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Abstract— Dual swath satellite wind sensors are unable
to obtain measurements directly below the satellite, cre-
ating a “nadir gap” centered on the sub-satellite track.
This is true of active sensors such as the scatterometer,
as well as the microwave radiometers, newly used for this
purpose. In addition, sensor coverage in equatorial re-
gions is incomplete. Using processed ERS-1 wind field
data, it is shown in this paper that Ordinary Kriging is
an appropriate technique to interpolate this “nadir gap”.

I. INTRODUCTION

This work was inspired by a desire to try and improve
the spatial coverage of wind sensors in equatorial regions,
where polar orbiting sensors in sun-synchronous orbits
display significant gaps in the daily coverage. It then
became apparent that the technique could also be used to
fill the “nadir gap”, defined below.

Due to the inability of satellite scatterometers to ob-
tain wind field measurements for incidence angles below
20°, the NASA Scatterometer (NSCAT') wind field swaths
have a gap centered on the sub-satellite track where no
wind measurements are available. This gap (called the
“nadir gap”) arises, because for incidence angles smaller
than 20°, 0¥ is only weakly sensitive to wind speed and
virtually insensitive to wind direction [14].

Figure 1 illustrates the NSCAT antenna illumination
pattern on the ocean surface. The swaths on either side
of the sub-satellite track are 600 km wide, separated by a
329 km wide gap.

Recent work by Wentz [16] has shown that it is pos-
sible to use spaceborne radiometer data to measure the
wind speed and velocity over the ocean surface. Satel-
lite radiometers have the advantage over scatterometers
of being less bulky and hence more reliable and cost ef-
fective. However, as for the active sensors, radiometers
cannot measure wind vectors for incidence angles between
zero and twenty degrees, resulting in a similar “nadir gap”
centered on the sub-satellite track.

The following interpolation and smoothing techniques
for spatial data were investigated and compared:

1. Trend Surface Analysis.
2. Splines.
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Figure 1: NSCAT antenna illumination pattern.

3. Kernel Smoothing.
4. Kriging.

Trend surface analysis [12] does not seem to be an ap-
propriate method to interpolate wind field data, because
of the difficulties in finding a simple functional form for
the underlying trend of the data. Kernel smoothing meth-
ods [12] have the disadvantage of not being able to utilise
the covariate information in the available data. It is also
not obvious how the above methods can be used to inter-
polate vectors.

Both Kriging [12] and Spline based methods [12] seemed
to be appropriate techniques to interpolate wind field vec-
tors. Ordinary Kriging seemed most appropriate since it
was specifically developed for interpolation in the case
of random variables that exhibit spatial autocorrelation.
Wind field data was expected to exhibit a high degree
of autocorrelation. Furthermore, Ordinary Kriging has
been successfully applied in a number of areas, such as
soil mapping [4], mining, rainfall modelling and hydrol-
ogy [12]. The use of splines to interpolate the nadir gap
was only investigated theoretically. Spline based methods
were never implemented to obtain interpolation results.
Laslett [9] and Handcock et al. [3] discuss comparisons of
the performance of Splines and Kriging in some applica-



tions.

The paper goes on to review Kriging briefly. To test
the validity of the technique, artificial as well as ERS-1
wind field data was used. The nadir gap was simulated
by removing a strip from the centre of the ERS-1 wind
data. Good results were obtained and are reported here.

II. KriGING WIND VECTORS

Kriging is a geostatistical interpolation technique which
was first conceived of in the late fifties by D. G. Krige for
use in the South African gold mining industry. It was
formalized mathematically by G. Matheron [10] shortly
thereafter. In this method the data is modelled as a sto-
chastic process with a covariance function which is as-
sumed stationary, that is, dependent only on distance
and not on position. Kriging is often associated with the
acronym B.L.U.E. for “best linear unbiased estimator”.
Kriging is “linear” because its estimates are weighted lin-
ear combinations of the sample values, it is “unbiased”
since it tries to reduce the mean residual or error to zero,
and it is “best” because it is the only estimation technique
that aims at minimising the error variance [5]. Further-
more by explicitly modelling the covariance of the data
points, this method is especially suited to data exhibiting
spatial autocorrelation [12].

