Microwave Digital Camera for the real-time Measurement and Analysis of the Radar Cross Section of Time-Varying Targets

Yoann Paichard, Philippe Dreuillet, Gérard Bobillot, Juan Carlos Castelli

ONERA – DEMR

Yoann.Paichard@gmail.com Philippe.Dreuillet@onera.fr castelli@onera.fr bobillot@onera.fr

Time varying targets

- Reflectivity variations are induced by geometrical or radioelectrical distortions
- Examples: helicopter blades, jet engine, electronic devices,...

Modulation of the transmitted signal
Fast variations of the Radar Cross Section

 Wideband Measurement for RCS imaging

> 11 13 15 17 μS

 Short measurement time to consider the time-varying phenomenon as stationary

Transmitted Waveform: multicarrier signal (OFDM)

A set of orthogonal frequencies are transmitted simultaneously :

F^{1.2}

0.8 OHZ 0.8 OHZ 0.6

0.4

0.2

0 1

RCS measurement of an active transponder

- Indoor measurement (anechoic chamber)
 - Extraction of the modulating signal
 - Process:
 - 1. Measurement of the scattering coefficients $\rho(F,t)$
 - 2. FFT on the frequencies

 Phase Coding to minimize the signal's Peak to Mean Power Ratio (PMEPR)

Newman's Code : $\phi_n = \frac{\pi (n-1)^2}{N}$ Low PMEPR (\leq 2dB)

Experimental System

 Reference and test channel are interleaved (orthogonal frequencies)

Outdoor measurement on moving targets (camera mode)

Modulating signal : $f_m = 100 Hz$

Range-Doppler response resolution : 19 cm (range), 5 Hz (Doppler)

Doppler (Hz) *Radar image*

Optical image

ONERA