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Abstract— An increasing amount of interest has devel-
oped in VHF/UHF SAR applications. Unfortunately
the VHF-UHF portion of the spectrum is already in
heavy use by other services, such as television and mo-
bile communications. Even in remote locations the in-
terference power often exceeds receiver noise by many
dB, becoming the limiting factor on system sensitivity
and severely degrading the image quality. This paper
addresses the problem of radio frequency (RF) inter-
ference and its impact on SAR imagery. Several RF in-
terference suppression methods are described and dis-
cussed. These include spectral estimation and coher-
ent subtraction algorithms, as well as various filter ap-
proaches. The least-mean-squared (LMS) adaptive fil-
ter is described in detail, and its effectiveness in sup-
pressing RF interference is demonstrated on simulated
data and on real P-Band data.

Keywords— Radio frequency interference, RFI, LMS
adaptive filter, synthetic aperture radar, SAR, VHF,
UHF.

I. INTRODUCTION

LTRAWIDEBAND radar has proven to be a very
powerful method for underground and obscured
object detection. The combination of using low fre-
quencies (which exhibit very good foliage and ground
penetrating capabilities) such as VHF/UHF or even
lower, and using wideband pulses (which provide high
range resolution), creates a wide variety of appli-
cations, making these radar systems extremely use-
ful. Such applications include the detection of targets
concealed by foliage and/or camouflage, detection of
buried objects, detection and location of buried pipes
and cables, and archaeological and geological explo-
ration, such as the location of underground riverbeds.
However these frequency bands are already in use by
other services such as television, mobile communica-
tions, radio and cellular phones. The interference
power received from these emitters often exceeds the
receiver noise by many dB, thereby limiting the sys-
tem sensitivity. Regulatory sanctions do not allow the
increase of radar power, so that prior services are not
appreciably degraded. Therefore it is important to
investigate possible means of suppressing the interfer-
ence in the received signal.
Suppressing radio interference from a received signal
essentially involves three steps [1]:
1. Finding a model to parameterise the interfering
signals,
2. estimating the parameters of the interfering sig-
nals using the measured data, and
3. using the estimated parameters to suppress the
interference in the data.
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Section II discusses the model which is commonly
used to parameterise the interfering signals, and Sec-
tion IIT gives a very brief literature review of ap-
proaches that have been used successfully to suppress
RF interference. An approach that has received very
favourable review is the least-mean-squared (LMS)
adaptive filter [1, 10, 16]. It is described in detail in
Section IV, and the results that have been obtained
from simulated data and from real P-Band data are
discussed in Section V and Section VI respectively.

II. MODELLING THE RFI ENVIRONMENT

It is important to describe the interference environ-
ment as accurately as possible. This includes statis-
tics on the density of the interference emitters, identity
(type) of emitters, effective radiated power, modula-
tion bandwidth, duty factor and temporal dependence.
The most direct way to achieve this is to make use
of “sniffer” pulses or “listening beforehand” schemes,
however this is not yet generally implemented in prac-
tice. Although this method is useful for many signal
processing methods, its effectiveness depends strongly
on how long the RFI remains coherent.

Most approaches model the RFI as a superposition
of single sinusoidal “tones”, and the wideband signal
plus system noise as white noise. Surveys performed
by the Grumman E-2C UHF radar (420-450 MHz) [9]
have shown that 50 % of emitters have a spectral band-
width between 0-50kHz (single channel voice/radio
telegraphy), 40 % between 50-150kHz and less than
10% have a bandwidth greater than 150kHz (data
communications, multichannel telephony, etc.)

It is important to estimate the modulation time of
the RFI, which is the inverse of the RFI bandwidth, in
order to predict whether the parameters of the mod-
elled sinusoidal interference change across one range
line, i.e. whether the tone model of the RFI breaks
down. According to Braunstein et al [2], most RFI
has a modulation time of 5-10 us, which is consistent
with an effective bandwidth of a few hundred kHz or
less.

III. APPROACHES TO RFI SUPPRESSION

RFT suppression algorithms fall into two classes,
namely (1) spectral estimation and coherent subtrac-
tion approaches and (2) various filter approaches. The
relative merits and disadvantages of these approaches
are discussed in the following subsections. Omne ap-
proach that has not been investigated is the creation
of antenna pattern nulls in the direction of the RFI
source as a means for suppressing the interference.



A. Spectral estimation and coherent subtraction ap-
proaches

These approaches have been shown to be extremely
effective and powerful to the extent that the model of
RFT as a superposition of sinusoids is true. They re-
quire the frequency, phase and amplitude (w, ¢, o) of
each interfering sinusoid to be estimated, after which
the sinusoids are subtracted from the contaminated
signal. The performance is excellent in terms of low
signal distortion and good interference suppression,
however the effectiveness is reduced for high modu-
lation bandwidths, since the parameters change over
the record length. For computational efficiency and
effectiveness, these methods must be “tuned” to use
a priori knowledge, such as where the FM-broadcast
band is located [13]. Furthermore the parameters of
the tones (especially the phase) must be estimated for
every pulse.