If we use the model

v =T+ (1)

where 7 represents large-scale underlying trend of the
data, n represents the local spatially correlated compo-
nent and the subscript 7 refers to the ¢ th data point, where
all the data points are numbered from 1 to n, then Kriging
provides an estimator 9y of the form
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where the weights w; are chosen to minimize the estima-
tion variance of the error, that is, to minimize
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where vg is the true value of the estimated variable at
location zy = (2, yo)-

In the case of Simple Kriging, the data are assumed to
be detrended, so that the 7 terms may be assumed to be
zero. More generally, the trend term is either assumed
to be a constant, as in Ordinary Kriging, or modelled as
a polynomial in x and y, as in Universal Kriging. There
are difficulties in finding a simple functional form for the

underlying trend of wind data. (This was the key reason
for rejecting trend surface analysis.) Hence, Universal
Kriging does not seem to be an appropriate method to
interpolate wind field data. Appendix A gives a more
detailed description of the mathematical basis of Ordinary
Kriging.

Wind field data consists of vector variables rather than
scalars. According to Young [17], the Kriging technique
can be extended to the spatial analysis of vector vari-
ables by defining the estimation variance and vector semi-
variogram in terms of the magnitude of difference vectors.
However the vectors have to be stationary, spatially cor-
related random variables.

The vector semi-variogram is defined as the expected
value of the squared norm of the difference between two
random vectors, which are, in turn, a vector distance h
apart [17]:
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where v, is the regionalised vector variable at point
z = (z,y).

As for scalar variables, the vector semi-variogram can
be estimated using

1) = oy v v | ®

where the summation is over all n(h) pairs which are a
vector distance h apart.

This definition of the vector semi-variogram is consis-
tent with the definition of the semi-variogram for scalar
variables. The vector semi-variogram can apparently be
used in classical geostatistical operations such as analysing
anisotropic spatial variability and estimation variance [17].
For the remainder of this article, the word “semi-variogram”
will refer to the vector semi-variogram, unless stated oth-
erwise.

The estimation variance can be measured in various
terms, such as the angular difference between the esti-
mated vector v and the actual vector vy, and some func-
tion of the angle, such as the cosine or tangent function.
However Young [17] defines the estimation variance as the
vector difference:

var [vo — Vo] = E [(vo - vo)ﬂ (4)

This definition for the estimation variance is consistent
with the vector semi-variogram, and can be minimized to
yield the Kriging equations just as for the scalar case. The
estimated vector can be expressed as a weighted linear
combination of all the other vectors. Thus

\A/'() = iwivi (5)
i=1
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Figure 2: Interpolation results of synthetic data set.

where the weights w; are optimum in the sense of estima-
tion variance, minimising the magnitude squared of the
difference vector between the true and the estimated vec-
tor.

Before implementing this method on real ERS-1 wind
field data, this method was tested using synthetic data
sets. The “perfect” structure of synthetic data sets en-
ables immediate evaluation of the obtained results. Fig-
ure 2 shows a synthetic data set that is 19 vectors wide
and 38 vectors long. Both the wind speed and direction
change from left to right and from the bottom to the top
of the “swath”. Seven vector columns were removed from
the middle of the swath, creating a gap that was inter-
polated using Ordinary Kriging. From Figure 2 it can
be seen that the results obtained look promising, with
both the direction and speed of the estimated wind vec-
tors following the basic trend of the original wind vectors.
However the results obtained are not perfect and there
are at least two reasons for this:

1. Ordinary Kriging assumes that the underlying trend
of the data is constant, and this is not the case for
this synthetic data set, which displays very obvious
trends. The presence of an underlying trend was fur-
ther confirmed by the parabolic shape of the semi-
variograms.

2. The spherical model (see Section III-B), which was
fitted to the calculated directional semi-variograms
of this synthetic data set, did not fit very well, due
to the parabolic shape of the semi-variograms.

Figure 3: Interpolation results of real data set. (¢) Euro-
pean Space Agency, ERS-1 data, 1994.

