
1

Digital Systems

EEE4084F

2017-05-10

FPGA Introduction – Verilog and Xilinx ISE [30 Marks]

Background

This practical is divided into two parts. The first is a tutorial that shows you how to set up a
new FPGA project in Xilinx ISE. The second is a practical in which you are expected to

implement a real-time clock on the 7-segment display.

Although this practical has been designed with the Nexys3 in mind, some of you have a

Nexys2 or Nexys4 instead. These boards are largely compatible. The only things to bear in

mind are the FPGA device and pin numbers, which differ. There are also small differences
in the compiler for the various target devices, but you shouldn’t need to worry about those.

During the practical you might experience some problems. The Appendix (page 10) lists
the most common ones, along with the solution.

Submission Information

You may be delighted to know that you do not need to submit a formal prac report for this prac.
However, you need to demo your project to the tutor or lecture to get it approved and also

submit your project files, you can do this as a zip file attachment to the Vula assignment. But do

try to have well-structured and suitably commented code (and UCF) as these count for marks.

Setting Up an FPGA Project

#1 First, start Xilinx ISE Project

Navigator. Starting ISE Design

Suite does the same thing. You

should then see the image on the
right.

In the Blue lab you can open a

terminal and run ise (or impact).

On a Windows installation you
can use the desktop shortcut.

2

#2 Click on the “New Project...”

button, which opens up the

screen on the right.

Fill in your new project details
and click “Next”.

#3 If you’re using the Nexys 3, specify

that you’re using a Spartan6

FPGA:

XC6SLX16CSG324 (it is printed on

the IC). Follow a similar method
for the Nexys 2 or Nexys 4 board.

Choose “Verilog” as your

Preferred Language and click

“Next”.

#4 You can either right-click on the

Hierarchy display, or click the

“New Source” icon on the left.

This will open the “New Source

Wizard”.

3

#5 Select “Verilog Module”, fill in an

appropriate name and click

“Next”. It will ask you what ports

and things you’d like to add.
Leave those blank.

#6 Delete the default module

contents and type in the module

definition as depicted on the
right.

#7 Add a new source file: this time an

Implementation Constraints

File.

You can read up all about design

constrains in the Xilinx

Constraints Guide:

http://www.xilinx.com/

support/documentation/sw_

manuals/xilinx11/cgd.pdf

You want to look at info about
UCF files starting on pg. 34.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf

4

 #8 There is a GUI to add pins and assignments (i.e., PlanAhead1); but it is often easier,

especially with large designs, to text-edit the constraints file directly.

Add the pin assignments

depicted on the right. The pin

numbers are available from the
Nexys 3 reference manual:

http://www.digilentinc.com/

Data/Products/NEXYS3/

Nexys3_rm_V2.pdf

(if you’re not using a Nexys 3,

change the numbers

accordingly).

Remember to specify the clock

period (see line 4).

If you have a Nexys4, you also have to specify the I/O standard. You can do this by

appending “|IOSTANDARD = LVCMOS33” to every pin assignment. Even if you do not have

a Nexys4, it remains a good idea to do so.

It is also a good idea to specify “timing ignore” for every asynchronous pin (which, in your
case, is all of them except the clock). Do this by appending “|TIG” to the line. You might,

for instance, have a line that reads:

 NET "SevenSegment<0>" LOC = L3 | IOSTANDARD = LVCMOS33 | TIG;

Remember to add pin specifications for every pin you add to
your design.

#9 Double-click on the “Configure

Target Device” item in the

process tree. This should compile

your project and then open

iMPACT.

1 Useful YouTube to view if you want to try PlanAhead: https://www.youtube.com/watch?v=KOTLVQS3XGM (but swap his
mention of Vertex5 for Spartan6 or whatever your Nexys board has)

http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm_V2.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm_V2.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm_V2.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm_V2.pdf
https://www.youtube.com/watch?v=KOTLVQS3XGM

5

#10 Plug in your FPGA board and

double-click on the “Boundary

Scan” item in the Flows tree.

Right-click on the canvas and

select “Initialize Chain”.

iMPACT should detect the board,

which FGPA is on it, and then ask

you to specify a bit-stream for it.

If it does not, there is something

wrong with the board, cable or
driver.

Tell it to use your newly

generated bit-stream (typically Clock.bit). You can now double-click on “Program” in the
Processes tree to program your FPGA.