Braunstein et al [2] have achieved very good results
using a mazimum likelihood estimate (MLE) approach.
For a single sinusoid in white noise the parameter vec-
tor (w, ¢, @) can be found analytically, however for
multiple sinusoids it becomes an extremely difficult
nonlinear problem involving 3m variables, where m is
the number of sinusoids to be estimated. An efficient
technique to overcome this problem is to use an itera-
tive algorithm, where the initial guess of the estimates
is iteratively improved. The initial guess may be ob-
tained from the data spectrum by applying an FFT.
Another method would be to model the RFI, signal
and noise as an autoregressive (AR) process [1, 12].
The estimate Z[n] of the nth sample of the measured
data is given by

Zn] = — Za[k] x[n — k] + u[n] (1)

p
k=1

where p is the order of the model, indicating that p/2
sinusoids can be estimated, a[k] are the autoregressive
parameters which need to be derived from the mea-
sured data, and u[k] is the signal plus noise (without
interference). According to Braunstein et al [2] the re-
sults obtained using this method are similar to those
obtained using the MLE method.

Golden et al [7] used a parametric mazimum likeli-
hood (PML) algorithm for the estimation of the para-
meters of the RFI tones. This algorithm is also applied
to deramp SAR. It is claimed that 90-95 % of the RFI
that could have corrupted a SAR image is removed.
The number of iterations through the PML algorithm
at each threshold is approximately equal to the num-
ber of tones being estimated.

Miller et al [13] have developed a chirp-least-squares
algorithm with clipping (CLSC). The following advan-
tages are claimed, compared to adaptive FIR filtering:

e An estimate-and-subtract algorithm provides the
narrowest possible stop-band for a given data
length and therefore minimises time-sidelobes.

e The CLSC technique allows iterative, nonlinear
signal (target) excision, which reduces sidelobes
and signal loss even further.

e There are no filter edge effects.

This method makes use of a priori knowledge of
the RFI environment. A non-least-squares approach
is used to model FM signals, which vary by as much
as 75 kHz from the centre frequency.

Ferrell [5] has developed a method which requires
2-D compression of the SAR image (containing both
signal and interference), after which a second com-
pressed SAR image (containing only interference) is
coherently subtracted. This requires two arrays of
data to be collected in an interleaved manner, which
might require the PRF to be increased by a factor of
2. It is claimed that this method leaves the target and
clutter phase history essentially intact.

B. Filter approaches

A common suppression approach is to examine the
spectrum of the contaminated signal, identify the in-
terference spikes which are usually many dB larger
than the signal, and then to remove these spikes with a
notch filter. Although the notching concept is effective
for very narrowband interferers and a small number of
emitters, it can also produces adverse effects on the
overall radar system performance [9], such as reduc-
ing image intensity, reducing range resolution, creat-
ing loss in the target’s integrated signal to noise ratio
and introducing time-sidelobes.

Koutsoudis and Lovas [9] describe an RFI Minimi-
sation algorithm developed by Grumman Aerospace
Corporation, which is based on least-mean-squared es-
timation theory. A single filter is used to achieve both
the interference suppression as well as the equalisa-
tion needed to overcome the distortions caused by the
notching function. This method has been tested ex-
tensively using numerous data sets and excellent per-
formance results have been obtained for all scenarios.

Buckreuss [3] has implemented a notch filter to sup-
press RF interference in contaminated P-Band data.
The interferences have been removed to a large ex-
tent, with some sidelobes visible in areas with intense
backscatter, as well as a slight degradation of the con-
trast.

Abend and McCorkle [1] have achieved good results
using an adaptive FIR filter approach. The adap-
tive filter is an over-determined system producing a
FIR filter with n taps, independent of the number
of interfering signals. As opposed to tone extraction
methods, this method simultaneously eliminates hun-
dreds of narrowband interferers. A low update rate
for the filter tap weights is allowed, since the filter
weights were found to be effective for hundreds of sub-
sequent radar pulses. Furthermore, minimal computa-
tional complexity is required, making this a very fast
method. An iterative technique has been used to re-
duce the range sidelobes caused by the filter’s impulse
response. The adaptive filter is based on an autore-
gressive (AR) all-pole interference model, which also
models the RFI as sinusoidal tones. However the si-
nusoidal model only needs to be valid across the rel-
atively short filter length. Furthermore the filter only
depends on spectral energy, so the tap weights are not
affected by the phase of the interference tone. A fur-
ther advantage is that the adaptive filter “learns” the
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environment. It is claimed that the interference sup-
pression filter can be superior to the tone extractor [1].
A disadvantage of using a filter approach is the reduc-
tion in record length because of edge effects.

