms for use in describing models that represent digital

systems. These models contain no structural information regarding the

implementation of the system.

2.7.1 Executable Specification

This model is a behavioural description of the system or component and mirrors the

particular functionality and timing of the required system or component. Other

system metrics e.g. weight, power consumption and size can be included in this

model [14].

2.7.2 Mathematical Model

The mathematical model describes the functional relationship between the input and

output data values. This relationship described in purely mathematical terms but

does not contain any indication as to which mathematical method is used in the

computation. This description can be found in the algorithm model [14].

A mathematical model is written to test the mathematics behind the processing to

verify that they are correct. Once this is verified, an algorithm model can be written

to test various implementations of the mathematics.

2.7.3 Algorithm Model

This is similar to the mathematical model in that it too describes the relationship

between the input and output data values. The difference is that the algorithm model

also describes how the results are calculated i.e. using Newton’s method or a

McLauren Series [14].
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An algorithm model is used to test the efficiency and validity of a number of chosen

mathematical methods. This model is also used to test the required precision of data

values.

2.8 Location of Models

There are a number of sources of VHDL models. Most of these are on the World

Wide Web and the designer is able to download the model(s) he/she is looking for.

Certain VHDL Simulator Manufacturers provide models for use with their software.

Synopsys (http://www.synopsys.com) is one such company and probably have the

largest selection of models. The following lists a number of web sites which contain

either freeware or shareware models.

• The RASSP Home Page (http://rassp.scra.org) has a number of VHDL models.

These include processor, memory and bus models and are available for free

download.

• The Free Model Foundation provides some free and other commercial

models. (http://vhdl.org/fmf/)

• The Hamburg VHDL Archive provides freeware and shareware models.

(http://tech-www.informatik.uni-hamburg.de/vhdl/vhdl.html)

• The University of Strasbourg has a free model archive. (http://erm1.u-

strasbg.fr/db)

• The Microsystems Prototyping Laboratory at Mississippi State University

has some free VHDL models.

(http://www.erc.msstate.edu/mpl/vhdl/html/models/index.html)

• Doulos VHDL Model Library have some free behavioural models.

(http://www.doulos.co.uk/models/index.htm)
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A number of commercial model developers also have web sites. Since these models

have to be paid for before they can be evaluated, the quality of these sites has yet to

be determined.
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Chapter 3:  Field Programmable Gate

Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are programmable logic devices which

provide the benefits of custom CMOS VLSI, while avoiding the initial cost, long

development cycle and inherent risk of a conventional masked gate array [20].

3.1 What is an FPGA?

When custom digital logic is required in a design, the designer is provided with a

number of options ranging from ASICs to discrete logic. ASICs are expensive to

design but their unit price is low since the size of the minimum order is usually very

big. The designer specifies the logic required in the IC and the manufacturer

produces it from a design file. An FPGA is a type of ASIC except that the designer

can configure the logic within the device to implement the required functionality.

The FPGA effectively provides the designer with a “sea of logic gates”  which is

configured by the designer. This process has the effect of connecting the logic gates

in such a way that the required logic functions are produced. The unit price of an

FPGA is more than an ASIC but FPGAs are available in smaller quantities. The

initial cost of production is less for an FPGA than an ASIC since the internals of the

former are already specified. All that is required is for the device to be configured to

produce the required functionality. When designing an ASIC, the entire design of

the device is left to the designer. More skill is therefore required to design an ASIC

than to produce an FPGA. FPGAs are often used as prototypes for ASICs. The

FPGAs can be programmed to provide the same functionality as the ASICs for

testing purposes.
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Different manufacturers have different structures for their devices but essentially

they share the same basic idea2. There are three parts: the logic cells, the I/O cells

and the interconnection matrix. These are illustrated in Figure 2.

Many FPGAs are SRAM based and read their configuration from an onboard ROM

on power up. This has a number of advantages:

• Bug fixes can be performed by simply reprogramming the configuration ROM.

• The FPGA can be forced to reconfigure “ in system” to allow it to perform

different tasks as required [10] e.g. if the FPGA contained a FIR filter, new

coefficients could be loaded if required. These configurations would have to be

stored onboard and could not be created “on the fly” .

• For applications where the security of the internal design is critical, the contents

of both the ROM and the FPGA can be erased should the unit be tampered

with. Once erased, no reverse engineering can take place as no clue as to the

operations of the device will remain.

3.1.1 The Logic Cells

The logic cells are blocks of logic that can be configured to produce the user’s

required logic functionality. These logic cells contain flip-flops and some logic

function generators which are usually implemented as lookup tables.

The LUTs have a set number of inputs but still provide incredible flexibility since

logic cells can be combined with the interconnect matrix. This allows multiple

LUTs to be used to generate a single function.

In some FPGAs, RAM and ROM are available to the designer. These memory

devices are sometimes implemented in the LUTs in the logic cells (e.g. Xilinx),

while other devices have separate cells to implement them (e.g. Altera).

                                               
2 The description below is essentially what the two market leaders in FPGA technology, Xilinx Inc. and Altera

Corp. use.
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I/O Block Logic Cell Interconnect
Matrix

Figure 2: FPGA Internals

FPGAs are rich in registers as each logic cell contains a number of flip-flops. This

makes them ideal for pipelined designs.

Some devices contain carry logic that allows a carry signal to be included in a logic

cell. This can reduce the number of logic cells used for complex functions in that

without carry chains, extra logic cells would be required to implement these

functions.

3.1.2 The I/O Cells

I/O cells are similar to the logic cells except the logic that they contain is more

specifically tailored to I/O functions. These cells provide the interface between the

external device package pins and the internal logic. Each I/O cell is associated with

an external package pin and can be configured for input, output or bi-directional

signals.

Sometimes the I/O cells offer programmable slew rates. The slew rate of an output

is a measure of the speed at which it can change. Faster slew rates produce more
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noise than slower slew rates. Depending on the application, the designer can choose

which slew rate to use.

Many applications require that the inputs and outputs be registered. In an effort to

minimise the setup time on inputs and the clock to output time on outputs, the I/O

cells often have flip-flops in them. The advantage of using these flip-flops as

opposed to any others in the FPGA is that the distance between the pin and the flip-

flop is minimised. This reduces the routing delay and hence the setup and hold

times of the pin.

3.1.3 The Interconnect Matrix

The logic cells and I/O cells are connected together with a routing matrix. This

matrix provides a means of connecting cells to each other. Different vendors have

different methods of providing routing and most claim that their devices are more

“routable”  than their competitors, especially when referring to pin locking. Pin

locking is when the designer forces the FPGA design software to place certain input

and output signals on specified pins. When the FPGA is initially designed, these

signals are placed on the pins that are most optimal in terms of routing. Should the

design be changed after the PCB had been designed, it is essential that the FPGA

use the original pins for its signals. Obviously, this problem increases as the

utilisation of the FPGA increases.

3.2 Producing an FPGA Design

FPGA vendors produce software that is used in design of their own devices. The

device specific stage of the design is the fitting or place-and-routing. Third party

software is available to perform the design entry and logic synthesis but the author

has not encountered any which can perform any device fitting.

3.2.1 Design Entry

This is the first stage in the design. Two methods exist for doing this: graphical or

HDL entry. Graphical entry is cumbersome with larger designs and is less flexible

than HDL entry. Symbols for various logic functions (logic gates, multiplexers,

adders etc.) are connected together by the designer. This method is useful if a
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schematic for the required logic already exists but becomes very cluttered with

larger designs.

HDL entry is not limited to using VHDL. ABEL, AHDL and Verilog are examples

of other hardware description languages that can be used for describing the

operation of the device. Different design software supports different HDLs but most

seem to offer VHDL support – usually as an optional extra.

Once the design has been entered, it has to be compiled. This checks the syntax of

the source (if HDL entry is used) and converts it onto an intermediate format which

is more useful to a computer. This compiled source is passed to the logic

synthesiser.

3.2.2 Logic synthesis

The logic synthesiser takes the compiled source and produces a digital logic

equivalent for it. The logic produced is optimised for the device that is targeted.

Design software has device specific libraries that contain information on the

available logic in different devices.

Most synthesisers can be controlled in the optimisation of the synthesised logic. The

trade off between logic speed and area or routability can be set by the designer. The

use of carry chains (see section 3.1.1) can also be enabled.

3.2.3 Place-and-route

Once the logic has been synthesised, the fitting software has to perform a place-and-

route. This process takes all the synthesised logic and connects it inside the FPGA.

All the I/O pins are also connected to the corresponding I/O cells and these in turn

are connected to the required logic cells. This is a complex process and often takes

the largest proportion of the compile time.

If the fitter cannot perform the place-and-route on the targeted device, it will either,

at the designer’s request, split the design into multiple devices or use a larger

capacity device.
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3.2.4 Programming the FPGA

Once the place-and-route has taken place, a configuration file is generated for the

target device. Since most FPGAs currently used are SRAM based, they have to be

programmed or configured on power up. There are a number of ways of performing

this but the most common is to use a serial programming ROM. This ROM has an

internal address counter and it provides the required signals and data to the FPGA to

program it. FPGAs are often programmed via their JTAG port. More information

on JTAG can be found in Appendix B: JTAG Boundary Scan.

3.3 Digital Signal Processing in FPGAs

The choice to use a DSP chip or an FPGA is not always an easy one. Both DSPs

and FPGAs have increased in speed and are continuing to do so. DSPs are available

off the shelf and anyone who is proficient in the C programming language should

be able to program most of them. FPGAs can be designed graphically so a designer

who is unfamiliar with VHDL can still produce and FPGA.

The main difference between an FPGA and DSP is that a DSP is a general purpose

processor while an FPGA can be used to implement an architecture that is

optimised to perform one specific task. This is not to say that the FPGA cannot be

reprogrammed to perform another task but rather the architecture that the DSP

program makes use of is fixed. That DSP architecture is a general architecture that

is designed to support a number of different functions. The functionality of the

FPGA is programmed by the designer to be optimal for the task being performed.

With the introduction of SRAM based FPGAs, reprogramming either type of device

with updated code is a trivial task and can often be done “in circuit” . Compile times

for larger designs will be longer for the FPGAs than the DSPs because the DSPs

require no place-and-routing. On more complicated designs however, modifying the

operation of a DSP is simpler than performing the same operation on an FPGA. The

DSP modification can require the addition of just a few lines of code while the

FPGA equivalent of that code could require the addition of a large amount of logic.
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Optimising the design to meet the required speed can be more tricky in an FPGA

than with a DSP. With the DSP, the instruction time of each operation is fixed and

the more code that has to be processed, the longer it will take. If the code cannot be

simplified any further then either more devices need to be added in improve the

processing power or a faster device needs to be used.

With an FPGA, the same is true to an extent: The more complex the function, the

more logic is required and the longer the result will take. The difference with the

FPGA is that there are a number of other factors that influence the operating speed.

Firstly there is the speed of the device – FPGAs are available in different speed

grades. The same logic on a faster device will obviously result in faster operation.

Secondly, there is the efficiency of the synthesiser. A poor synthesiser will not

optimise the logic to the same extent as a higher quality one. The result will be

slower logic. Thirdly, the tasks that are to be performed can possibly be run in

parallel, often to a larger extent than multiprocessor DSPs. Lastly there is

pipelining. A highly pipelined system will have a larger data throughput than one

which isn’ t. Although DSP architectures often include data and instruction

pipelining, the pipeline is often not as long as a custom designed FPGA. It is often a

challenge to make an FPGA work at a high speed. In a DSP system, the

multiplication is a fixed operation; there is one instruction to perform it. In an

FPGA, multiplication can be performed in a number of ways e.g. Partial Product

LUT Multipliers, Constant Coefficient Multipliers and Scaling Accumulator

Multipliers [5].

Ultimately the choice between the two processors has to be made after considering

the algorithm. Multiplication in FPGAs is costly in terms of logic and the speed of

DSP multipliers is often faster than those synthesised in FPGAs. On the other hand,

if the multiplication is small i.e. the widths of the multiplier and multiplicand are

small, a LUT based implementation could be used which and can be performed in a

single clock cycle.

An area where DSPs excel compared to FPGAs is in the support of floating point

operations. Most of the DSP functions which have been written for FPGAs are only
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capable of performing integer operations. DSPs, on the other hand, are available in

both fixed and floating point versions. If the required processing makes use of

floating point operations, a DSP is the clear choice.
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Chapter 4:  Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is an imaging technique which is used for creating

radar backscatter maps of the ground surface below a moving platform. This

platform is usually either airborne or spaceborne. The treatment of the data from

both platforms is fairly similar - the airborne case is examined here for short pulse

operation.

4.1 Radar Basics

A radar transmits an electromagnetic pulse and times how long it takes for a

reflection from a target to return. The further away the target is from the radar, the

longer the delay between the transmitted and received pulses. If the target is moving

radially relative to the radar when the transmitted pulse hits, a phase shift (Doppler

Shift) will be introduced in the reflection. By observing the change in phase of the

reflected signal, the radial speed of the target can be calculated.

SAR makes use of a coherent pulsed radar which describes a radar that transmits

and receives alternately. After a short pulse has been transmitted, the radar switches

to receive mode to receive the reflected returns from the target. Pulses are

transmitted to provide regularly spaced samples along the flight track (azimuth

direction). The time interval between pulses is known as the Pulse Repetition

Interval (PRI) and is the inverse of the Pulse Repetition Frequency (PRF). This is

shown in Figure 3.
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Current radars are, for the most part, digital systems. When the radar begins

receiving the reflections from its transmission, I Q demodulation is performed

followed by an analogue to digital conversion. Complex sampling is used so that

the phase information of the signal is not lost. For strip-mapping SAR, the sampling

always starts a fixed time after the transmission ends. This is important as it allows

each sample to represent a particular range bin. Each range bin has a corresponding

ground resolution. Thus the returns from a stationary target (relative to the radar)

will always appear in the same range bin.

