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Abstract—Satellite wind sensors are unable to obtain mea-
surements directly below the satellite, creating a “nadir
gap” centred on the sub-satellite track. This is true of
active sensors such as scatterometers, as well as for mi-
crowave radiometers, newly used for this purpose. In ad-
dition, sensor coverage in equatorial regions is incomplete.
Using processed ERS-1 wind field data, it is shown in this
paper that Ordinary Kriging is an appropriate technique
to interpolate this “nadir gap”. Furthermore, wind field
data can also be extrapolated away from the swath us-
ing this method, thereby effectively yielding better ocean
coverage!.

INTRODUCTION

This work was inspired by a desire to try and improve
the spatial coverage of wind sensors in equatorial regions,
where polar orbiting sensors in sun-synchronous orbits
display significant gaps in the daily coverage. It then
became apparent that the technique could also be used to
fill the “nadir gap”, defined below.

Due to the inability of satellite scatterometers to ob-
tain wind field measurements for incidence angles below
20° the NASA Scatterometer (NSCAT) wind field swaths
have a gap (called the “nadir gap”) centred on the sub-
satellite track where no wind measurements are available.
Fig. 1 illustrates the NSCAT antenna illumination pat-
tern on the ocean surface. The swaths on either side of
the sub-satellite track are 600 km wide, separated by a
329 km wide gap.

Recent work by Wentz (8] has shown that it is pos-
sible to use spaceborne radiometer data to measure the
wind speed and velocity over the ocean surface. Satel-
lite radiometers have the advantage over scatterometers
of being less bulky and hence more reliable and cost ef-
fective. However, as for the active sensors, radiometers
cannot measure wind vectors for incidence angles between
zero and twenty degrees, resulting in a similar “nadir gap”
centred on the sub-satellite track.

The following interpolation and smoothing techniques
for spatial data were investigated and compared [3]:

1. Trend Surface Analysis
2. Splines

'A more detailed version of this paper has been sub-
mitted for publication to the IEEE Transactions on Geo-
science and Remote Sensing.
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Figure 1: NSCAT antenna illumination pattern

3. Kernel Smoothing
4. Kriging

Both kriging [5] and spline based methods [5] seemed
to be appropriate techniques to interpolate wind field vec-
tors. Ordinary Kriging seemed most appropriate since it
was specifically developed for interpolation in the case
of random variables that exhibit spatial autocorrelation.
Wind field data was expected to exhibit a high degree of
autocorrelation. Furthermore, Ordinary Kriging has been
successfully applied in a number of areas, such as soil map-
ping, mining, rainfall modelling and hydrology [5].

The paper goes on to review Kriging briefly. To test
the validity of the technique, artificial as well as ERS-1
wind field data was used. The nadir gap was simulated
by removing a strip from the centre of the ERS-1 wind
data. Good results were obtained and are reported here.

KRIGING WIND VECTORS

Wind field data consists of vector variables rather than
scalars. According to Young [9], the kriging technique
can be extended to the spatial analysis of vector vari-
ables by defining the estimation variance and vector semi-
variogram in terms of the magnitude of difference vectors.
However the vectors have to be stationary, spatially cor-
related random variables.

As for scalar variables, the vector semi-variogram can
be estimated using
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where the summation is over all n(h) pairs which are a
vector distance h apart.



This definition of the vector semi-variogram is consis-
tent with the definition of the semi-variogram for scalar
variables. For the remainder of this article, the word
“semi-variogram” will refer to the vector semi-variogram,
unless stated otherwise.

Young [9] defines the estimation variance as the vector
difference:

var [vo — Vo] = E [(vo — \7'0)2] (2)

This definition for the estimation variance is consistent
with the vector semi-variogram, and can be minimised to
yield the kriging equations just as for the scalar case.

IMPLEMENTATION ON ERS-1 DATA

Before this method was implemented on real ERS-1
wind field data, it was tested using synthetic data sets.
The “perfect” structure of synthetic data sets enabled im-
mediate evaluation of the obtained results, which looked
very promising [3]. This paper goes on to describe only
the results obtained for real ERS-1 data.

Description of Implementation Procedure

The kriging algorithm was implemented on seven data
sets, which were all 19 wind vectors wide and 38 wind vec-
tors long. These data sets were sections of longer ERS-1
wind field swaths. For each data set, 7 columns of vectors
were removed from the middle of the swath. This gap was
then interpolated, and the results were compared with the
original strip. Furthermore, for each swath, 6 columns of
vectors were extrapolated from each side of the swath.

Once the gap had been interpolated, the results were
compared with the original values by calculating the root-
mean-square (r.m.s.) value of the differences in the speed
and angle values, and also the r.m.s. value of the mag-
nitude of the difference vectors. The error in the speed
component was also calculated as a percentage, by calcu-
lating the ratio between the speed r.m.s. value and the
average speed in the original data strip.