Le et al [10] have implemented an LMS adaptive
filter with very good results. The filter performance
with respect to the filter parameters is analysed in
terms of the radar performance parameters such as
the integrated sidelobe ratio (ISLR) and peak sidelobe
ratio (PSLR).

IV. THE LMS ADAPTIVE FILTER

Adaptive filters have been widely used in interfer-
ence suppression applications [1, 6, 10, 11, 16]. In
contrast to fixed filters, they have the desired ability
to adjust their own parameters automatically. Little
or no a priori knowledge of the signal or noise char-
acteristics is required. It is, however, assumed that
the interference is sinusoidal. The adaptive filter re-
lies on a recursive algorithm, which, in a stationary
environment, converges to the optimum Wiener solu-
tion. In a non-stationary environment, the algorithm
offers a tracking capability, whereby it can track time
variations in the statistics of the input data.

Figure 1 shows a schematic of the LMS adaptive
filter as it is used for RF interference cancelling. It re-
quires a primary input d and a reference input x, which
is obtained by delaying the primary input for some
time delay A. The adaptive linear combiner weighs
and sums a set of input signals to form an adaptive
output. The n-element input signal vector D and the
weight vector W are defined at time j as follows:

D; ={d(j),d(j —1),d(j = 2),....d(j —n+1)} (2)
and
W = {wo(j), wi(4), w2(j), -y wna()}  (3)
The reference signal vector X; is defined as
Xj=Dj-a (4)

The output y(7) of the filter is equal to the inner prod-
uct of the row vectors W; and X;

y(g) = W; - Xj =X; - Wf (5)

This output is an estimate of the RF interference. The
error signal e(j), which is the desired cleaned radar

TABLE I
RADAR PARAMETERS OF SIMULATED AND P-BAND DATA

centre frequency 450 MHz
chirp bandwidth 18 MHz
pulse length o s
A/D (complex) sample rate | 60 MHz
range bins 2048

TABLE II
RADAR PERFORMANCE Vs FILTER PARAMETERS

Filter Parameters Radar Performance
weights I ML Width PSLR ISLR
[range bins] [dB] [dB]

20 le—4 3.1 —5.30 3.09
20 le—5 3.2 —7.27 1.20
20 le—6 34 —-1.73 10.2
100 le—4 2.9 -3.08 7.15
100 le—5 3.1 -9.97 —0.68
100 le—6 3.2 —-124 —-0.63
256 le—4 unstable unstable | unstable
256 le—5 3.0 —7.89 0.40
256 le—6 3.2 —12.9 —2.78

signal, is obtained by subtracting the RF interference
estimate from the primary input d(j) according to

e(j) = d(j) —y(j) =d(j) — W, - XT (6)

The LMS adaptive algorithm minimises the mean-
square error e(j) by recursively altering the weight
vector W at each sampling instant according to the
Widrow-Hoff algorithm [15], yielding

W1 = W, + 2pe(j)X; (7)

where the * symbol designates complex conjugation
and p is a convergence factor controlling stability and
rate of adaptation. A larger value of p increases the
rate of convergence, but also leads to a larger final
misadjustment, which is a quantitative measure of the
amount by which the final value of the mean-squared
error deviates from the minimum mean-squared error
that is produced by the optimum Wiener filter.

V. SIMULATION SETUP AND RESULTS

The adaptive filter was applied on simulated data
to verify its suitability for RF interference suppres-
sion. Table I lists the relevant radar parameters of the
simulation. These parameters correspond to the real
P-Band data analysed in Section VI. The optimum
filter parameters can then be used for suppressing the
RF interference in the P-Band data.

The simulation was assembled as follows: A clean
signal (see first column of Figure 2) representing the
ideal return of a single point target was injected with
basebanded RF “interference” in the form of five pure
sinusoids at frequencies —8, —5, —1, 4 and 9 MHz with
corresponding interference-to-signal amplitude ratios
of 6, 2, 7, 4 and 5dB respectively and with random
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Fig. 2. Simulation results demonstrating the effectiveness of the adaptive filter applied to RF interference suppression. The three

columns show the ideal, contaminated and cleaned signal respectively.

The first row shows the real part of the signal in the

time domain, the second row shows the signal in the frequency domain, and the third row shows the range compressed signal.

phase (see second column of Figure 2). White noise
with a SNR of 20dB was also added. This contami-
nated signal was fed to the adaptive filter (see third
column of Figure 2), and the performance of the filter
was evaluated by range compressing the filter output
and measuring the target mainlobe width, the peak
sidelobe ratio (PSLR) and the integrated sidelobe ra-
tio (ISLR), measured across 200 range bins.