Swath

Illuminated area on
the ground

Figure 4: Illuminated Ground Area of a Side Looking Airborne Radar

With SAR, the radar antenna is usually mounted perpendicular to the flight path of

the aircraft and is pointed downwards toward the ground. The antenna has a fixed
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beamwidth and so an oval shaped footprint is illuminated by the radar. In this way,

as the aircraft flies along its flight path, the radar will illuminate a swath on the

ground (see Figure 4). As the azimuth beamwidth is fairly large, a target is

illuminated a number of times by successive transmission pulses as it travels

through the beamwidth of the antenna. If the target is stationary on the ground, as

the aircraft flies past it, the distance to the target will change. If the distance to the

target were plotted, it would be hyperbolic as shown in the top block of Figure 5.

This is known as range migration.

4.2 SAR Processing

4.2.1 Overview

Since the target is illuminated multiple times, the resulting image needs to be

“ focussed” so that the exact position of the target can be identified. Convolving

with a matched filter for the target achieves this. The matched filter is constructed

by simulating the return from a single point target and taking the time reversed,

complex conjugate of it. The filter is applied in azimuth (the direction of flight of

the aircraft).

The matched filter is then convolved with the returned data. Once the matched filter

has been applied, the image is said to be focussed. The position of individual targets

in azimuth can now be identified by locating peaks in the focussed data. A block

diagram of the processing can be seen in Figure 5.
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Figure 5: Block Diagram of SAR Processing

4.2.2 Image Resolution

For the ideal case, the azimuth resolution of a SAR is determined by the platform

speed (the aircraft speed if it is aircraft mounted) and azimuth bandwidth of the

system (see Equation 1). The value of K is determined by the type on windowing

function that is used (0.89 is used for rectangular windows) [9]. This azimuth

bandwidth is not to be confused with the azimuth sampling rate (PRF) but rather it

is the Doppler bandwidth shown in Equation 2. In that equation, v is the platform

speed, θ is the antenna azimuth beamwidth and λ is the carrier wavelength.

Azimuth
Azimuth Bandwidth

v
Ks =Re Equation 1

λ

θ
)

2
sin(4v

BandwidthAzimuth =
Equation 2
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Once the image has been focussed as described above, the power output of the

focussed returns around the area of the target appear similar to a 
x

x)sin(
 function, as

seen in the bottom block of Figure 5. This 
x

x)sin(
 function is formed as the result of

the inverse Fourier Transform of a Rect function since the frequency spectrum of

the transmitted wave, the received wave and the matched filter are all

approximately Rect functions.

Three measures often used with point targets to determine the quality of the

focussed image are: The width of the main peak, the peak sidelobe level and the

integrated sidelobe level. The width of the peak, taken at the –3dB points, is used to

calculate the actual azimuth resolution of the radar. The azimuth resolution is

calculated by multiplying the peak width (measured in number of samples) by the

sample size given by 
PRF

v
 which is the ground spacing of the samples. During the

convolution process, sidelobes are introduced into the output. These sidelobes

appear as ghost targets in the focussed image, regularly spaced from the main

target. The brightness of these ghost targets is related to the sidelobe level. It is

therefore necessary to minimise the sidelobes to prevent the introduction of ghost

images in the focussed image. A method of reducing them is to apply a window

function to the matched filter. This has the effect of widening the main peak but

also further reducing the sidelobes. Using a Hamming window will reduce the peak

sidelobe level to approximately –40dB, compared to a rectangular window which

provides sidelobe levels of approximately –13dB. A Hamming window will have a

window factor of 1.30 in Equation 1 [9].

The integrated sidelobe level gives a measure of how much of the radar energy

returns are in the sidelobes compared to the amount in the target return peak.

The resolution of a SAR in both range and azimuth is bandwidth limited. The

theoretical maximum azimuth resolution is given in Equation 1 while the theoretical

maximum range resolution is given in Equation 3. Note that there is also a window

factor incorporated here for the window function that is used in range compression.
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A measure the effectiveness of the SAR processing and the quality of the radar can

be made by comparing the theoretical resolution of the radar with its measured

performance.

Txpulse
rangeRange Bandwidth

c
Ksolution

2
Re = Equation 3
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Chapter 5:  Preprocessor Design

5.1 Overview

This preprocessor was designed for the airborne SASAR 1 VHF (141MHz) Radar,

set to undergo flight testing in mid 1998. As the name implies, the SASAR Radar

was the South African Synthetic Aperture Radar. The radar sampled the return from

its transmission with a pair of analogue to digital converters. Before this digital data

could be stored, it had to be processed as the current data recorders could not record

at the required data rate when the radar sampled at 4096 range bins per PRI.

The processing requirements were therefore to reduce the data rate of the sampled

data, thus allowing the data recorders to store all the data. This processing was not

to contaminate the data in any way which could negatively affect any SAR

processing which would be performed at a later stage. This meant that the

processing could not introduce any phase shift into the data. It would however be

advantageous if the processing could improve the signal to noise ratio of the data.

The following table lists some of the important radar specifications:

Table 1: Radar Specifications

Pulse Repetition Frequency 625Hz
Carrier Frequency 141MHz
Pulse Width 88ns
Max Range Resolution 13.2m
Azimuth Beamwidth 45°
Elevation Beamwidth 60°
Aircraft Ground Speed 250m/sec
Range samples per PRI (I,Q) 2048/4096
Maximum Doppler Bandwidth 180Hz

To lower the data rate, the effective pulse repetition frequency had to be reduced

since reducing the number of range samples per PRI would have reduced the
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performance of the radar. When processing SAR images, it is often desirable to

make the azimuth and range resolution of the focussed image the same. The range

resolution of the SASAR system was approximately 13 meters. SAR processing

required that the azimuth bandwidth was approximately 37Hz to be able to focus

the image to approximately 13 meters in azimuth with 2 independent looks for

speckle reduction. Thus, the full 180Hz bandwidth which was available (see Table

1) was not required. The radar was sampling at a rate of 625Hz in azimuth. By

reducing the azimuth sampling rate (PRF), the data rate would be reduced. The PRF

could be reduced by a factor of 12 to give an effective PRF of 52Hz, slightly above

the required 37Hz processing bandwidth. Since complex sampling was used, the

Nyquist Sampling Rate was 37Hz.

The simplest method of reducing the azimuth sampling rate was to only store every

nth range line. Other methods existed which did not discard valuable data or result in

aliasing and these made use of a low pass filter. By low pass filtering the data, the

higher frequency components were removed. The signal could then safely be sub-

sampled without infringing the Nyquist Sampling Criterion.

5.2 Current System

The current system made use of a presummer. The process of presumming involved

calculating the average of a number of PRIs, thus implementing a crude low pass

filter. Consecutive range lines were added to produce a single range line output.

This adding took place in azimuth i.e. the corresponding range bins in each PRI

were added. If a presummer of factor five were used then five range lines would be

added to give one range line output. Presumming the data would have increased the

signal to noise ratio as the noncoherent noise would have been added together and

cancelled itself while the coherent signal would not.

Before considering alternative solutions, modifications to the current system were

considered. The only possible modification was to increase the presum factor to the

required value of 12. This would have reduced the data rate and increased the signal

to noise ratio as a number of PRIs would be summed to give the filter output. The
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noncoherent noise would therefore sum to zero and only the signal would remain.

The problem with method was that the Nyquist Sampling Criterion was infringed

by doing this as the data contained frequency components of 180Hz, as given by the

Maximum Doppler Bandwidth in Table 1. For this reason, other solutions had to be

investigated.

5.3 Proposed Solutions

Two methods of filtering were examined. The first involved a low pass filter with a

sampling frequency of 625Hz and a bandwidth of 20Hz while the second method

was a combination of a presummer and a filter. Both these methods were tested as

described in Section 5.5.1.

5.3.1 Filtering with no Presummer

This method required that a low pass filter be applied to the data in the azimuth

direction. The low pass filtering would null the frequency components which were

higher than approximately 20Hz 3. This would constrain the bandwidth of the signal

to approximately 40Hz so the data could safely be subsampled at 52Hz. The signal

to noise ratio would be increased since the returns from many PRIs would be

combined to form a single output.

5.3.2 Filtering after Presumming

A combination the current system design and the method described above was also

possible. In this method, a presummer would be used to reduce the PRF to a value

just higher than the Doppler Bandwidth of the system. This would be achieved by

presumming the data by a factor of three and would reduce the effective PRF to

208.33Hz. A presum factor of three was the largest that could be used without

infringing the Nyquist Sampling Criterion since the bandwidth of the signal was

180Hz. A low pass filter could then be used to remove the high frequency

components of the signal before it was subsampled at 52Hz. The advantage of this

                                               
3 The filter is obviously not a brick wall filter and so some higher frequency components will be passed. The

attenuation in the stop band is finite so the higher frequencies will still be present although at a greatly reduced
level.
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method was that a filter with a steeper cutoff could be achieved with a fewer

number of taps.

5.4 Filter Design

Digital filters were available in two flavours: Finite Impulse Response (FIR) and

Infinite Impulse Response (IIR). The former was the easier of the two to implement

as it simply consisted of a tapped delay line where each tap is multiplied by a

scaling factor. More importantly, the filter required a linear phase response so that it

did not adversely affect the SAR processing of the data - a process that relied on

accurate phase measurements. Symmetric FIR filters with real coefficients have this

characteristic [12].

The design of a FIR filter was centred around the sampling frequency of the data it

operated on. Operating the same filter on data with different sampling rates

produced different filter characteristics.

FIR filters are defined by a number of characteristics including the number of filter

taps, their corresponding coefficients and the amount of ripple in the passband. The

relationship between the filter coefficients and the frequency response of the filter

can be seen in Equation 4 [12], where Hd is the ideal frequency response of the filter

and n is the sample number. This implies that an infinite length filter is required to

accurately describe the frequency response of a filter. The number of taps used

affects the accuracy of the frequency response of the filter; the longer the filter, the

more accurate the representation.
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There are a number of methods for calculating the filter coefficients and these are

usually performed by computer. Two filter design packages were used: Matlab and

QED (a part of the COSSAP package written by Synopsys

http://www.synopsys.com). Matlab source code was provided in [16]. The design of

filters is beyond the scope of this document but it is sufficient to mention that there
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are two main methods for calculating the filter coefficients: a window method and

an optimal approximation method. Both of these methods were used in the design

of a number of filters.

The FIR filter was required to perform a low pass filter to limit the bandwidth of the

data to 40Hz. Once it was known that the data contained no frequency components

higher than 20Hz, it could safely be subsampled at 52Hz since the bandwidth of the

signal was 40Hz. The integrity of the data would remain intact. This subsampling

could have been achieved in two ways. Firstly, every nth processed sample could

have been output while the rest were discarded. The problem with this method was

that the available data was not being fully utilised, which was inefficient. Secondly,

the FIR filter could have had a “skip factor” incorporated in it. The FIR filter would

calculate a single output and then skip a number of samples before outputting

another sample. An example of this is shown for a FIR filter with seven taps and a

skip factor of four in Figure 6.

Output 1
Output2

Output3

Data

Figure 6: FIR Filter Skip Factor

5.5 Preprocessor Development

The two methods that were proposed in Section 5.3 were tested to determine the

most suitable approach. Once a method was chosen, it was optimised. A number of

methods existed for designing FIR Filters. To compare the results of the two

proposed solutions, the same filter design method was used to produce filters that

were identical except for the number of taps and sampling frequency. Details of the

filters can be found in Appendix A: FIR Filter Characteristics.

Filter design is sometimes approached as more art than science as the responses of

the different filters are often compared visually. Some produce better cutoffs while
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others have less ripple. For this reason it was decided to generate the filters and test

their effects on the SAR processing. This produced more quantitative result of the

quality of the FIR filter. A MathCAD SAR processor was written (see Appendix C:

MathCAD SAR Processor) to generate synthetic SAR data of a point target. This

data was then filtered and processed.

A peak detection program written by Jasper Horrell provided the numerical results.

The input data to this program was the power values of the focussed SAR data. The

program searched through the data to find the maximum value which signified the

main peak. The gradient of the data was then examined to find the turning points on

either side of the maximum value. The distance between these turning points was

defined as the main peak width. The peak sidelobe level was found by searching

through the data which did not fall into the main peak region and finding the

maximum. The integrated sidelobe level was also calculated by integrating the main

lobe and then integrating the sidelobes. The integrated sidelobe level was calculated

as follows: LobeMainIntegrated
SidelobesIntegratedLevelSidelobeIntegrated ≡ . Since there were an

infinite number of sidelobes, a region of 200 samples around the main peak was

used in the sidelobe calculations. The number of samples chosen was arbitrary but

was constant for all calculations. These measurements provided a quantitative

evaluation of the effects of the filter.

5.5.1 Comparing the Proposed Solutions

The number of filter taps was unknown and so it was decided to test 2 arbitrary

filter lengths, 64 and 32 taps. The results of this gave an indication as to the

required number of filter taps. Filter A (see Section A.1) was a 64 tap filter with a

sampling frequency of 625Hz. A 32 tap filter, with the same specifications, was

attempted but could not be produced since the number of taps was too small for the

required response. Filter A was tested and the results can be seen in Table 2.