Time-Delayed Reset

Many external peripherals require some set-up time, so it is useful to have a time-delayed

reset. Add one of the buttons to the top-level module (and remember to map a pin to it).

#1 Create a new module called Delay_Reset.v and add it to your project. Fill in the code
below:

module Delay_Reset (
 input Clk, // Input clock signal

input Button, // Input reset signal (external button)

output reg Reset // Output reset signal (delayed)

);
//--

reg LocalReset;

reg [22:0]Count; // Assume Count is null on FPGA configuration

//--

always @(posedge Clk) begin // Activates every clock edge
LocalReset <= Button; // Localise the reset signal

if (LocalReset) begin // Reset block
Count <= 0; // Reset Count to 0
Reset <= 1’b1; // Reset the output to 1

end else if(&Count) begin // When Count is all ones...
Reset <= 1’b0; // Release the output signal
// Count remains unchanged // And do nothing else

end else begin // Otherwise...
Reset <= 1’b1; // Make sure the output signal is high
Count <= Count + 1’b1; // And increment Count

end
 end // always
//--

endmodule
//--

6

#2 Within your top-level entity, instantiate this new module. Here’s how to do it:

wire Reset; // Define a local wire to carry the Reset signal

Delay_Reset Delay_Reset1 (Clk_100M, BTNS, Reset);
//--

Seven-Segment Driver

#1 In order to make the seven-segment display easier to use, we make use of a driver module.

This module takes 4 BCD values and displays them on the seven segment display. Create a
new module, call it SS Driver.v and add it to your project. Add the following code to it:

module SS_Driver(
input Clk, Reset,

input [3:0] BCD3, BCD2, BCD1, BCD0, // Binary-coded decimal input

output reg [3:0] SegmentDrivers, // Digit drivers (active low)

output reg [7:0] SevenSegment // Segments (active low)

);
//--

// Make use of a subcircuit to decode the BCD to seven-segment (SS)

wire [6:0]SS[3:0];

BCD_Decoder BCD_Decoder0 (BCD0, SS[0]);
BCD_Decoder BCD_Decoder1 (BCD1, SS[1]);
BCD_Decoder BCD_Decoder2 (BCD2, SS[2]);
BCD_Decoder BCD_Decoder3 (BCD3, SS[3]);
//--

// Counter to reduce the 100 MHz clock to 762.939 Hz (100 MHz / 2^17)

reg [16:0]Count;

// Scroll through the digits, switching one on at a time

 always @(posedge Clk) begin

 Count <= Count + 1’b1;

 if (Reset) SegmentDrivers <= 4’hE;
 else if(&Count) SegmentDrivers <= {SegmentDrivers[2:0], SegmentDrivers[3]};

end
//--

always @(*) begin // This describes a purely combinational circuit

 SevenSegment[7] <= 1’b1; // Decimal point always off

if (Reset) begin

SevenSegment[6:0] <= 7’h7F; // All off during Reset

end else begin

 case(~SegmentDrivers) // Connect the correct signals,

4’h1 : SevenSegment[6:0] <= ~SS[0]; // depending on which digit is on at
4’h2 : SevenSegment[6:0] <= ~SS[1]; // this point

4’h4 : SevenSegment[6:0] <= ~SS[2];
4’h8 : SevenSegment[6:0] <= ~SS[3];

default: SevenSegment[6:0] <= 7’h7F;
 endcase

end

end

endmodule
//--

7

You need to instantiate it in your top-level entity:

SS_Driver SS_Driver1(
Clk_100M, Reset,

4’d1, 4’d2, 4’d3, 4’d4, // Use temporary test values

SegmentDrivers, SevenSegment
);