These results do, however, indicate that Ordinary Krig-
ing can be used to interpolate wind vectors. In the next
section, processed ERS-1 wind field data is used to con-
firm these results.

ITI. IMPLEMENTATION ON ERS-1 DATA

A. Description of Implementation Procedure

The Kriging algorithm was implemented on seven data
sets, which were all 19 wind vectors wide and 38 wind vec-
tors long. These data sets were sections of longer ERS-1
wind field swaths. For each data set, 7 columns of vectors
were removed from the middle of the swath. This gap was
then interpolated, and the results were compared with the
original strip.

When the swath was extrapolated, the semi-variogram
was calculated and modelled using the entire data set,
without the middle strip missing. However when the
gap was interpolated, the semi-variogram was recalcu-
lated and modelled using all the data except the middle
strip, which was assumed to be non-existent. This would
be the situation when filling the “nadir gap”.

Once the gap had been interpolated, the results were
compared with the original values by calculating the rms
value of the differences in the speed and angle values,
and also the rms value of the magnitude of the difference
vectors. The error in the speed component was also cal-
culated as a percentage, by calculating the ratio between



the speed rms value and the average speed in the original
data strip.

For each interpolated vector the Kriging algorithm made
use of 84 original vectors, with 42 vectors on either side
of the gap. This number should be increased for better
accuracy. However, the computation time will then also
increase.

When the software was written to implement the Krig-
ing algorithm, it was assumed that the wind vectors lie on
a perfect grid. This is however not the case, as the hori-
zontal and vertical distance between two successive wind
vectors in degrees longitude and latitude changes slightly
when moving from one end of the swath to the other.
However, for swaths which are only 38 vectors long, this
effect is negligible.

B. Interpreting Wind Field Semi-Variograms

All the results shown and discussed in this paper have
been obtained by fitting a spherical semi-variogram model
to the calculated semi-variograms. The spherical model is
probably the most commonly used semi-variogram model,
and is defined by the equation
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where s is the sill and a is the range. It has a linear
behaviour at small separation distances near the origin,
but flattens out at larger distances, and reaches the sill
at a.

The wind field semi-variograms have been calculated in
a direction parallel to the swath and in a direction per-
pendicular to the swath. Semi-variogram models often
have different ranges and/or sills in different directions.
For the case where only the range changes with direction,
the anisotropy is known as geometric anisotropy, while
in the case of only the sill changing with direction, the
anisotropy is known as zonal anisotropy [5]. It has been
found that the wind field data displays a mixture of geo-
metric and zonal anisotropy. When modelling anisotropy,
one usually starts by determining the anisotropy axes by
experimentally determining the directions corresponding
to the minimum and maximum range or sill. For this
paper it has been assumed that the anisotropy axes cor-
respond to the directions parallel to the swath and per-
pendicular to the swath. It is computationally much eas-
ier to find the semi-variogram for a swath in these two
directions than in any other direction, and therefore the
above assumption has been made. However it is possible
to write a computer program to find the true anisotropy
axes.

According to Isaaks and Srivastava [5], the isotropic
model for two semi-variograms of the same type, but with

Table 1: RMS errors for real data using the spherical
model

Swath Speed | Angle | Vector | Avg Speed | Speed
[m/s] | [Deg] | [m/s] [m/s] (%]
1 0.795 | 6.098 1.457 11.718 | 6.783
2 0.603 | 5.783 1.096 9.404 | 6.410
3 0.573 | 13.140 1.361 5.780 | 9.917
4 0.414 | 4.805 | 0.758 7.685 | 5.384
5 0.866 | 8.691 1.279 6.492 | 13.342
6 0.650 | 8.381 1.341 7.940 | 8.191
7 0.287 | 8.143 | 0.727 4.858 | 5.912
| Average || 0.598 | 7.863 | 1.146 | 7.697 | 7.991 |

range values of a, and a,, and sill values of wy and (w; +
wy), can be given by

v(h) = wiyi(h1) +wa 1 (h2) (7)

where hy is defined as

where a, and a, are the ranges of the directional semi-
variogram models along the axes of anisotropy and h, and
h,, are the components of h in the = and y directions of the
anisotropy axes. It is important to note that the method
described above is only appropriate for those situations
where the directions of minimum and maximum continu-
ity are perpendicular to one another. For this project it
is assumed that this is the case for the wind field data.
Isaaks and Srivastava [5] give further references that de-
scribe how to approach the modelling problem if the above
method is not appropriate.