Interpreting Wind Field Semi-Variograms

All the results shown and discussed in this paper have
been obtained by fitting a spherical semi-variogram model
to the calculated semi-variograms. The spherical model is
probably the most commonly used semi-variogram model,
and is defined by the equation
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where s is the sill and a is the range. It has a linear
behaviour at small separation distances near the origin,
but flattens out at larger distances, and reaches the sill
at a.

if 0<h<a
if h>a
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Table 1: RMS errors for real data

Swath || Speed | Angle | Vector | Avg Speed | Speed
m/s] | [Deg] | [m/s] [m/s] (%]

1 0.795 | 6.098 1.457 11.718 | 6.783

2 0.603 | 5.783 1.096 9.404 | 6.410

3 0.573 | 13.140 1.361 5.780 | 9.917

4 0.414 | 4.805 | 0.758 7.685 | 5.384

5 0.866 | 8.691 1.279 6.492 | 13.342

6 0.650 | 74.407 1.341 7.940 | 8.191

7 0.287 | 8.143 | 0.727 4.858 | 5.912
| Avg [ 0.598 | 17.295 [ 1.146 | 7.697 | 7.991 |

It has been found that the wind field data displays a
mixture of geometric and zonal anisotropy. When mod-
elling anisotropy, one usually starts by determining the
anisotropy axes by experimentally determining the di-
rections corresponding to the minimum and maximum
range or sill. For this paper it has been assumed that
the anisotropy axes correspond to the directions parallel
to the swath and perpendicular to the swath.

The range of influence of most semi-variograms extended
virtually over the whole width of the swath. The 6 extrap-
olated columns of vectors and the 7 interpolated columns
of vectors fall well within the range of most wind field
semi-variograms.

A weighted non-linear least squares method was used to
fit semi-variogram models to the calculated graphs. The
points closer to the origin were given higher weights than
points further away, because they are inherently more ac-
curate, as they are calculated using more data pairs. A
comparison between the results obtained using the spher-
ical model, and the results obtained using the exponential
model, showed that the spherical model yielded better re-
sults on average. However the poorer results from the ex-
ponential model were obtained because the model-fitting
algorithm sometimes produced extremely large range and
sill values for the semi-variogram models. Semi-variograms
that did not reach a well-defined sill produced extremely
large range and sill values. When the semi-variogram pa-
rameters were estimated by “eye”, with emphasis on fit-
ting the bottom region of the graph reasonably well, both
models yielded good results.

Interpolation and Extrapolation Results

Table 1 summarises the r.m.s. errors obtained from in-
terpolating the middle strip of the data sets. The aver-
age speed r.m.s. error obtained for the seven real data
sets that were examined is of the order of 0.6 m/s or 8 %,
which is acceptable, especially when one considers that
the NSCAT system is required to measure wind speeds
with an accuracy better than 2m/s or 10 %, whichever
is greater [7]. However the average angle r.m.s. error is
17.3° which seems unacceptably high. The reason for this
high average is the very large angle r.m.s. error of data
set 6. This result is surprising, since when one looks
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Figure 2: Interpolation and Extrapolation Results

at the interpolated vectors shown in Fig. 2, one cannot
imagine that there is such a big difference between the
original vector angles and the interpolated vector angles.
However the original data set might have contained a few
ambiguity errors, which gave rise to this high angle r.m.s.
error. The NSCAT system is required to measure wind
direction with an accuracy better than 20° [7]. The av-
erage angle r.m.s. error obtained here is therefore still in
the range required for the NSCAT system.

Results obtained for Swaths of Data

When the same procedure was applied to whole swaths
of data, the average speed r.m.s. error obtained was 10.1 %,
which is slightly higher than the average of 8.0 % obtained
for the real data sets. The average angle r.m.s. error
was 49.0° which is significantly higher than that obtained
from the above data sets, which was 17.3°. This increase
in the r.m.s. errors is probably due to underlying trend.
The average speed and direction of wind vectors at the
bottom of the swath is significantly different to that at
the top of the swath. To minimise this effect, the kriging
algorithm should be applied to successive smaller sections
of a swath, each section being about 38 vectors long.

CONCLUSIONS

The results obtained from interpolating and extrapo-
lating ERS-1 data sets have shown that it is feasible to
use Ordinary Kriging to interpolate and extrapolate wind
field vectors.

Both the spherical and exponential semi-variogram mod-
els were used to obtain results, however the spherical
model yielded better results on average. It has been
shown that fitting exponential models by “eye”, with em-
phasis on fitting the bottom region of the graph very well,
also yielded good results. Thus, the quality of the fitted
semi-variogram model, especially near the lower region of
the graph, plays a very important role in the accuracy of

the results obtained.

The extent to which data can be extrapolated, and the
limits of the size of the gap that can be interpolated, has
not been rigorously investigated. The large range of in-
fluence of the semi-variograms does seem to suggest, how-
ever, that vectors estimated half a swath width away from
the boundary of the swath are still reasonably accurate,
given that enough samples have been used in the krig-
ing equations. It follows that the size of the gap that
can be interpolated between two swaths should be less or
equal to one swath width. A more conservative estimate
would require the gap to be less or equal to two thirds of a
swath width. The “nadir gap” of the NSCAT scatterom-
eter, and possibly of future radiometer systems, which is
less than a third of the swath widths on either side wide,
can therefore be interpolated quite easily.
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