Filter B was constructed to be the same as Filter A except that its sampling

frequency was 208 Hz. This filter operated on data which had been presummed by a

factor of three. Filter B was then shortened to 32 taps (Filter C) and the test

repeated. The results can be seen in Table 2.
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The expected results were obtained. Filter A performed the worst as the azimuth

resolution obtained was less than half of the filters. The reason for this can be

attributed to the very wide passband, as can be seen in Figure 29. This introduced

aliasing as the filter cutoff frequency was higher than the  new sampling frequency

of 52 Hz. It was expected that the longer filter would produce better results. This

was partly true in that the longer filter produced a finer azimuth resolution. What

was interesting was that the shorter filter (Filter C) had lower sidelobes than Filter

B. The reason for this is unclear and is an area that requires further investigation.

The difference between filters B and C was negligible in terms of resolution. Since

an azimuth resolution of six meters was required, it was decided to use a 32 tap

filter as that would ease processing requirements.

Table 2: Initial Filter Performance

Name No. of
Taps

Sampling
Frequency

Azimuth
Resolution

Peak
Sidelobe

Level

Integrated
Sidelobe Level

Filter A 64 625 Hz 11.064 m -12.619 dB -18.411 dB
Filter B 64 208 Hz 5.268 m -13.749 dB -11.513 dB
Filter C 32 208 Hz 5.352 m -14.840 dB -13.347 dB

5.5.2 Finding the Optimal Filter

The solution to be implemented had been decided upon and was then optimised. A

number of different filters were calculated and tested to find one which provided the

optimal effects on the SAR processing. Besides Filter C which had already been

tested, three further filters were designed. All three had the same specifications (32

taps, 40 Hz bandwidth) except that the method used to calculate their coefficients

was different. A comparison of their frequency responses can be seen in Figure 7.

The characteristics of the filters can be seen in Appendix A: FIR Filter

Characteristics while the results of the testing can be seen in Table 3.
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Table 3: Final Filter Performance

Name No. of
Taps

Design
Method

Azimuth
Resolution

Peak
Sidelobe

Level

Integrated
Sidelobe Level

Filter D 32 Kaiser 5.196 m -14.276 dB -12.070 dB
Filter E 32 Equiripple 4.932 m -14.590 dB -12.452 dB
Filter F 32 Linear 5.208m -15.174 dB -12.015 dB

It was noted in the processed outputs that aliasing had been introduced. Upon

further investigation it appeared that this was introduced by the FIR filter when

subsampling took place. The reason for this was that the stop band of the FIR filters

would only attenuate the signal by approximately 20dB. This can be seen in Figure

35, Figure 37 and Figure 39. Frequency components which were higher than the

Nyquist Sampling Frequency were therefore still present in the signal and these

introduced the aliasing. The level of the aliased level (see Figure 8) was

approximately 20dB lower than the focussed peak (seen in the centre of the

diagram).

Filter F was chosen as the filter to be implemented. The reason for this was that it

produced the lowest sidelobe level, as can be seen in Table 3. Although the azimuth

resolution was worse than Filters D and E, this was not a problem as the final image

would only be focussed to approximately 13m (see Section 5.1).
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Figure 7: Filter Response Comparison
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Figure 8: Processed SAR Data for Filter C
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5.6 Algorithm Model

Once the details of the presummer and filter were decided upon, a VHDL algorithm

model was written to test the effects of quantisation and precision. The MathCAD

simulation made use of floating point values which were not available in FPGAs.

The algorithm model had to provide a means for testing the precision needed when

storing intermediate results as well the bit growth encountered when presumming

and filtering.

Before the model could be written, the expected bit widths of the data at various

stages in the processing had to be calculated. The presummer operated on eight bit

values and presummed three of them for each result. Adding 3 eight bit numbers

resulted in a ten bit number if no precision was to be lost. The presummer output

was therefore set at ten bits per value. The bit growth in the FIR filter could be

calculated as follows: The data to be operated on was ten bits wide. The coefficients

were each eight bits wide. Thus every multiplication in the FIR filter produces an

18 bit result. There were 32 taps so 32 eighteen bit numbers were to be added. This

would produce a 23 bit result. The internal precision of the FIR filter was therefore

set at 23 bits. The data path widths can be seen in Figure 9.

The required output eight bits wide so the FIR filter output had to be divided to

produce this. The division ratio was the presum gain (3) multiplied by the FIR filter

gain (952). This produced the final eight bit value.

The VHDL algorithm model was written to read and write its data from disk. The

output data would be used to test the results of the other models that were written. A

model of the presummer was first coded and its output was manually verified. This

data was then used as input to the prefilter model and once again the results were

manually verified. Manual verification involved calculating the expected output and

comparing it with the output produced by the model.

To test the effects of quantisation, the synthetic data which was generated in the

MathCAD SAR processor was quantised to eight bits and processed by the

algorithm model. This data was then imported back into the MathCAD processor
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and the image was focussed. The effects of quantisation were seen when comparing

the outputs from the MathCAD and VHDL simulations, although the differences

were minor. The peak sidelobe level of the MathCAD simulation was -14.279 dB,

compared with the VHDL simulation value of -14.230 dB, while the integrated

sidelobe level of the MathCAD simulation was -12.072 dB, compared with -12.033

dB. The width of the peak of the focussed target also increased by 0.23%. In a

focussed image, these differences would not be noticeable to the naked eye. The

reason why the quantisation effects in the final image were small was due to the

large integration of the SAR processing.

DC Offset
Removal

Presummer FIR Filter Divider

Data In

PRF: 625 Hz
No Samples/ PRI : 4096
Data Format: 8 bits
Data Type: unsigned

DC Offset: 128
Output Data Width: 8 bits
Output Data Type: signed

Presum Factor: 3
Input Data Width: 10 bits
Output Data Width: 10
bits

Number of Taps : 32
Tap Coefficient Width: 8 bits
Input Data Width: 10 bits
Output Data Width: 23 bits

Divide Ratio: 2856
Input Data Width: 23 bits
Output Data Width: 8 bits

DC Offset
Insertion

DC Offset: 128
Output Data Width: 8 bits
Output Data Type: unsigned

Data Out

Figure 9: Algorithm Model Block Diagram
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Chapter 6:  Hardware Design

The preprocessor described above in Chapter 5: Preprocessor Design had to be

implemented in hardware. Part of the objective of this thesis was to investigate the

level of complexity of signal processing that could be achieved in dedicated

hardware i.e. without the use of general purpose digital signal processors.

The simplest method of obtaining customised hardware was to make use of Field

Programmable Gate Arrays (FPGAs). These devices contained thousands of digital

logic gates that could be interconnected at will. Design software for these devices

was used to produce a configuration file that could then be downloaded to the

FPGA. This configuration file specified how these gates were to be connected.

6.1 Hardware Requirements

Before any hardware could be specified, the some basic calculations had to be

performed to determine the input and output data rates and the amount of data to be

stored. Since complex sampling was used, the I and Q values could be treated

separately. This allowed a system to be designed to handle just the I values which

could then be duplicated to handle the Q values.  The following calculations are

therefore only for the I values and are the same as those for the Q values.

For the presummer, one range line containing 4096 samples arrived every PRI. One

PRI took 1.6ms (1/625 Hz) and so each sample had to be completed in 390ns. For

the prefilter, since there was a skip factor of 4, a range line had to be output after 12

PRIs which took 19.2ms. Thus each prefiltered sample had to be completed in 4.6us

(19.2ms/4096).

The calculations above gave the basic timing constraints of the system. Lower level

timing could not be done at that time as such timing was dependent on the routing

delays within the FPGA. To presum one sample, the sample had to be read from

memory, added to another sample and the result then written back to memory.
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Performing such an operation in 390ns seemed possible4, considering that RAM

access times were of the order of tens of nanoseconds and additions were of the

same order. Similarly for each prefiltered sample, 32 RAM reads had to be

performed as well as 32 multiply and adds. It therefore seemed, at a first look, as

though these operations were possible in the allocated time.

Since the timing of each hardware operation was not accurately known, the

possibility existed that the hardware would not be fast enough to meet the

requirements above. To cope with this, methods were investigated to speed up the

processing. These are detailed in Section 6.3.

6.2 Memory Overview

From the design detailed in Chapter 5: Preprocessor Design, it was decided to use a

presummer before the prefilter. For the purposes of design, the prefilter and

presummer were treated separately as they were mathematically separate. They

could always be combined into a single FPGA at a later stage.

Both the presummer and prefilter needed RAM in which to store data. The

presummer had to store the cumulative result of the presumming process before the

final result was available. The prefilter had to store all the incoming data to be able

to filter it as the data was to be filtered in azimuth, not range. Hence for a 32 tap

filter, al least 32 range lines would need to be stored for each output row to be

calculated.

The interface between the presummer and prefilter had to be determined. Two

methods were evaluated. The first involved the use of separate memories for the

prefilter and presummer while the second method used shared memory. The latter

option was implemented.

                                               
4 When the final implementation of the presummer was verified, it was able to perform at the required speed.
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6.2.1 Separate Memories

In this method, the presummer and prefilter each had their own separate memories

as can be seen in Figure 10. The first range line was read into the presummer and

then stored in its RAM. The next range line was then read in and added to the stored

result in RAM. This continued until the presummer had added the required number

of range lines together. When this occurred, the presummer would output the

presummed range line. The prefilter then read this presummed range line into its

RAM. When sufficient range lines were in memory, the prefilter calculated its

output and waited for more range lines to be read in.

Advantage: The advantage of this method was that the memory was cheaper than

shared memory as conventional single ported SRAM could be used.

RAM

Presummer Filter

RAM

Figure 10: Block Diagram of Separate Memory Solution

Disadvantage: The disadvantages of this method were mostly due to the increased

volume of data needing to be moved between presummer and prefilter. The prefilter

would be slowed down with having to store incoming data in its own memory.

6.2.2 Shared Memory

In this method, the presummer and prefilter shared a block of dual-port RAM. This

way, the presummer would write its temporary data to the address of the final

presummed result. When the presummer finished summing the required number of

rows, it would increment its address counter and begin writing to the next memory

location. The result from the row just calculated would be left in place in memory.

A block diagram of this solution can be seen in Figure 11
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The presummer would signal the prefilter when each new presummed row had been

written to RAM. The prefilter would wait until the correct number of rows had been

written before commencing with its prefiltering.

Presummer Filter
R
A
M

Figure 11: Block Diagram of Shared Memory Solution

Advantages: The advantage of this method was due to the simple data interface

between the presummer and prefilter. The prefilter did not require additional

overhead to store new incoming data which, in turn, increased the speed at which it

could operate.

Disadvantages: The primary disadvantage of the shared RAM was the cost. Dual-

ported RAM was more expensive than single-port RAM.

6.2.3 Memory Organisation

Incoming data could have been stored in memory in two ways: Range or Azimuth.

If the data was stored in range, consecutive memory locations would hold the same

range line. If the data was stored in azimuth then consecutive memory locations

would hold the same range bin but from different range lines. These methods can be

seen in Figure 12 and Figure 13.

It was not yet known how many parallel filters would be required to satisfy the

processing requirements. It was therefore important that both of these memory

organisations could be expanded or divided to suit a variable number of filters.

Storing the data in range or azimuth made no difference to the expandability of the

system as it was feasible to expand either memory organisation.

During the early stages of design, the RAM which was chosen featured an internal

address counter. By using this internal address counter, the access time of the RAM

was reduced. It was originally thought that the data should be stored in such a way
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that the prefilter (which was the more time critical of the two components) could

make use of this counter to improve its speed. It was for this reason that it was

decided to store the data in azimuth. Upon further investigation it became clear that

using the internal address counters in the RAM would not work as the counter was

not able to wrap around. The wrap around was required so that consecutive samples

could be read from a single azimuth line. Since either memory organisation could

be used, the orientation of the data stored remained in azimuth.
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Figure 12: Memory Organisation – Data Stored in Range

6.2.4 Memory Requirements

At minimum, 32 range lines had to be stored so that the prefilter could process and

output one range line, since it made use of a 32 tap filter in the azimuth direction.

As all 32 range lines were required during the processing, data storage for more

than 32 range lines was required to allow the presummer to continue storing new

range lines while the prefilter processed its data. The number of range lines stored
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was required to be a power of 2 since that would allow address counters to roll over

at the correct values. This was necessary as only a set number of PRIs could be

stored and there was no limit on the number of incoming range lines. It was decided

that storage space for 64 range lines would be made available since that was the

next possible value after 32.

The width of the data memory was also considered. The incoming data from the

radar was 8 bits wide. Adding three 8 bit numbers resulted in a 10 bit number,

assuming an overflow was not allowed. It was therefore decided that 10 bit memory

was to be used. This prevented the loss of any dynamic range due to overflow.

The total amount of RAM required was 512K x 10 bits. This number was decided

upon as follows: 64 PRIs, each of 4096 complex samples = 64 * 4096 * 2 = 512K.

1 byte 1 byte

0x0000

0x0100

0x00C0

0x0080

0x0040

B
in

 1

B
in

 0

B
in

 3
B

in
 2

B
in

 0

B
in

 3
B

in
 2

B
in

 1
I Q

Figure 13: Memory Organisation – Data Stored in Azimuth



Chapter 6: Hardware Design

47

6.2.5 Memory Selection

Two types of Dual Ported RAM were available at design time: Synchronous and

Asynchronous. The latter was the more common variety. To generate the precise

timing signals required to access asynchronous RAM from an FPGA usually

required the use of external programmable delay lines, unless multiple clock cycles

were to be used to generate the required waveforms. These delay lines added extra

complexity to the circuit, as well as an increased chip count.