The range of influence of most wind field semi-variograms
extends virtually over the whole width of the swath. The
7 interpolated columns of vectors fall well within the range
of most wind field semi-variograms. It can therefore be
concluded that the wind field data is highly correlated,
indicating that the Kriging technique is appropriate to in-
terpolate wind field data. However some wind field semi-
variograms did not seem to reach a well-defined sill. This
is indicative of a non-constant underlying trend, but Or-
dinary Kriging assumes that the underlying trend is con-
stant. Universal Kriging would seem to be more appro-
priate, however the difficulty in finding a functional form



that describes this trend makes Universal Kriging diffi-
cult to use. A technique that looks promising involves
detrending the data before using Ordinary Kriging to es-
timate vectors, and then adding the trend back to the ob-
tained result. Tevis et al. [15] describe a detrending tech-
nique called median polish which could possibly be applied
to the wind field data before using Ordinary Kriging to
estimate vectors. However Journel and Rossi [7] claim
that it is only necessary to use a trend model in Krig-
ing when one extrapolates data beyond the range of the
semi-variogram. The large range values obtained for most
wind field semi-variograms therefore suggest that the in-
terpolation results obtained using Ordinary Kriging will
not differ significantly from results obtained when using
a trend model as in Universal Kriging.

A weighted non-linear least squares method was used
to fit semi-variogram models to the calculated graphs.
The points closer to the origin were given higher weights
than points further away, because they are inherently
more accurate, as they are calculated using more data
pairs. A comparison between the results obtained using
the spherical model, and the results obtained using the ex-
ponential model, showed that the spherical model yields
better results on average. However the poorer results
obtained from the exponential model were because the
model-fitting algorithm sometimes produced extremely
large range and sill values for the semi-variogram mod-
els. Semi-variograms that did not reach a well-defined
sill produced extremely large range and sill values. When
the semi-variogram parameters were estimated by “eye”,
with emphasis on fitting the bottom region of the graph
reasonably well, both models yielded good results.

C. Interpolation Results

Table 1 summarises the rms errors obtained from in-
terpolating the middle strip of the data sets. The av-
erage speed rms error obtained for the seven real data
sets that were examined is of the order of 0.6 m/s or 8 %,
which is acceptable, especially when one considers that
the NSCAT system is required to measure wind speeds
with an accuracy better than 2m/s or 10 %, whichever
is greater [14]. The average angle rms error is 7.863°,
which is also acceptable. The NSCAT system is required
to measure wind direction with an accuracy better than
20° [14]. The average angle rms error obtained here is
therefore well within the range required for the NSCAT
system.

D. Results obtained for Swaths of Data

When the same procedure was applied to whole swaths
of data, the average speed rms error obtained was 10.069 %,
which is slightly higher than the average of 7.991% ob-
tained for the real data sets. The average angle rms error

was 12.178°, which is significantly higher than that ob-
tained from the above data sets, which was 7.863°. This
increase in the rms errors is probably due to underlying
trend. The average speed and direction of wind vectors at
the bottom of the swath is significantly different to that at
the top of the swath. To minimize this effect, the Kriging
algorithm should be applied to successive smaller sections
of a swath, each section being about 38 vectors wide.

IV. CoNCLUSION

The results obtained from interpolating synthetic and
real data sets have shown that it is feasible to use Ordi-
nary Kriging to interpolate wind field vectors.

Both the spherical and exponential semi-variogram mod-
els were used to obtain results. For both the synthetic and
the real data sets, the spherical model yielded better re-
sults on average. However, it has been shown that fitting
exponential models by “eye”, with emphasis on fitting the
bottom region of the graph very well, also yielded good
results. Thus, the quality of the fitted semi-variogram
model, especially near the lower region of the graph, plays
a very important role in the accuracy of the results ob-
tained.