A. Filter Performance

Table II gives an indication of how the radar per-
formance is affected by the number of filter weights
and the convergence factor u. The delay A has not
been included, since it was found that a delay of one
time sample was sufficient, and larger values of A did
not affect the results significantly. It has to be noted
that the value of p is inversely dependent on the am-
plitude of the input vector, and therefore the absolute
value is not as important as the relative change with
respect to the number of weights. Furthermore, as the
number of weights increases, the value of y needs to
be decreased appropriately, otherwise the filter out-
put becomes unstable. This can be seen in Table II
with 256 weights and p = 10™%. Generally the per-
formance increases as p decreases. However if pu be-
comes too small, the weights do not converge, which
also yields poor performance. This was the case with
20 weights and p = 1075, The results also improve as

more weights are used, however this increases compu-
tation time and edge effects.

Figure 2 graphically illustrates the results that were
obtained with 256 weights and pu = 107%. The first
column displays the ideal signal, without any interfer-
ence. The second column displays the contaminated
signal, with the spectrum completely dominated by
noise and interference. The point target is not de-
tectable in the range compressed signal shown in the
last row. The third column shows the output of the
adaptive filter, which is clearly a vast improvement
compared to the noisy signal. Looking at the second
row, the filter has significantly suppressed the spikes
caused by the sinusoidal interferences. The point tar-
get is clearly visible in the range compressed signal,
with the peak sidelobe being —12.9 dB below the main-
lobe, using a rectangular weighting window.

B. Performance Optimisation

The adaptive filter has been modified as follows in
order to improve the performance measured in terms
of the PSLR and ISLR:

e The range compressed output of the adaptive fil-
ter sometimes displayed one very prominent side-
lobe. In order to minimise this effect, the adap-
tive filter was swept through the input vector
from both ends, using two separate weight vec-
tors, after which the two output vectors were av-
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Fig. 3. Averaged Range Spectrum of Noisy Image

eraged. This yielded significant performance im-
provements in terms of peak sidelobe reduction.

o Smaller values of p generally yielded better re-
sults, in terms of lower PSLR and ISLR. Some-
times, however, this resulted in the tap weights
not converging after one sweep through the input
vector, consisting of 2048 range bins. Therefore
the adaptive filter was applied to the data twice,
using the weight values of the first sweep as start-
ing values for the second sweep.

e In order to minimise the edge effects of the filter,
the input vector was zero padded by the appro-
priate amount.

These filter modifications had an adverse effect in
terms of computational efficiency. Future research
will entail the investigation of methods to improve
computational speed, such as using the same weight
vector over many range lines (presuming the interfer-
ence is relatively constant), and adaptively modifying
the convergence factor p by monitoring how fast the
weight vector changes.

VI. P-BAND DATA ANALYSIS

Figure 5 shows a P-Band image in the vicinity of
Weilheim, Germany, which is severely degraded by RF
interference. The image was generated by the experi-
mental airborne SAR system E-SAR of the DLR, and
the raw data was supplied to the authors by the DLR,
Oberpfaffenhofen, Germany. The RF interference in
the image is clearly visible as bright lines in the range
direction. The interference is more dominant at the far
range due to sensitivity time control (STC). To obtain
an estimate of the number of interfering sources, 100
range spectra were averaged. Since the interference
remains relatively constant across a number of range
lines, averaging a number of spectra enhances the vis-
ibility of the interference.

From Figure 3 one can see that there is a large in-
terference spike near the origin, and about 15 smaller
spikes on either side of the origin. After the image had
been cleaned with a 512-tap adaptive filter, the same
100 range spectra were averaged, yielding the result
shown in Figure 4. The large interference spike has
been reduced by about 12dB, which is a significant
improvement. However smaller interference spikes are

Averaged Range Spectrum of Clean Image
0OF T T ]

T
5 7OF E
(5]
he)
Ei
T;l L ]
< 20 B
—30¢ ‘ ‘ ‘
—40 -20 0 20 40

Range Frequency [MHz]

Fig. 4. Averaged Range Spectrum of Cleaned Image

still visible.

Figure 6 displays the cleaned P-Band image, which
is definitely a vast improvement. Some features that
were hidden by the interference have become visible,
although sidelobes of bright targets have also become
more pronounced. Future work will concentrate on
reducing these sidelobes.

VII. CONCLUSIONS

This paper has looked at a number of techniques
that have been implemented to suppress RF interfer-
ence, but only the LMS adaptive filter has been imple-
mented and studied in detail, partly because of its ease
of implementation, and partly because of its favourable
review in the literature.

It has been found that the adaptive filter does sig-
nificantly suppress RF interference, although sidelobes
are enhanced. Future work will entail looking at fur-
ther enhancements to the algorithm, like sidelobe re-
duction and computational efficiency.
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