Since synchronous design was the preferred approach in FPGA design,

synchronous RAM was considered as an alternative. It appeared that synchronous

RAM could be interfaced directly to the FPGA and still provide single clock cycle

accesses. Further investigation took place to determine which devices were

available.

In an attempt to minimise the chip count, high capacity RAM chips were sought.

Cypress Semiconductor were going to produce a device which suited the needs of

the radar. This was their CY7C09099 which was available in 128Kx8. It appeared

at the time that the minimum width of available devices was 8 bits. This

necessitated using two devices in parallel to achieve the required 10 bit data bus

width. Wasting the 6 bits was unavoidable. At design time, this device was

sampling and should have been available at the end of 1998.

6.2.6 VHDL Memory Model

Once the decision to use this device was made, the author attempted to locate a

VHDL model for it. This model would be used in the functional model as well as in

the simulation of the final FPGA. A suitable model could not be found and so it was

decided to write one.

The model was a functional model and therefore contained no timing information,

although this could have been added if required. The data for the model was

obtained from a preliminary data sheet, since the final data sheets were not

available.
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The model differed from the data sheet in one area. The width of the data bus was

increased from 8 bits to 10 bits. The reason for doing this was purely to increase its

simulation performance. Even though the data was only 8 bits wide, each memory

location required 32 bits to store because the value was stored as an integer. By

increasing the model’s data bus width to 10 bits, the memory required by RAM

simulation was halved. This also increased the speed at which the RAM simulated.

6.3 Hardware Expandability

As described in Section 6.1, the expandability of the system was critical to its

functioning, especially since the final operating speed of the hardware was not

known before it was designed.

The simplest method of improving speed was to use parallel processes. This applied

particularly to the FIR filters. Besides having two FIR filters (one for I values and

the other for Q values) it may have been necessary to have multiple parallel FIR

filters for processing the data. Since the filtering was done in azimuth, the data

could be split in range. For example if there were two I data filters, one could filter

the first half of the range bins while the other would filter the second half. Each

filter would then have twice the amount of time to process the data and so its

operating speed could be halved.

Both methods of memory organisation supported an increase in the number of

filters. Each filter would require its own memory from where it could read its input

data. The algorithm used by the presummer to calculate the position where the data

was stored would have had to be improved. This would have been simple with

memory mapping techniques.

A larger problem, should the system have required expansion, was to preserve the

position in the PRI of samples output from the different filters. The design of the

filters was to output their result for each range bin once it was processed. This

would obviously not have worked if more than one filter were writing output

samples at the same time. Samples from non-consecutive range bins could be output

at the same time, thus mixing their order in the range line. Two solutions were
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proposed although neither had to be implemented since the filters were fast enough

to process a complete range line I nthe required time.

6.3.1 Multiple Output FIFOs

This method made use of a FIFO for each filter coupled with some external control

hardware. Once the filter had processed its portion of a range line and written the

output data to its FIFO, it would have signalled the controller that it had completed

its portion of the range line processing. The controller would then have read the

contents of the FIFOs in the correct order and placed the processed data in a large

output FIFO. The data in this FIFO would then have been in the correct order, as

required.

Advantages: This method was the faster of the two in that the filters were required

only to filter the data. The filters performed no data movement besides that required

during the filtering.

Disadvantage: This method increased the chip count would therefore have been

more expensive to implement.

6.3.2 Writeback to RAM

In this method, the prefilter would have written the processed data back to the

RAM. Once the first filter had processed its portion of the range line, it would write

the processed data to the output FIFO. On completion, the filter would signal the

next filter to do the same. In this way, the data would be output in the correct order.

Advantage: This method was the cheaper solution as no extra ICs were required.

Disadvantages: This method was slower than using multiple FIFOs because the

filters had to write the processed data back to RAM when they could have been

reading new data. They would also have had to write the processed data to the

FIFOs during the time they could have been processing. This would have resulted

in a slower filter.
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6.4 External Interface

Since the presummer and prefilter were not designed for standalone operation, it

was important to confirm the specifications of the hardware that would interface

with the presummer and prefilter. A block diagram can be seen in Figure 14.

Prefilter

HBRSel

ADCv_n

Data In

Data
Out

Figure 14: Top Level Block Diagram of the Prefilter

The two main control signals to the presummer were HBRSel and ADCV_n. The

former signal was made active 100ns before the ADC started sampling a new range

line. The ADCV_n line was then clocked every time a new sample was placed on

the data bus. The ADCV_n line was active low. The processed data had to be output

to a FIFO.

The I and Q channels of the ADC data bus were each eight bits wide. The data

appearing on this bus was unsigned integers with a range from 0 to 255. The data

incorporated a DC offset of 128.

The output data was to be buffered by a FIFO so that it could be accessed at a

different rate to the prefilter output data rate. The format of the output data was the

same as the input data: unsigned integers in the range of 0 to 255 with a DC offset

of 128.



Chapter 7: Presummer Design

51

Chapter 7:  Presummer Design

In keeping with the principles of RASSP, once the presummer was modelled on an

algorithmic level, a functional model was then written. Once its operation was

verified, the final implementation was coded. A diagram of the design steps

regarding the models used can be found in Figure 15.

Presummer
Algorithmic Simulation
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Simulation

RAM
Functional
Simulation

Presummer
Gate Level
Simulation

RAM
Functional
Simulation

Test
Data

Processed
Output

Processed
Output

Processed
Output

Compare

Compare

Figure 15: Presummer Model Overview

7.1 Functional Model

The algorithmic model developed in Chapter 5: Preprocessor Design provided a

means of verification for any other models that were developed. Before the final

implementation could be started, a functional model had to be written. This model

had to behave in the same manner as the final implementation but did not need to be

synthesisable. The purpose of this model was to verify the interaction between the

presummer, RAM and prefilter.
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7.1.1 Model Functionality

The VHDL model had to be able to interact with the RAM and FIFO models to be

able to perform a system level simulation. The model also had to perform a

presumming function of the incoming data. The only difference between this model

and the final implementation was that it could not be synthesised into a FPGA.

The functional model contained no routing delay timing. If an output changed logic

levels on a rising clock edge, that change would appear on the clock edge in the

model, unlike a real FPGA where it would only occur a few nanoseconds after the

clock edge. Another example of this lack of latency was in the addition and

multiplication operations. These occurred instantly in the model, unlike in a FPGA.

Since the entire design was synchronous, these did not present any problems as all

operations took place on a clock edge and didn’ t rely on the when in the previous

clock cycle the operation finished.

7.1.2 Presummer Interface

The first task during development of this model was to define the external interface.

A number of pins were required to allow the device to interface with the RAM,

external radar components and the prefilter. These pins are described in Table 4.

More detail on the FIFO and RAM pins can be obtained from the relevant data

sheets.

Table 4: Presummer Interface Pins

Pin Description
FifoDataI, FifoDataQ FIFO Data Bus (I & Q Channels). These were

each 8 bits wide
FifoWEn1_n, FifoWEn2 FIFO Write Enable. Both need to be active to

allow a write on the next rising edge of the FIFO

Write Clock.

FifoREn1_n, FifoREn2_n FIFO Read Enable. Both need to be active to
allow a read on the next rising edge of the FIFO
Read Clock

FifoEFI_n, FifoEFQ_n FIFO Empty Flags (I & Q Channels). These
signals are active when the corresponding FIFO
is empty.

FifoRs_n FIFO Asynchronous Reset
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FifoOE_n FIFO Output Enable
RamAddr RAM Address Bus
RamADS_n RAM Address Strobe. When active, the value on

the RAM address bus is latched into the RAM
on the rising edge of the RAM clock.

RamCE RAM Chip Enable
RamCntEn_n RAM Address Counter Enable. When active, the

RAM’s internal address counter is incremented
on each rising edge of the RAM clock.

RamCntRst_n RAM Address Counter Reset
RamDataI, RamDataQ RAM Data Bus (I & Q Channels)
RamOE_n RAM Output Enable
RAMRnW RAM Read / Write Strobe
RAMPipenFT RAM Pipeline / Flow Through Strobe. This

toggles the RAM chip between pipeline and flow
through modes.

Clk System Clock
ClkTC Timing Card Clock.
HBRSel High Bitrate Recorder Select Signal
ADCv_n ADC Data Valid Strobe
Reset_n Asynchronous Master Reset
PSRowDone Output to prefilter. Active for 1 clock period at

the end of each presummed PRI.

7.1.3 Model Overview

Before explaining the workings of the presummer, the composition of the RAM

address needs to be explained. A simple method of generating the correct RAM

address was required to allow easy access to consecutive range bins and range lines

without having to reload the address counters. The simplest method of doing this

was to divide the address counter into two counters, a range bin counter and a range

line counter. This can be seen in Figure 16. Every time the range bin counter was

incremented, the next range bin of the selected range line would be accessed.

Likewise, the same range bin from the next range line would be accessed if the

range line counter was incremented. This is shown in Figure 17.

The range bin counter was actually comprised of two counters: “ColCounterR” and

“ColCounterW” in the source code. The first counter was the range bin counter for

the RAM’s read operations while the latter was the range bin counter for the

RAM’s write operations. The use of two counters was unnecessary. The reason for



Chapter 7: Presummer Design

54

their inclusion was that it was originally thought that a number of samples would be

read and processed before being written back to RAM. Since the processed results

would be written to the same address as the data which was retireved, the same

sequence of RAM addresses had to be generated a second time. Using two counters

were the easiest way of performing this. The two counters would initially be set

equal to each other. A multiplexer would first select the “Read” counter. After the

required number of samples were read and the counter incremented, the multiplexer

would switch to the “Write” counter. The initial value of this counter would be the

same as that of the “Read” counter. After the required number of write operations

had been performed, the two counters would again be equal and the multiplexer

would switch back to the “Read” counter.

Since only a single sample was processed at a time, this system could have been

discarded but it allowed for future expansion and did not require much extra logic.

The MSB of the RAM address was used as a chip enable signal for the RAM. This

allowed for the correct RAM chip to be selected for a given address.

Range Bin Counter PRI Counter

Figure 16: RAM Address Counter

The model used a state machine since it was the easiest method of sequencing the

necessary logic. A block diagram of the presummer can be found in Figure 18.
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Figure 17: Effects on RAM Accesses from RAM Counter Increments

The operation of the presummer was as follows. The rising edge of HBRSel

indicated that a new range line was about to be sampled. This caused the

presummer to reset the FIFO to ensure that the position in the PRI of the new data

was preserved as the first value read from the FIFO was assumed to be range bin 0.

The internal counters in the presummer were also reset.

Once the ADC started sampling a range line, its data was written to the input FIFOs

on the falling edge of ADCv_n. When the presummer detected that the FIFOs were

not empty, it read a sample from them. At the same time it read the corresponding

sample from memory. If this was the first range line of the three to be summed (the

presum counter equalled zero), the FIFO sample would be stored in RAM. If not,

the FIFO sample would be added to the RAM sample and the result written to

RAM.

The range bin counter was incremented after each sample was processed. The

presum counter was incremented every time the rising edge of HBRSel was

detected. If this counter equalled three then the range line counter was also

incremented the next presummed line was about to begin.
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Figure 18: Block Diagram of Presummer

7.1.4 State Machine

A state machine was written to control the presummer. This was done as it was the

simplest way of providing the required sequencing of operations. A block diagram

of the state machine can be seen in Figure 19. A description of the states follows

below.

StateReset: This was the reset state. It cleared all the counters, reset the FIFOs and

the RAM signals.

StateIdle: This was the idle state. The state machine remained in this state while

there are no samples in the FIFO.

StateRead: This was the read state. In this state, data was read from the FIFO and

the RAM. The registers for holding this data were enabled to allow the data to be

stored on the next rising edge of the clock.
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StateWait: This state was a wait state. It was required as the synchronous RAM

required it when switching from a read to a write operation.

StateWrite: This was the write state. The presummed data was written back to

RAM. The range bin counter was incremented.

StateIncCntrs: This was the increment counters state and was entered when the

rising edge of HBRSel was detected. In this state the presum and range line

counters were incremented.

7.1.5 Verification

Once the model was written, it had to be verified. To do this, a testbench was

written which provided stimulus to the inputs of the presummer. The stimulus

emulated the inputs to the presummer from rest of the radar namely the ADC and

input FIFOs. A block diagram of the testbench can be seen in Figure 20.
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Figure 19: Presummer State Machine for Functional Model

At the beginning of each PRI, the testbench would cause the HBRSel signal to go

high, indicating that the ADC was about to begin sampling. One hundred

nanoseconds later, the ADCV_n signal would be pulled low, indicating that the first

sample was available on the ADC data bus. The presummer would cause this

sample to be written to the FIFO. This was modelled in the testbench by

incrementing a counter which represented the number of samples in the FIFO. If the

counter was not equal to zero, the testbench would pull the FifoEFI_n and

FifoEFQ_n signals high, indicating to the presummer that the FIFOs were not

empty. The presummer would then begin processing by requesting a read operation

from the FIFOs. The testbench handled this by reading data from an input file every



Chapter 7: Presummer Design

59

time a read operation was requested. At the same time, the counter which counted

the number of samples in the FIFO was decremented.