You’ll require a module to decode the BCD to seven-segment, so implement BCD
Decoder.v as follows:

module BCD_Decoder(

 input [3:0]BCD,

 output reg [6:0] SevenSegment
);
 //--

// Combinational circuit to convert BCD input to seven-segment output
always @(BCD) begin

case(BCD) // gfedcba
 4’d0 : SevenSegment <= 7’b0111111; // a
 4’d1 : SevenSegment <= 7’b0000110; // ----
 4’d2 : SevenSegment <= 7’b1011011; // | |
 4’d3 : SevenSegment <= 7’b1001111; // f| g |b
 4’d4 : SevenSegment <= 7’b1100110; // ----
 4’d5 : SevenSegment <= 7’b1101101; // | |
 4’d6 : SevenSegment <= 7’b1111101; // e| |c
 4’d7 : SevenSegment <= 7’b0000111; // ----
 4’d8 : SevenSegment <= 7’b1111111; // d
 4’d9 : SevenSegment <= 7’b1101111;
 default: SevenSegment <= 7’b0000000;
endcase

 end
//--
endmodule
//--

8

Digital Clock

#1 Implement a simple state-machine to display the real time (hours and minutes) on the 7-

segments display. You can start your clock at 00:00 upon reset. Make your clock faster in

order to test that the time overflows correctly. Use a 24-hour time format.

The easiest way to do this is with deeply nested if statements. Run a counter that overflows

every second and increment the seconds counter on every overflow. Every time this

seconds counter equals 59 (i.e. it will overflow on this clock-cycle), increment a minutes
units counter. Every time this minutes units counter is about to overflow, increment a

minutes tens counter, etc.

Only use non-blocking assignments (<=). Blocking assignments (=) inside clocked structures
are much more difficult to debug. Remember that the entire always block is evaluated at

once: the statements are not evaluated sequencially.

#2 Display the seconds on the LEDs, in binary format. This is done with a simple assignment

outside the always block.

#3 Use one of the buttons, properly debounced, to set the minutes. It must increment time by

one minute every time it is pressed. Make sure that your time overflows correctly. You do
not need to increment the hours when changing the minutes.

It is recommended to write a Debounce module for this. On every clock cycle of the system

clock (the fast one), check the state of the button. If it is not the same as the current module
output, change the output and start a dead time counter. While this counter is counting,

do not change the output of the module, no matter what the input is doing. Use a dead-

time of between 20 ms and 40 ms. To prevent unstable states, register the button before
use.

In the clock state machine, you can use a register to store the button’s ‘previous’ state. If

the current state is high, and the previous state is low, the button signal went through a
rising-edge. Do not use always @(posedge Button) – keep everything in the same clock

domain.

#4 Use another one of the buttons, properly debounced, to set the hours. It must increment
time by one hour every time it is pressed. Make sure that your time overflows correctly.

#5 Use the slide-switches to represent a binary “brightness” word. Make use of pulse-width
modulation (PWM) to dim the brightness of the LED display.

Ensure that the phasing between the driver signals and the PWM signals is correct. The

easiest way to do this is to select a PWM frequency such that the PWM signal goes through
exactly one period between driver signal state changes. You can implement this within the

SS Driver module.

9

Appendix

Common Problems

#1 Xilinx ISE crashes every time it wants to browse to a file

Xilinx 64-bit is incompatible with Windows 8. All the short-cuts point to

C:\Xilinx\14.7\ISEDS\ISE\bin\nt64\ and uses

C:\Xilinx\14.7\ISEDS\settings64.bat. Change them to point to

C:\Xilinx\14.7\ISEDS\ISE\bin\nt\ and use

C:\Xilinx\14.7\ISEDS\settings32.bat instead.

#2 The compilation button is greyed-out

You have to have your top-level module selected (in the Hierarchy tree) for the
compilation button to be available.

#3 The compilation button does not actually do anything

The compiler is confused sometimes and does not notice that files have changed. Right-

click on the “Create Programming File” and then click on “Rerun All”.

Sometimes it only runs half-way, in which case you have to do this again.

#4 iMPACT does not display a program button

You have to have the target device selected (on the canvas) for the program button to be

available. Alternatively, you can right-click on the target device and then click on

“Program”.

#5 A module has been added to the hierarchy, but the compiler complains that it does not

exist

This has something to do with the compilation order. Remove the module from the
hierarchy, re-add it and try again.

#6 iMPACT complains that the download cable is in use

Close iMPACT, plug out the USB cable, restart iMPACT, plug the cable back in and try
again. If this doesn’t work, restart Windows.

#7 The compilation is stuck somewhere and never ends

You probably have a syntax error in your .UCF file. This causes the compiler to crash,
without messages. Forcibly stop the processing, fix the syntax error, and try again.

This also sometimes happens even when there are no syntax errors. In that case, close ISE
Project Navigator, reopen it and try again.