Ordinary Kriging was also applied to wind field swaths
to extrapolate vectors from either side of the swath, thereby
further increasing ocean coverage. The results obtained
looked very promising, however due to the difficulty in
evaluating the accuracy of the extrapolated vectors, the
results that were obtained have not been discussed in this
paper.

The limits of the size of the gap that can be interpolated
has not been rigorously investigated. The large range of
influence of the semi-variograms does seem to suggest,
however, that vectors estimated half a swath width away
from the boundary of the swath are still reasonably ac-
curate, given that enough samples have been used in the
Kriging equations. It follows that the size of the gap that
can be interpolated between two swaths should be less or
equal to one swath width. A more conservative estimate
would require the gap to be less or equal to two thirds of a
swath width. The “nadir gap” of the NSCAT scatterom-
eter, and possibly of future radiometer systems, which is
less than a third of the swath widths on either side wide,
can therefore be interpolated quite easily.
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Appendix A: Ordinary Kriging

In Ordinary Kriging the estimated value is a weighted
linear combination of the available data. Thus

n
Ug = E W;v;
i=1

where 79 is the estimated value at location zg. The vari-
ables wq,...,w, are the weights and vq,...,v, are the
original values. The subscript ¢ refers to the ith data
point, where all the data points are numbered from 1 to
n. To ensure that the estimated value will be unbiased,
the following constraint is introduced:

iwi =1
=1

The statistical approach to solve this problem is to
model the available data and the unknown estimates as
the outcome of a stationary random process. If the true
value at location zy is vg, then the expected error R will
be:

(10)

(11)

R = E[f]o - 7)0} (12)
= F Zwivi — UO] (13)
i=1
The estimation variance of the error is defined as:
" 2
U% = F (Z W;V; — Uo) (14)
i=1

Zzwichij — 2Zwici0 + coo (15)
=1

i=1 j=1

where ¢;; = cov(v;, vj), the covariance of v; and v;.

Ordinary Kriging aims at minimising 0%, the variance
of the error. This is accomplished by setting the n par-
tial first derivatives with respect to the w; to zero. This
produces a set of n equations in n unknowns. However,
because of the constraint introduced in equation 11, the
Lagrange multiplier technique has to be used to solve the
system of n equations.

Rewriting equation 15 gives:

n n n
Op = W;W;Cq5 — 2 W; Ci0 =+ Coo
=1

i=1 j=1
i=1
N————

=0

(16)

where p is the Lagrangian multiplier. Taking the partial
first derivative of 0% with respect to each of the w; and p,
and equating the derivatives to zero gives the equation:

C - W = D
ci1 0 ap 1 wy c10
- (17)
Cnl °° Cpn 1 Wnp, Cno
1 -~ 1 0 I 1
Solving for the weights gives:
w=C™'D (18)

In practice the covariances are found indirectly via the
semi-variogram. Although the kriging equations can be
written in terms of the semi-variogram, it is computa-
tionally advantageous to use the covariance, since then
the largest elements of the covariance matrix will be lo-
cated on the diagonal. This leads to greater numerical
stability for algorithms based on Gaussian elimination.

The semi-variogram function is defined as

1

1) = 5B [(0: — v24)’] (19)
and can be found using the estimator
_ 1 2
V(h) - 27’L(h) Z(Uzi UZJ) (20)

where the summation is over all n(h) pairs which are a
vector distance h apart.

If there is greater spatial continuity in one direction
than in another, the semi-variogram will have to be cal-
culated for each direction. Often there is no directional
effect and then one only needs to consider the distance
h = |[h]].

Having found the semi-variogram, it is usual to fit one
of several standard parametric models to the data [12].
The most commonly used models are the nugget, linear,
spherical, exponential and Gaussian models.

The corresponding covariance which is used in the so-
lution of the Kriging equations can be readily obtained
from the following relationship:

(21)

where C(0) can either be set equal to the sill y(oco) of
the semi-variogram model if it exists, or it can be set to
any arbitrary large value [6]. The h in Equation 21 is
the distance between the ¢ th and j th point, where C;; =
C(h).