Data
Input
File

Presummer RAM
Output
Data
File

RAM Contol Signals
(Address Counter, RnW

strobe etc)

External Control
Signal Generators

Objects within the
dotted line

represents functions
of the testbench

Figure 20: Presummer Testbench

The testbench was also responsible for writing presummed range lines to a disk for

later analysis. The presummer indicated to the prefilter that a complete range line

had been presummed by making the PSRowDone line active for one clock cycle.

The simplest way of accessing this presummed line was the same way that the

prefilter did so: using the second port of the dual port RAM. The testbench

contained a range line and range bin counter identical to those explained in 0. Every

time PSRowDone was made active, the testbench read a presummed range line

from RAM and wrote it to disk.

Using files for the input and output data simplified the verification process. The

same data that was used for the algorithmic simulation was sent through the

presummer. The results were then compared and the presummer was validated.
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7.2 Final Implementation

The functional model for the presummer provided much of the framework for the

final implementation. A number of changes were made but these were mostly in an

attempt to increase the operating speed.

7.2.1 State Machine Encoding

The same state machine was used for the implementation as for the functional

model, except for two differences. The first is that an extra wait state was added to

account for the pipelining in the LUT. The revised state machine can be seen in

Figure 21. The second difference was the encoding style which was changed to a

one hot encoding. The encoding of the state machine refers to how each state was

represented at a bit level. There are two main encoding methods: Binary and one

hot encoding.

7.2.1.1 Binary Encoding

The number of bits required to represent n states using binary encoding is given by

the base 2 logarithm of the number of states. Thus representing four states requires

two bits. Each bit is stored in a flip flop. A possible encoding of four states is:

State 1 “00”
State 2 “01”
State 3 “10”
State 4 “11”

The binary representation could have used a Gray Code. The advantage of the Gray

Code is that only one bit changes at a time. This reduces the possibility of glitches

which would occur when more than one flip flop didn’ t change value at the same

time. For example, if a state machine changed from “01”  to “10” , two intermediate

outputs are possible, “00” and “11” . If either of these two values were output, the

state machine could jump to an incorrect or illegal state if the state bits are used

asynchronously.
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The logic required to generate the next state for a binary encoding is a function of

all the state bits. These functions are generally high-fan-in functions [3] and the

logic required to implement them is often complex.

Care must be taken to prevent the state machine from entering illegal states. This

usually happens when the setup and hold times of the state bit registers are violated.

It is a simple matter to force the state machine back into a legal state should it enter

one.

Reset
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Increment
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No

Yes

No

Wait2

Wait

Write

Figure 21: Presummer State Machine for Final Implementation
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7.2.1.2 One Hot Encoding

One hot encoding dedicates an entire register to representing each state. The

difference is that only one bit in each state register can be ‘1’ at any time. A

possible one hot state encoding of four states is as follows:

State 1 “0001”
State 2 “0010”
State 3 “0100”
State 4 “1000”

The advantage of the above encoding is in the amount of logic required for

generating the  next state. The next state generator for each state is a function of one

state bit. By reducing the logic required for next state generation, the one hot

encoding can increase the performance of the state machine over a binary encoded

version.

The problem with this encoding method is the number of registers that are required,

especially if there are a large number of states. Since FPGAs are rich in registers,

using this encoding technique is best suited for these devices.

There are many more possible illegal states which a one hot encoded machine can

enter. Since the one hot encoding assumes that only one bit is high in the state

register at any one time, the next state generators cannot determine whether an

illegal state has been entered. Assuming the setup and hold times on the state

registers are not violated, the state machine should never enter one of these illegal

states.

7.2.2 DC Offset Removal

Since the data sampled by the ADC had a DC offset of 128 added to it, this offset

had to be removed before any processing could be done. Without removing the

offset, no negative values would have been available and the results would be

invalid. The removal of the DC offset could have been accomplished in one of two

ways: Using a dedicated subtractor or a look up table (LUT).
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Using a subtractor was considered but it was slower than the LUT equivalent. The

FPGAs used contained limited amounts of internal memory and it was decided that

since the resource was available, it should be used to speed up the design. The LUT

used was 256 x 8 bits as the data received from the FIFO was used as the LUT

address. The LUT was synchronous as the address was registered on each rising

clock edge and the data was latched out a clock cycle later.

7.2.3 Pipelining

Pipelining is a method of increasing the throughput of a system by splitting it into

smaller modules. To illustrate, consider a four input adder shown in Figure 22.

Assume that each addition required time T to execute. The adder output would take

2T to calculate. Since this was a combinational circuit, the inputs A, B, C and D

have to remain constant for the duration of the addition. The throughput of this

adder is 1/(2T) and if it was used in a synchronous design, the maximum clock

speed would be 1/(2T).

+
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Figure 22: Non Pipelined Four Input Adder
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Figure 23: Pipelined Four Input Adder

Now consider a pipelined equivalent shown in Figure 23. At time 0, the input

samples are clocked into the registers A, B, C and D. After time T, the sums A+B

and C+D have completed and are clocked into registers E and F. At the same time,

new data can be clocked into A, B, C and D. After time 2T, the sum of E+F has

completed and is clocked into the output register G. The sums A+B and C+D have

completed for the second set of inputs. The time taken to output calculate the sum

of all four inputs is still 2T and the latency of the outputs is also 2T. The difference

however is the throughput which has increased to 1/T since a new sample is

available after every time T. This adder could therefore be clocked at 1/T.
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The presummer was pipelined to increase its throughput. During the initial design

stages, the length of the pipeline had to be decided upon. It was determined that the

RAM interface would be the bottleneck of the system since the same data bus had

to be used for reading and writing new data samples. The RAM required one clock

cycle in order to switch between read and write operations. If one sample was read,

processed and written back to RAM, the maximum utilisation of the RAM bus was

66% as one clock cycle in three would be wasted. Increasing the utilisation of the

RAM bus required that a number of samples be read and written for each clock

cycle lost. The function of the pipeline was therefore to maximise the use of this

interface by allowing a number of samples to be read before the RAM had to

perform write operations.

It turned out that the data arriving from the FIFO was sufficiently slow that the

presummer could process each new sample as it arrived. Since the time between

new samples arriving was much longer than the time it took to process one sample,

the pipeline was made as short as possible so that the latency was minimised. The

design however remained synchronous. A diagram of the pipelined data path can be

seen in Figure 24. The data from the FIFO and RAM arrived at the same time but

the FIFO data had a DC offset of 128 which was removed with a LUT. The LUT

required a clock cycle to complete so an extra register was required in the RAM

data path to synchronise it to the FIFO data. The adder used was pipelined and its

result was also registered.

7.2.4 Component Instantiation

As the name implies, a VHDL synthesiser can synthesise logic for a number of

given functions including multipliers and adders. Although the synthesis process

produces functionally correct logic, it is not always optimal for what the designer

intended. In the case of the presummer, two adders were required (I and Q

channels). The VHDL synthesiser was capable of producing these adders when the

addition operator was used in the source code, but faster adders could be obtained if

adder components were instantiated.
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The instantiated components were provided by Altera and conformed to the Library

of Parameterised Modules (LPM) specification (see http://www.edif.org/lpmweb).

LPM is an attempt by a number of EDA companies to produce a method of

technology independent design by creating a standard library of components. The

implementation of these components is left to the EDA tool vendors to create an

optimal instantiation for the targeted device. If the designer then moves to another

EDA tool vendor, the source does not need modification – the implementation is

merely changed by the new EDA tool.

Instantiating the adder components allowed more control over the adder’s

performance. Most specifically, they provided a means of specifying the amount of

pipelining which was to be used in the adder. This increased the throughput of the

adder which was desirable. Another example of where component instantiation was

used was in the generation of the LUTs. The reason for doing this was again to

provide pipelining in the LUT.

The disadvantage of instantiating these components was that simulation models of

them were only unavailable for the Altera software. The VHDL simulator did not

support the LPM components and so the source code for the final implementation

could only be simulated in Altera’s graphical simulation environment (see Section

2.3.3). Since this simulator did not offer a full set of VHDL functions e.g. file I/O,

the source code could not be simulated and checked by the testbench used in the

functional simulation (see Section 7.2.5 below).

When instantiating components in the VHDL source code, it is important that

simulation models of  these components are provided. If the LPM components are

to be used, make sure that the simulator supports them too. The whole simulation

process cannot work if there are components which cannot be simulated.

7.2.5 Verification

Two aspects of the final implementation had to be verified: the functionality and the

timing. Ideally, the functional verification would take place by simulating the

synthesisable code and applying the testbench used in the functional simulation.
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Once this was completed, the timing would be verified by using a model which

incorporated the timing delays found in the physical device.

The functional verification described above could not be performed because the

VHDL simulator used (Model Technologies’  ModelTech ver 4.4j) did not have

provide simulation models for the components which were instantiated. Some of

functionality could be tested in Altera’s graphical simulator while the remainder

had to be performed when doing the timing verification. This was undesirable but

unavoidable as another VHDL simulator with LPM support could not be obtained.

After the FPGA software had performed a place-and-route of the logic which the

VHDL synthesiser had produced, it back annotated a VHDL model of the final

FPGA implementation. This VHDL model contained all the timing delays that

would be found in a physical FPGA. It was a gate level model where the

characteristics of the individual gates were modelled. A disadvantage of this type of

model was that all the signal names used in the synthesisable source are available

for debugging.

This model was then compiled and substituted for the functional model in the

presummer testbench. It was possible to do this as the back annotated model was

completely simulatable. The required test data was used as input to the simulation

and the results were compared with those obtained from the functional simulation.

The back annotated model was therefore responsible for the verification of the

device timing.

The execution time of the VHDL timing simulation was approximately 10 minutes

for each millisecond simulated. The simulation was performed on an Intel PII-

300MHz processor with 196MB RAM running Windows 95. The length of

simulation was determined by how much data was to be processed. Since 64 range

lines were to be stored in RAM, it was decided that at least that number had to be

passed through the model to ensure that all the counters were working correctly.

The result was that the simulation had to be run for a simulated time of 200ms

which took approximately 2 days.
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The speed of this timing simulation did not lend itself to the typical method of

development where once a mistake was spotted, the entire design was recompiled

and then simulated until all the errors are found and corrected. This would have

been possible if the synthesisable source code was simulated as no place-and-route

operation was required and the simulation speed would have been faster as the

model would have been less detailed.

Debugging the simulation was equivalent to debugging a physical prototype except

that a number of simulator features made the task easier. The simulator allowed

traces to be plotted so that the values of individual signals could be monitored.

Breakpoints were supported in the simulator so that the execution could be stopped

at any point. The simulator could be run for a particular period of time or stepped

through or over individual lines of VHDL source. Watch windows allowed the

values of signals and variable to be monitored during this time. The only debugging

that could have taken place if a physical prototype were used was that the outputs

could be monitored with logic analyser. If any internal signals had to be checked,

the design would have to have been recompiled and place-and-routed with the

required signal routed to an output pin on the device.

7.2.6 Target Device

The presummer was implemented on an Altera EPF10K10ATC144-1 device. This

was a 10000 gate FPGA in a 144pin Thin Quad Flat Package. The design occupied

approximately 30% of the device capacity. According to the design software the

maximum operating speed that device could operate at was approximately 50MHz.
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Chapter 8:  Prefilter Design

As was the case with the presummer, the same design methodology (RASSP) was

used in designing the prefilter. A block diagram of the models used in the design

process can be found in Figure 25.
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Figure 25: Prefilter Model Overview

8.1 The Functional Model

As with the presummer, the algorithmic simulation performed in Chapter 5:

Preprocessor Design provided test data for verification of the functional model.

8.1.1 Model Functionality

Like the functional model of the presummer, the functional prefilter model was

written to test the interface between it and the RAM, output FIFOs and presummer.

The algorithmic simulation provided test data against which the output of the

functional model was tested. This model was not synthesisable and provided no

timing information.
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8.1.2 Prefilter Interface

Before a model could be written, the prefilter interface had to be decided upon. The

prefilter was required to interface with the presummer as it had to be signalled when

a new presummer line had been written to RAM. The prefilter also had to be able to

interface with the RAM as well as an output FIFO. A list of the input and output

pins of the prefilter can be seen in Table 5.

Table 5: Prefilter Interface Pins

Pin Description
FifoDataI, FifoDataQ FIFO Output Data Bus (I & Q Channels). These

were each 8 bits wide
FifoWEn1_n, FifoWEn2 FIFO Write Enable. Both need to be active to

allow a write on the next rising edge of the FIFO

Write Clock.

FifoRs_n FIFO Asynchronous Reset
RamAddr RAM Address Bus
RamADS_n RAM Address Strobe. When active, the value on

the RAM address bus is latched into the RAM
on the rising edge of the RAM clock.

RamCE RAM Chip Enable
RamCntEn_n RAM Address Counter Enable. When active, the

RAM’s internal address counter is incremented
on each rising edge of the RAM clock.

RamCntRst_n RAM Address Counter Reset
RamDataI, RamDataQ RAM Data Bus (I & Q Channels)
RamOE_n RAM Output Enable
RAMRnW RAM Read / Write Strobe
RAMPipenFT RAM Pipeline / Flowthrough Strobe. This

toggles the RAM chip between Pipeline and
Flowthrough modes.

Clk System Clock
Reset_n Asynchronous Master Reset
PSRowInc Output from presummer. Active for 1 clock

period at the end of each presummed PRI.

8.1.3 Model Overview

A block diagram of the prefilter can be seen in Figure 26. The prefilter was

controlled by a state machine.
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Figure 26: Block Diagram of Prefilter

The prefilter had a presum counter which was used to record the number of

presummed lines in RAM at any time. This counter was incremented by one every

time the presummer output a PSRowDone signal on that line. After 32 presummed

range lines had been stored in RAM, the state machine would begin the processing.

The presummed data was read from RAM and input into the FIR filter. After 32

samples had been processed by the filter, the output was latched so that the FIR

filter could continue processing a new set of data while the final output was being

calculated.

The final output had to be in the form of an eight bit, unsigned integer with a DC

offset of 128. In order to achieve this, the FIR filter output had to be divided by the

sum of the magnitude of filter coefficients multiplied by the presum factor. This

resulted in an output in the range –128 to 127. This value was then added to 128 to

produce an unsigned integer in the range 0 to 255. This value was then written to

the output FIFO.

Since only 64 range lines were stored, the data had to be wrapped around in

memory. This was especially necessary since the presummer had to continue

writing data to RAM while the prefilter was reading the 32 range lines required for
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its processing. For this reason, three counters were used for the RAM address. The

first was a range bin counter (12 bits) while the second was a range line counter (6

bits). These were concatenated to provide the RAM address as in the presummer

(see Figure 17 and Figure 16). A start sample counter (6 bits) was the third counter

used and provided the reload value for the range line counter.

When the data from each new range bin was to be read into the FIR filter, the range

line counter was preloaded with the value of the start counter. The range line

counter was then incremented 32 times to read the required values from RAM. This

counter would roll over at a count value of 63 so that the data could be wrapped

around in memory. After 32 data values had been read, the range bin counter was

incremented and the process repeated. In this way, all the required data could be

read while the presummer continued to write new data to RAM. Note that since the

prefilter had to produce a prefiltered range line every 12 PRIs, there would never be

a situation where the presummer would overwrite data which had not been filtered.

Once a complete range line had been filtered, the presum counter was decremented

by 4, since 4 was the skip factor. The remaining 28 range lines stored in RAM were

required for the next range line filter.

8.1.4 State Machine

A state machine was used to control the prefilter and all its external outputs. The

operation is described below and can be seen in Figure 27.

StateReset: This was the reset state. All the RAM address counters were reset.

StateIdle: This was the idle state. The state machine remained in this state until the

presummer had written 32 range lines to RAM. When this occurred, the state

machine would advance to the read state. The RAM address counters were reset in

the idle state.

StateRead: This was the read state. The state machine remained in this state until

32 samples had been read from RAM into the FIR filter. This state used a down

counter to count the number of clock cycles which occurred while in this state.
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When the down counter reached zero, the state machine moved to the next state. A

down counter was used as it was the most efficient method of waiting for a set

period of time. The alternative was to create the same number of wait states as clock

cycles to be waited. That would have been very inefficient and was not

implemented.

StateIncCntrs: This was the increment counters state. It was entered at the end of a

read and was used to increment the address counters and reload the range line

counter.

StateDecPSRows: This was the decrement presummed rows state. It was entered at

the end of processing a range line and was used to decrement the presum counter.

8.1.5 Verification

A testbench was written to read the data output by the presummer testbench and

pass it through the prefilter. The data output by the prefilter was then written to disk

to be compared with the algorithmic simulation results. A block diagram of the

testbench can be seen in Figure 28.

On startup, the testbench would write the 64 ranges lines of data to the one port of

the RAM, asserting the PSRowDone signal for one clock cycle at the end of each

PRI written. When the prefilter detected that the required number of rows (32) had

been written, it would read the data from the other RAM port, process it and output

the result. The prefilter would assert the output FIFOs write enable signal when the

processed sample was ready for output. The testbench used this signal to write the

processed value to disk. These results were then compared with those obtained from

the algorithmic simulation to verify the operation of the functional model.

The test data was prefiltered and the correct data was output.
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8.2 Final Implementation

The functional simulation provided much of the framework for the final

implementation of the prefilter which also used a state machine for control. Many of

the same methods that were used for improving the operating speed of the

presummer were used for the prefilter. Descriptions of these can be found in Section

7.2.

8.2.1 State Machine

The same state machine that was used in the behavioural model was used in the

final implementation. The only change to it was that one hot encoding (see Section

7.2.1.2) was used to increase its operating speed.

The down counter that was described in section 8.1.4 was also used to generate the

output FIFO write enable signal and the register enable signal for the divider

register. These signals were generated when the down counter reached certain

predetermined values.
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8.2.2 FIR Filter

A few options existed for implementing the FIR filter. The first was to use a FIR

filter module written by Altera. This module claimed operation speeds of up to

100MHz, variable input data widths, output data widths and internal precision. The

filter also had an option to include pipelining. The problem with this filter was that

is was only available in 8, 16, 32 and 64 taps and the coefficients had to be either

symmetric or anti-symmetric. The second option was to use the FIR filter module

provided by Synopsys. After further investigation it turned out that a licence for this

module was unavailable and so it could not be used. The last option was to write a

FIR filter but this implementation would not have been an optimal solution. The

module from Altera was chosen as the implementation that would be used. The

filter coefficients had to be recalculated to for a filter length of 32.

The filter core was only available in AHDL, a proprietary hardware description

language by Altera. This posed a problem in compiling and simulating the prefilter

as Altera’s MaxPlus2 software was the only software that could read AHDL. Since

using this module provided the only real option for implementing a FIR filter, it had

to be used.

Unlike the Synopsys FIR filter which could load new coefficients during its

operation, the Altera FIR Filter’s coefficients were specified at compile time. If the

system was required to change filters during operation, it was possible to load the

FPGA with a new precompiled configuration with different coefficients.

To optimise the FIR filter, Altera made use of LUT-based vector multipliers [2].

The coefficients were divided into partial products which were then added together.

Performing addition operations were faster than multiplications. This resulted in a

very fast FIR filter. The required coefficients were input to an Altera supplied

program which calculated the partial products. The partial products were then

linked into the design when the FIR filter module was instantiated.

Since the FIR filter was written in AHDL and the rest of the presummer was written

in VHDL, a method of combining these had to be found. The solution was to use

the graphical schematic entry tool in MaxPlus2. The required FIR filter components
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were instantiated and after the VHDL section was compiled, a schematic symbol

was created for it. This was then connected to the FIR filter in the schematic editor.

In this way, the two major components of the prefilter were combined into one

entity.

Although the documentation [1] claims that the bit widths of the filter coefficients

can be independently specified of the data bus width, this appears to be inaccurate.

The initial design made use of ten bit data and eight bit coefficients. The FIR filter

operated correctly when an impulse function was passed through it – the values of

the coefficients were output. Any other input data produced an incorrect output on

at least one of the filter tap outputs. It was thought that the problem was due to the

internal precision (precision of the calculations) of the filter but this was excluded

for two reasons: Firstly, when the internal precision was increased, the problem

remained. Secondly, the values used for testing were too small for overflow to

occur. No pattern seemed to exist which would predict which coefficient would

cause the incorrect value to be output. The problem was finally solved by increasing

the precision of the filter coefficients to ten bits. Although their values remained

unchanged, the problem was solved. The cause of the problem is still not know.

8.2.3 Dividers

The output of the FIR filter was 23 bits wide to prevent loss of dynamic range or

overflow. This output contained a gain associated with the filter coefficients as well

as a gain introduced by the presumming. The presum gain was three, the number of

lines that were presummed. The filter gain was equal to the sum of the absolute

value of the coefficients. This equalled the maximum gain that the FIR filter could

apply to any data stream. The filter gain for the coefficients used was 952 (see

Appendix A: FIR Filter Characteristics for details on the coefficients). The FIR

filter output therefore had to be divided by 2856 to scale the result down to eight

bits.

Altera provided a divider core that was initially used. This core was configurable as

the bit widths of the inputs and outputs could be modified, as well as the number of
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pipeline stages. During final testing it was discovered that the divider could only

operate on unsigned values. Another solution had to be found.

A number of alternatives were examined. The first was to perform a partial

fractional decomposition of the division by 2856 into a number of powers of 2. The

values of a, b, c, d and e in Equation 5 were computed using a PBIL based search

program written by Richard Lord which made use of the algorithm described in [6].

The number of partial fractions to use was variable but four seemed to give a good

trade off between accuracy and the amount of logic required to implement. The

final approximation used can be seen in Equation 6. By making use of divisors

which were powers of two, the division could be performed with an arithmetic right

shift operation.
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These partial fractions could then be added which was faster than a division

operation. The error in the approximation was approximately 3x10-6. The problem

with the implementation of this was that truncation errors were introduced in the

division. Since the representation of the data was in the form of integers, no

fractional parts of the results were stored or used. This truncation error was

compounded since it occurred in the calculation of each partial fraction. This

resulted in incorrect values and an alternative solution was investigated.
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The solution implemented made use of the unsigned divider provided by Altera.

The data output from the FIR filter was examined to determine if it was positive or

negative. The absolute value of the output was taken and this unsigned value was

input to the divider. The output of the divider was then sent to two LUTs, one for

positive values and one for negative values. The function of the LUT was to convert

the divider output into the eight bit, unsigned value required for output. Two LUTs

were required since different offsets were required for positive and negative values.
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A multiplexer was used to connect the two LUTs outputs to the FIFO data port. The

select signal for the multiplexer was controlled by the most significant bit of the

FIR filter output. If it was a logic ‘1’ , the number was negative. This method

worked correctly.

8.2.4 DC Offset

Since the original data had a DC offset of 128, this offset had to be reinstated before

the data could be output. To do this, a LUT was used, as in the case of the

presummer.

As described in Section 8.2.3, the divider could only operate on unsigned values.

The absolute value of the numerator was used in the dividing process. Instead of

providing an output in the range –128 to 127, the output range was 0 to 128. Since a

DC offset had to be added to these values, it was decided to make use of two LUTs,

one for negative numerators and the other for positive numerators. The LUTs were

different as different offsets had to be added depending on the sign of the

numerator.

The LUT for positive numerators was 127x8 bits. This LUT merely added the

required 128 to the quotient to map the positive output values to the range of 128 to

255.

The LUT for negative numerators was a little more complex. The range of quotients

was 0 to 128. The reason for this was that two’s complement representation of

integers has a larger range for negative number than positive ones. A LUT of 256x8

bits was required to hold the offset output values. There was no constant DC offset

that was added to these values – the offset had to be equal to the negative of the

input value added to the required DC offset of 128. The output range of 0 to 128

was therefore mapped to the range 128 to 0.

A multiplexer was used to select the required output from the positive and negative

LUTs. The selection signal for the multiplexer was taken from the MSB of the FIR

filter output. The MSB was the sign bit of the value. When it was ‘1’ , the number

was negative.
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8.2.5 Verification

The final implementation was verified in two steps. Its functionality was first tested

in the Altera MaxPlus2 Environment. The timing was then tested using a back

annotated VHDL model of the prefilter. This model was used in conjunction with

the functional model testbench described in Section 8.1.5.

The prefilter design was large and the entire compilation process took a number of

hours to compile and fit. The Altera software provided an option to compile the

design for a functional simulation. This simulation was performed on the

synthesised logic and no place-and-routing took place. This reduced the compilation

time to under an hour which made the debugging process more feasible. The

problem with this was that only the Altera graphical simulator could be used as no

other simulator supported AHDL components. The Altera simulator did not support

the use of testbenches. If VHDL simulation models had existed for all the

components used, this method of verification would have been unnecessary as the

VHDL source could have been simulated before being place-and-routed. Due to the

size of the design, this simulation was time consuming. It took approximately 1 min

to simulate 1us.

Once the functionality of the prefilter implementation had been verified, its timing

had to be tested. The MaxPlus2 design software provided this information  in a back

annotated gate level VHDL model. This model was very large (approximately

18MB of VHDL source!). Simulation times were very slow due to the size and

complexity of the model which included setup and hold time checks on the input

signals. This simulation was performed on an Intel PII-300MHz with 196MB RAM

and took approximately 24 hours to simulate 5ms of time. This was unacceptable as

it would have taken approximately 60 days of simulation time to thoroughly test the

timing of the entire design. The only aspect that was not tested in the timing model

was the address counter overflows but these were verified in the functional

verification.

The same input that was used in the functional model was to verify the final

implementation timing model. The processed outputs were compared and were
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identical. The timing of the inputs to the FPGA were tested by the back annotated

model, while the outputs to the RAM and FIFO were inspected visually. Traces of

the signals were plotted and the setup and hold times were measured and verified.

8.2.6 Target Device

The prefilter was fitted to an Altera EPF10K100ARC240-1 device. This was the

fastest 100000 gate device that Altera made at design time. The device was

approximately 81% full. A larger capacity device should have been used if the

design was likely to undergo modification, especially if pin locking was needed.

Since this was not the case, however, the 100000 gate device was used.

According to the design software, the maximum registered clock speed that could

be used was 44MHz. The slowest part of the design was the divider whose

propogation delay was approximately 23ns.

The operating speed was more than adequate for the prefilter to operate correctly. If

the design was to be produced on a large scale, the use of a slower device could

have been investigated. Combining the presummer and prefilter onto one FPGA

could also have been investigated as a means of reducing costs.
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Chapter 9:  Conclusions and

Recommendations

The following conclusions were drawn from the work performed as described

above.

It is impossible to validate the goals of RASSP from this case study. A comparison

would have to be performed with the design of the same system using non-RASSP

design techniques. What can be concluded is that Virtual Prototyping is a useful

tool when designing digital circuits although it need not be used in every design.

The overhead required in writing the models required needs to be weighed against

the decrease in debugging time. This is particularly true of small designs.

The first important criterion for a successful system level simulation is that all the

entities and components used must have VHDL simulation models. One of the

larger problems encountered was that the VHDL source files could not be simulated

by the VHDL simulator because certain components which were instantiated had no

VHDL simulation models. If the source files could be simulated in the simulator,

the debugging time would have been reduced as a VHDL simulator is more

powerful and contains more features than the graphical simulators which

accompany many of the FPGA design packages. For systems which employ more

complex devices like DSPs and micro-controllers simulation models would have to

be purchased as they have a long development time and omitting them from the

simulation would defeat the purpose of the simulation.

Virtual prototyping has advantages in that the cost of debugging is small (excluding

the billable time for those who are performing the debugging). Once an error is

found, it can be corrected in software and the system simulated again. If the error

was found in the physical prototype, it could possibly be corrected in software

although often a hardware modification would be required.
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Gate level simulations are impractical for large designs. The time required to

simulate the design can be longer than the time required to build a physical

prototype, as was the case in this case study. The functionality of the final

simulation can be verified without using a gate level simulation if all the

components used have simulation models, or their VHDL source code is available.

The use of FPGAs in DSP systems is definitely practical and excellent results can

be obtained. The decision on whether to use an FPGA or dedicated DSP must be

taken in light of the tasks to be performed although the following guidelines can be

applied: Floating point operations are not suited to FPGAs as most of the available

components only support integer operations. Multiplication and division operations

are costly in terms of resource usage.

Although a seemingly obvious point, the architecture of a DSP is fixed, compared

to the FPGA whose architecture is specified by the designer. A greater amount of

flexibility is offered by the DSP when modifications are required. To modify the

operation of an FPGA often requires the designer to make major architectural

changes, unlike the DSP programmer who changes a few lines of source code.

Having said this, the use of VHDL has progressed the design of FPGAs a long way

down the road to supporting quick design modifications. If the synthesisable

description of the FPGA is written at a high level, making changes in its operation

is not much more complex than adding a few lines of VHDL code. For DSP type

work, the designer is likely to specify the architecture of the FPGA at a low level so

that the operating speed can be maximised. This is because since the lower the

abstraction level of the synthesisable code, the more control the designer has over

the synthesised result.

The majority of VHDL simulators on the market are event based simulators. Cycle

based simulators are making their appearance with claims of 10x speed

improvements over event driven simulators for gate level simulations. It would be

interesting to test these claims as increasing simulator speeds could make gate level

simulations of large systems feasible. Testing other simulators which ran on

multiprocessor computers would further test the feasibility of gate level simulations.



Appendix A: FIR Filter Characteristics

84

Appendix A:  FIR Filter

Characteristics

This appendix is details the characteristics of the different FIR filters tested and the

results of their testing. The first three filters were created using the algorithm

described in [16]. The first of the three filters was designed to operate with no

presummer i.e. the sampling frequency was 625Hz and had 64 taps. A 32 tap

equivalent could not be constructed since there were too few taps to specify a cutoff

frequency of 20Hz. The second and third filters were used to compare the effects of

64 and 32 tap filters with a sampling frequency of 208.33Hz.

The remaining filters were constructed to determine the best 32 tap filter which

would operate with a sampling frequency of 208.33Hz.

The coefficient values used for the testing can be found in Table 6 on page 91.
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A.1 Filter A

 The frequency response of this filter can be seen in Figure 29. The filter was

designed to operate on data which had been sampled at 625Hz and has 64 taps. The

an optimal method was used for designing the coefficients and can be found in [16]
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Figure 29: Frequency Response of Filter A

A graph of the filter tap coefficients can be seen Figure 30.
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Figure 30: Coefficients of Filter A
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A.2 Filter B

This filter was created using the same method as Filter A above. It also contained

64 taps but was designed to operate on data which was sampled at 208.33Hz. Its

frequency response can be seen in Figure 31 and its coefficients can be seen in

Figure 32
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Figure 31: Frequency Response of Filter B
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Figure 32: Coefficients of Filter B
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A.3 Filter C

This filter was designed with the same method as filters A and B. It was designed to

operate on data which was sampled at 208Hz but contained 32 taps. The frequency

response can be seen in Figure 33 and the filter coefficients can be seen in Figure

34.
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Figure 33: Frequency Response of Filter C
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Figure 34: Coefficients of Filter C
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A.4  Filter D

This filter was designed using a Kaiser Window. It was a 32 tap filter designed to

operate on data sampled at 208Hz. Its frequency response can be seen in Figure 35

and its filter coefficients in Figure 36
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Figure 35: Frequency Response of Filter D
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Figure 36: Coefficients of Filter D
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A.5  Filter E

This filter was designed using an equiripple method. As can be seen from its

frequency response in Figure 37, the sidelobes were all of equal height. It was a 32

tap filter designed to operate on data sampled at 208Hz. Its filter coefficients are

shown in Figure 38
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Figure 37: Frequency Response of Filter E
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Figure 38: Coefficients of Filter E



Appendix A: FIR Filter Characteristics

90

A.6 Filter F

This filter was designed using a Linear Method. It was a 32 tap filter designed to

operate on data sampled at 208Hz. Its frequency response can be seen in Figure

39and its filter coefficients in Figure 40
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Figure 39: Frequency Response of Filter F
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Figure 40: Coefficients of Filter F
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A.7 Table of Filter Coefficients

The filter coefficients found in were scaled to eight bit, signed integers. These

coefficients were used in the testing of the FIR filters described above.

Table 6: FIR Filter Coefficients

Tap Number Filter A Filter B Filter C Filter D Filter E Filter F
1 -3 0 -6 -7 14 -16
2 0 2 -2 -3 -38 1
3 1 2 2 3 -1 6
4 4 0 8 10 12 12
5 6 -1 9 14 16 15
6 8 -3 7 12 15 13
7 10 -3 0 3 6 4
8 12 -2 -10 -9 -5 -7
9 15 0 -19 -21 -19 -19

10 19 3 -20 -25 -26 -24
11 23 5 -13 -18 -20 -17
12 27 4 6 4 0 4
13 32 1 34 37 33 37
14 37 -2 70 75 72 75
15 43 -6 99 108 107 108
16 48 -8 127 127 127 127
17 54 -6 127 127 127 127
18 60 -1 99 108 107 108
19 66 5 70 75 72 75
20 72 11 34 37 33 37
21 78 13 6 4 0 4
22 84 9 -13 -18 -20 -17
23 90 0 -20 -25 -26 -24
24 95 -12 -19 -21 -19 -19
25 100 -22 -10 -9 -5 -7
26 104 -24 0 3 6 4
27 108 -15 7 12 15 13
28 112 6 9 14 16 15
29 114 38 8 10 12 12
30 118 74 2 3 -1 6
31 119 106 -2 -3 -38 1
32 127 127 -6 -7 14 -16
33 127 127
34 119 106
35 118 74
36 114 38
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37 112 6
38 108 -15
39 104 -24
40 100 -22
41 95 -12
42 90 0
43 84 9
44 78 13
45 72 11
46 66 5
47 60 -1
48 54 -6
49 48 -8
50 43 -6
51 37 -2
52 32 1
53 27 4
54 23 5
55 19 3
56 15 0
57 12 -2
58 10 -3
59 8 -3
60 6 -1
61 4 0
62 1 2
63 0 2
64 -3 0
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Appendix B:  JTAG Boundary Scan

With the package pin density of many ICs increasing rapidly, conventional methods

of testing assembled PCBs are failing to perform adequately. The most common

device used for testing assembled PCBs today is the “bed of nails”  tester. This

device has a number of nail-like probes which are placed on the ICs on the PCB.

Different probes are driven by the tester and other probes are then read to see if the

correct connection between these test points had been made. The fundamental

assumption when using such a tester is that all the pins of the ICs are accessible.

This is most certainly not the case with many of the new IC packages e.g. the Ball

Grid Array. This is a surface mount device where the “pins”  are under the device –

inaccessible to any probes.

This problem was recognised and in 1985 and the Joint Test Action Group (JTAG)

was formed in an attempt to overcome this problem. Their solution was made an

IEEE standard (IEEE 1149.1-1990) and is in use today although it is often still

referred to as JTAG. The JTAG solution was to build the test circuitry into the

devices, rather than requiring external hardware.

JTAG compliant devices have a 4 pin JTAG port which allows access to the

boundary scan hardware. Instructions are loaded into the device in a serial manner

while the results are serially read form the device. A number of devices can be

connected to the JTAG port in a serial manner. The 4 pin port required on every

JTAG port contains two control signals, an input and an output port.

The IEEE Standard IEEE 1149.1-1990 requires that a certain set of instructions be

implemented in the boundary scan hardware although the designer is able to able to

add support for additional commands [18]. Many of the FPGA manufacturers have

extended this port to allow for programming of the devices.
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Appendix C:  MathCAD SAR

Processor

Below is a listing of the MathCAD SAR processor used to test the effects of a

presummer and prefilter on SAR processing. The processor generated the returns

from a point target which it then presummed and FIR filtered. The presum factor

was user definable as was the length of the FIR filter. The coefficients for the filter

were read from an ASCII text file. The processed returns were used to construct a

matched filter which was then convolved with the processed data. The power values

for the focussed image were written to disk where they were analysed by a peak

detection program written by Jasper Horrell. The peak width, measured in number

of samples, was then input to the processor and the focussed azimuth resolution was

then calculated. This was one of the values used to measure the performance of the

presummer and FIR filter.

Simple SAR Processor with presummer and filter
support
f c

.141MHz

Radar carrier frequency
f PRF

.625Hz

Radar PRF

c ..3 108 m

sec

λ c

f c

=λ 2.128m

v .250
m

sec

Speed of aircraft
θ BW

.45deg

Antenna beamwidth
Rt

.6 km

Range to target
Up_samp 8

Upsampling value NB power of 2
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L SA

.2 R t

tan
.180deg θ BW

2
=L SA 4.971km

Synthetic Aperture Length

dx
v

f PRF

=dx 0.4

Step size

Num_samp 2
ceil

log
L SA

dx

log( )2

=Num_samp 16384

Make the array a power of 2 in length

R( )n Rt
2 .n

Num_samp

2
dx

2

R t

Valid_samp

.tan
θ BW

2
Rt

dx

=Valid_samp 6.213

i ..0 Num_samp 1

Array index
ret

i
0

Clear the contents of the array

Valid_range ..ceil
Num_samp

2
Valid_samp floor

Num_samp

2
Valid_samp

ret
Valid_range

exp ...4
π
λ

R( )Valid_range j

Returns from a single target
Doppler BW Calc
L SA_Real

.dx Num_samp

=L SA_Real 6.554

=atan
L SA_Real

.2 R t
28.64

Half BW

B D

..4 v sin atan
..2 dx Valid_samp

.2 R t

λ
=B D 179.861

Res .0.89
v

B D

=Res 1.237

These write the data to file in an unsigned integer format. Range 0 to 255
with a DC offset of 128. This is used to check the effects of quantisation by
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allowing the VHDL model to process the data, instead of the MathCAD
Simulation
WRITEPRN( )DataI 128 floor Re .127ret

i

WRITEPRN( )DataQ 128 floor Im .127ret
i

First we must presum the return by 3
PS_Fact 3

PSNum_samp floor
Num_samp

PS_Fact

Number of samples after presumming
=PSNum_samp 5461

a ..0 PSNum_samp 1

PSi ..0 PSNum_samp 1
ps_ret

a
tmp 0

for

tmp tmp ret
( ).PS_Facta i

∈i ..0 PS_Fact 1

tmp

And now for the FIR filter
filter READPRN( )t64

Filt_len length( )filter

=Filt_len 64

left ceil
Filt_len

2

=left 32

Finds the midpoint of the filter

right floor
Filt_len

2

=right 32

index ..left PSNum_samp right
filt_ret

PSi
0

filt_ret
index

tmp 0

for

tmp tmp .filter
( )left 1 i

ps_ret
( )index i 1

∈i ..( )left 1 right

tmp

3

Now we put in a skip factor. This should not be greater than the filter length
to avoid data loss
Skip_factor 4

Num_samp 2
ceil

log
PSNum_samp

Skip_factor

log( )2

=Num_samp 2048

New number of samples after
presumming and prefiltering
j ..0 Num_samp 1

ind ..0
PSNum_samp

Skip_factor
1
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reduced_ret
j

0

Setting the new array to zero in case old data is left there
reduced_ret

ind
filt_ret .Skip_factorind

=length( )reduced_ret 2.048

0 1000 2000 3000 4000 5000 6000
1

0

1

filt_ret
index

index

Filtered return shown in
azimuth. Note that the
FIR filter has nulled all
but the center of the
return - that which is
low frequency.
Now calculate the matched filter

mf
j

reduced_ret
( )Num_samp ( )j 1

=length( )mf 2.048

k ..Num_samp .2 Num_samp 1

l ..0 .2 Num_samp 1

Padding for the convolution must be added to avoid wrap around problems
mf

k
0

reduced_ret
k

0

Time for the FFT’s!
freqmf cfft( )mf

FFT the matched filter
freqred_ret cfft( )reduced_ret

FFT the radar return
freqconv

l

.freq red_ret
l
freqmf

l

The convolution in the time domain is
equivalent to multiplication in the
frequency domain

0 1000 2000 3000 4000 5000
100

50

0

.10 log freqred_retl

2

l

Upsampling time to make prettier images
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m ..0
log( )Up_samp

log( )2

tst

m

2m 1

=tst 14

y ..Num_samp .Num_samp( )tst 1 1

n ..0 ..2 Up_sampNum_samp 1
freqconv

( ).tst Num_samp k
freqconv

k

freqconv
y

0

Now we invert back to the time domain
td icfft freqconv

o ..( ).Up_sampNum_samp 100 ( ).Up_sampNum_samp 100

1.625 10
4

1.63 10
4

1.635 10
4

1.64 10
4

1.645 10
4

1.65 10
4

80

60

40

20

0

20

.20 log td
o

o

This is a magnified version of the centre section of the image below.

0 5000 1 10
4

1.5 10
4

2 10
4

2.5 10
4

3 10
4

300

200

100

0

Sample Number

Si
gn

al
 P

ow
er

 [
dB

]

WRITEPRN( )focussed Re td
o

2 Im td
o

2

Write the output power values for processing
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Real_res .8.78
.dx ( ).Skip_factorPS_Fact

Up_samp

=Real_res 5.268m

Exp_res .v
.40Hz

.89

=Exp_res 5.563m

=
Exp_res Real_res

Exp_res
5.294%
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Appendix D:  VHDL Code Description

This appendix will explain the VHDL code listings found on the enclosed

CD-ROM. For the presummer and prefilter there are each three models: the

algorithm model, the functional model and the synthesis model. Testbenches for the

latter two models are also included as well as some code to create a set of test data.

A number of components were written for the presummer and prefilter. These

included registers, latches and components that calculated the absolute value of

numbers. The testbenches required a RAM model that was written and is also

described below.

All of the code used was VHDL ’93 compliant and is incompatible with VHDL ’87

because of the file handling routines used.

D.1 Test Data Generator

Filename: FILEGEN.VHD

Description: This code creates a set of test data that can be used by the presummer

for verification. The program simply loops through the values 0 to 255 for each

PRI. A total of 100 PRIs are output, each containing 4096 range bins. This simple,

repetitive data was chosen to aid debugging, especially for the prefilter. The output

file was in ASCII format it ease debugging.

D.2 RAM Model

Filename: FUNC10BIT.VHD

Description: The data for the RAM structure was taken from [7]. The RAM model

stores all the data in a single 128K array of integers. The range of the integers is set

to limit the data values to 10 bit precision. Cypress do not produce a 10 bit device

but for simulation purposes it was decided to make a 10 bit device instead of using

two 8 bit devices. This was done to improve the simulation speed.



Appendix D: VHDL Code Description

101

The first two processes (“CounterL” and “CounterR”) are responsible for handling

the address lines. Since the device is dual ported, the two ports are designated as

being the left or right port. Separate processes are used for the left and right address

signals as they operate off separate clocks. Every time the address strobe is made

active, the value on the address bus is latched. If the internal address counter is

enabled, this latched address is incremented every clock cycle. The address is reset

to zero when the counter is reset.

The “Memory”  process performs all the memory reads and writes. This process

operates on both the left and right ports as only a single process can drive any one

signal. The memory array is declared as a signal. This process is not clocked as all

the inputs to it are clocked - hence the process is still synchronous.

The remaining processes (“RegsL” and “RegsR”) are used to register the control

signals. The remaining code implements multiplexers which are required to make

use of extra latches when the RAM is used in pipeline mode.

D.3 Presummer Code

D.3.1 Algorithm Model

Filename: PS_ALG.VHD

Description: This code contains a single process. It has no testbench associated

with is as it is the top level simulation. The results need to be verified by hand so

that they can be used for testing the less abstract models.

The model makes use of an array of 4096 integers to hold temporary data while the

PRIs are being summed. The data values are constrained to the integer equivalent of

10 bits to ensure that there is no overflow.

One process is used to perform all the processing. The input files are first opened

and the presum counter is reset. A loop is then used to read in an entire PRI. If the

presum counter is zero, the input data is simply stored in the array. If not, it is added

to the contents of the array. When the third PRI is summed, the result of each range
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bin is written to the output file. Once each PRI has been processed, the presum

counter is incremented. After three PRIs have been processed, the presum counter is

reset.

D.3.2 Functional Model

Filename: PS.VHD

Description: The representation of the data values within the presummer is all

integers. This was done to increase the level of abstraction within the model. The

advantage of this was the availability of mathematical functions for integer data

types.

The first block (“SyncFifoWEn1_n”) is used for creating a single pulse which is

one clock cycle in length. This is required as the ADCv_n signal is active for more

than one clock cycle. Since the FIFO is synchronous, more than one sample would

be written if the Write Enable signal was not synchronised.

The next block (“Latches”) contains the registers for the inputs and outputs. The

adder process that follows it performs the additions which are required for

presumming.

The “StateMachine”  block has a number of processes that define the state machine

behaviour. The states are enumerated and two signals are defined for the current and

next states. The state machine encoding style was unimportant in this model as

during the functional simulation, no timing constraints were imposed on the model.

The first  process is used to assign the next state to the current state on each clock

cycle. The second process is used to determine the state transitions while the

remaining processes use the value of the current state to set their outputs. One

process is responsible for the RAM signals, another for the FIFO signals while the

last process controls the internal control signals.

D.3.3 Synthisisable Code

Filename: PRESUMMER.VHD

Description: This is the code which was used for the synthesis of the presummer.
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The first components which were instantiated were the LUTs. The I and Q channels

each had a dedicated LUT. Both the input and output of the LUTs were registered

which meant that the result from the LUT was available after two clock cycles. To

ensure that the FIFO data and RAM data were available at the same time, a register

was inserted into the RAM data path. This was to hold the RAM data while the

LUTs performed their operations on the FIFO data.

The next two blocks (“SyncHBRSel”  and “SyncFifoWEn1_n”) are used to create a

single pulse every time the HBRSel and FIFOWEnl_n signals respectively go

active. The pulse generated lasts for one clock cycle. Two flip flops are used in this

process.

The “Latches”  block contains the instantiations of all the registers. The first two

registers are the RAM data registers described above. The RAM address is also

registered. The reason for this is to make use of the registers in the I/O blocks of the

FPGA. This decreases the clock-to-output time on the address signal. The chip

enable signal is also registered.

The “Counters” block contains the instantiations of the counters. As described in

Chapter 7: Presummer Design, four counters were required: Two range bin counters

(“ColCounterR” and “ColCounterW”), a range line counter (“RowCounter” ) and a

presum counter (“PresumCounter”). The presum counter

The “Adders” block contains the instantiations of the adders. Only a single pipeline

stage was used. This was done to decrease the latency of the system as only a single

sample would be processed at a time. The adders were 10 bits wide, although the

input from the LUTs was 8 bits wide. This input was therefore sign extended to 10

bits.

The “StateMachine”  block holds the descriptions of the state machine. One Hot

Encoding is used and an index is declared for each state to allow for the

enumeration of the states. The first two processes perform the state transitions while

the remaining processes in the block are responsible for controlling internal and

external signals. Notice should be taken of the “IF” statements used in the output
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processes. These were used to prevent any comparators from being synthesised.

This increased the operating speed of the state machine.

D.3.4 Presummer Testbench

Filename: TB_PS.VHD

Description: The presummer testbench instantiates the presummer and the RAM

and connected the two components. The first two processes create the clock signals

for the two components. The “Timingcard” process creates the external signals

which are input to the presummer (HBRSel and ADCv_n signals).

The “FifoProc” and “FifoReads” processes provide the functionality of the input

FIFOs. The first process keeps track of the number of samples which are stored in

the FIFO and sets the FIFO empty and full flags accordingly. The second process

reads the input data from disk every time a read operation is requested by the

presummer. In this way, the sampled data from the ADCs can be simulated.

The “OutputData” process makes use of the right hand port of the dual ported RAM

to write the presummed data to disk. Every time the presummer asserts the

PSRowDone line to signal that a presummed line has been written to RAM, the

process reads another PRI from the RAM which is then written to disk. The process

contains counters which operate in the same way as those in the presummer so that

the correct RAM addresses can be produced. By making use of the second RAM

port, the testbench does not interfere with the operations performed on the RAM by

the presummer.

D.4 Prefilter Code

D.4.1 Algorithm Model

Filename: PF_ALG.VHD

Description: This code contains a single process. It has no testbench associated

with it as it is the top level simulation. The results need to be verified by hand so

that they can be used for testing the less abstract models.
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The model makes use of a 2 dimensional array of 4096 x  99 integers to store the

data to be prefiltered. A second array of 32 integers contains the coefficients for the

FIR filter. The precision of the data is 23 bits while filter coefficients are 8 bits

wide.

One process is used to perform all the processing. The input files are first opened

and the contents are read into the data array. This model only processes the first 100

PRIs of a data file. The number can be increased by changing the loop variables and

dimensions of the data array. A second loop is then used to perform the prefiltering.

The result is divided by the correct scale factor and the result is written to disk. A

skip factor of four is introduced before the next set of PRIs is processed.

D.4.2 Functional Model

Filename: PF.VHD

Description: The representation of the data values within the prefilter is all

integers. This was done to increase the level of abstraction within the model. The

advantage of this was the availability of mathematical functions for integer data

types.

The “FIRFilter”  block implements the FIR filter. An array of 32 integers holds the

data to be filtered. On each clock edge, the value on the RAM data bus is clocked

into the filter. This data is multiplied by the coefficients and the result is divided by

the scale factor.

“PSRowCntProc”  is a procedure that implements the presummed row counter. The

counter increments when the presummer makes the “PSRowCntInc”  line active.

When the prefilter makes the “DownCounterEn” line active, then the counter

decrements. When both “PSRowCntInc” and “DownCounterEn” and are active, the

counter does nothing.

The “StateMachine”  block is similar to those descibed in the presummer above.

Two processes specify the state transitions while the remaining processes control

the outputs and internal control signals.
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D.4.3 Synthisisable Code

Filename: PREFILTER.VHD

Description: This is the code that was used for synthesising the prefilter. The top

level of the design was actually a schematic description so that the FIR filter,

written in AHDL, could be linked to the VHDL description of the remaining

hardware. The VHDL source code is divided into three main blocks:

“PostProcessing” , “Counters” and “StateMachine” .

The “PostProcessing”  block provides all the numerical processing on the data once

it has been FIR filtered. Two registers (“FIROutputRegI”  and “FIROutputRegQ”)

are used to latch the correct output from the FIR filter since the filter output is

continuous. The state machine controls the register enable signal

(“LatchFIRDataEn”).

Two absolute value components then process the FIR filter output. These

components check the MSB of the incoming data to determine whether the value is

positive or negative. Two’s complement representation is assumed. If the data is

negative, the bits which represent it are inverted and added to 1. If the data is

positive, it is merely output. Three pipeline stages were used in the adder. More

pipeline stages could have been added if the component was too slow but this was

not required.

A pair of dividers is instantiated to divide the absolute value of the FIR filter data.

Since this was the slowest part of the circuit, the maximum amount of pipelining

was introduced (seven stages). The limit on the number of pipeline stages was

specified by the component.

Two pairs of LUTs were required – one for positive values and the other for

negative values. The outputs of these LUTs were multiplexed so that correct output

would be placed on the FIFO data bus. The selection signal for this multiplexer was

the MSB of the register that latched the FIR filter output.
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The “Counters” block holds all the address and state machine counters.

“SampleCounter” and “BinCounter” are the PRI and range bin counters

respectively. They are used for generating the RAM address. “StartCounter”

contains the start value of the PRI counter which is reloaded after every range bin

has been processed. “StartCounter” is only 4 bits wide while “SampleCounter”  is 6

bits wide. The reason for this is that “StartCounter” is required to increment in

multiples of four. When connected to the PRI counter, the two LSBs are therefore

connected to ground.

The width of “BinCounter” is 13 bits instead of the expected 12 bits required to

represent 4096 values. The reason for this is that the state machine uses the MSB as

the signal to indicate when an entire PRI has been processed. The MSB of the

counter is high after 4096 increments. To enable future support for 4096 or 2048

range bins, the two MSBs of the “BinCounter”  are connected to a multiplexer. The

selection signal (“Bins4096n2048”) is used to control the number of range bins per

PRI. This signal is pulled high internally as it was not required in this

implementation. A simple modification would be required to route this signal to an

input pin.

“PSRowCounter” is used to track the number of presummed rows in memory. The

“DownCounter” is used to count four clock pulses which will decrement the

“PSRowCounter” by four, after each PRI has been processed. The “FIRCounter”  is

used to count the number of samples that are written into the FIR filter.

The “StateMachine”  block is similar to those used in the models above. The first

two processes control the state transitions while the remaining processes control the

internal and external signals.

The two signals “WriteDataNow” and “LatchDataNow” decode the outputs of

“FirCounter” and indicate to the state machine when to latch the FIR filter output

data and when to write the processed output to the FIFOs.

D.4.4 Prefilter Testbench

Filename: TB_PF.VHD
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Description: The prefilter testbench instantiates the prefilter and the RAM and

connects the two components. This testbench operates in the reverse order to the

presummer testbench. The data is first written to the RAM through the right hand

port from disk. Once the prefilter has filtered the data, it writes it to output FIFOs

which are simulated in the testbench. The output data is written to disk.

The “InputData” process is responsible for loading the RAM with the presummed

data. One sample is loaded per clock cycle until an entire range line has been

loaded. The testbench then waits for the remainder of the PRI and then loads the

next range line. After every range line has been written, the testbench asserts the

“PSRowCntInc” input for one clock cycle.

The “OutputData” process simulates the behaviour of the output FIFOs. Each time a

write operation is requested, the testbench writes the data on the FIFO data bus to

disk.
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