
Digital Systems

EEE4084F

Practical 3 – OpenCL using Amazon Web Services

[30 Marks]

Introduction

The focus of this practical is developing OpenCL code and doing performance testing.

Prac3 is done in collaboration from Dr Gordon Inggs from the Amazon Engineering Team

in Cape Town. If you have not already got a team partner please find a classmate to team

up with. On the Vula site see the wiki for the assigned lab teams, please change the wiki

(e.g. swapping names around) to form a group for a particular slot number. Each prac pair

gets an Amazon AWS private virtual machine in the Amazon cloud. Please ask Gordon

Inngs to provide a machine IP and login if your team doesn’t have one yet; there is one

login per team (you need to share the login).

What needs to be submitted

For this practical you need to prepare a Prac3.pdf report that responds to the tasks for

which you are requested to provide a response and documentation in your report. See

headings indicating “To submit”. Submit the report using Vula assignment Prac 3.

See last page for marking schedule.

The Programming Model

OpenCL uses a programming and memory model in which the CPU must set up and

compile a kernel for an OpenCL device context (e.g. the GPU), then set up and copy data

to the context and then run the kernel (an OpenCL worker) on the data put into the

context. When the kernel is finished the CPU needs to read back the results from the

device context.

Task #1: Complete Lab 1 (not for marks)

Complete the first practical, this will be available in a Jupiter Notebook, once you are

given an IP address go to the site IP/opencl_workshop2017 in your browser and you

should see a list of JupiterNotebooks, double click on the first one to get in to it.

Read through the steps and execute the code in the sequence shown, this is done by

pressing the →| step button on the control panel for the window.

From this you should get an understanding of what the program is doing.

Task #2: Report device characteristics

Add code (e.g. to the block in Jupiter that gets the devices) to print out characteristics of

each device using (e.g.) the clGetDeviceInfo().e.g.

 d = clGetDeviceIDs()[0] (or skipping this and using the already initialized

 nvidia_devices should be fine)

 clGetDeviceInfo(d, cl_device_info.CL_DEVICE_NAME)

See https://media.readthedocs.org/pdf/pycl/latest/pycl.pdf for more detail

Want to know what the configuration is for:

 CL_DEVICE_NAME

 CL_DEVICE_GLOBAL_MEM_SIZE

 CL_DEVICE_MAX_COMPUTE_UNITS,

 CL_DEVICE_MAX_WORK_ITEM_SIZES,

 CL_DEVICE_MAX_MEM_ALLOC_SIZE, and

 CL_DEVICE_MAX_CLOCK_FREQUENCY

This should provide information printed out as per the example below:

Name: Intel(R) OpenCL

CUDA Global memory size : 1073741824
Global memory cache size: 65536

Local memory size : 49152

Maximum compute units : 4
…

To submit in report:

Indicate the code that you used to obtain the device information and provide at least the

following details about each device: global memory and local memory size, the number of

compute units and the maximum work group size.

[10 marks]

Task #3: Performance Analysis of CPU vs GPU 1

The objective for this task is to compere the performance of an Intel CPU OpenCL kernel

to that of an nVidia GPU kernel. The platform you have been given access to should have

two OpenCL devices, one named something like “Intel(R) OpenCL” and another like

“NVIDIA CUDA” – the former is provided for running on the Intel multicore CPU that the

platform provides and the latter is for the nVidia GPU.

Create a context for each of the available devices, build the sum kernel for each device.

Implement a run_cpu_program and a run_gpu_program functions which load and run

kernels; the functions should each send the same a and b vectors to both contexts, then

run in the kernels and read the c vector result back to the cpu memory.

https://media.readthedocs.org/pdf/pycl/latest/pycl.pdf

Time how long the run_cpu_program and run_gpu_program takes (note that these times

need to include the time for moving memory). You can use the commands as follows in

Python to time the kernel execution:

 %timeit run_cpu_program()

 %timeit run_gpu_program()

To submit in report:

Please submit your code for run_cpu_program and for run_gpu_program.

Provide run statistics. For vector sizes of 1e2, 1e4, 1e8, 1e9 do the following: perform two

runs (run 1 and run 2) and provide a table comparing the run_cpu_program execution

time to the run_gpu_program execution time. Prove speedup statistics for each row.

Provide a graph showing the speedup of the gpu vs. the cpu versus the vector size. Discuss

the results, does there appear to be a trend? Indicate the average speedup for all the

runs.

[10 marks]

Task #4: Implement factor count program compare CPU vs GPU speed

The objective for this task is to implement a C kernel for OpenCL that computes the

number of factors for a particular element in a matrix. Given an NxM matrix X you need to

calculate the number of factors for each element X[i,j] of the matrix. To simplify the

assignment you can assume that the numbers will not have any factor greater than 100.

You can use the simpleminded approach below provided as a m file that runs in OCTAVE.

Convert this into an OpenCL kernel and integrate it with a Python or C / C++ CPU part to

load and run the kernel. Also provide a golden measure. You can also provide the run time

of the OCTAVE version (which will be a shockingly slow operation for big arrays).

Program to return the number of factors

for each element of the input matrix

function [factors] = checkfactors (X)

 [N,M] = size(X);

 factors=zeros(N,M);

 for i=1:N

 for j=1:M

 nf=0;

 for k=2:100

 if (mod(X(i,j),k)==0)

 nf=nf+1;

 end

 end # k

 factors(i,j)=nf;

 end # j

 end # i

endfunction

M file: checkfactors.m

>> # generate 5x10 matrix of random ints from 0 to 100
>> X = randi(100,5,10)

X =

 14 78 48 87 11 96 8 21 6 15

 4 50 15 53 88 22 91 26 5 30

 36 29 22 10 16 82 24 22 82 47

 61 84 63 87 33 8 22 64 3 99

 55 9 7 48 31 47 18 59 9 28

>> Y=checkfactors(X)

Y =
 3 7 9 3 1 11 3 3 3 3
 2 5 3 1 7 3 3 3 1 7
 8 1 3 3 4 3 7 3 3 1
 1 11 5 3 3 3 3 6 1 5
 3 2 1 9 1 1 5 1 2 5
>>

Example run of OCTAVE code to test the checkfactors routine with sample output

To submit in report:

Please submit your C / Python code (or Jupiter notebook) for your OpenCL application.

Provide both the Python code and the C kernel code. You can indicate your kernel code in

the report. In your report show the usual thing of golden measure time, OpenCL

application time and Speedup. Try for a range of matrix sizes, e.g. 10x10, 100x100 and

1000x1000 (if not more sizes to get an interesting looking speed comparison graph).

Note that you can choose to use C++ instead of Python for your CPU side cide, see

http://www.rrsg.ee.uct.ac.za/courses/EEE4084F/Resources/Practicals/Prac3B/Source.zip

for a starting point (this can be run either in the BlueLab or using the Amazon machine

assigned to you, although you probably need to create a modified makefile in that case as

Code::Blocks probably isn’t available on the machine).

[10 marks]

REPORT REQUIREMENTS

Compile your experiments and findings into an IEEE-style conference paper. You can use

Word, OpenOffice or Latex (I recommend TexStudio) – templates for Word and Latex is on

the EEE4084F website (http://www.rrsg.ee.uct.ac.za/courses/EEE4084F/Practicals.html).

There is no page limit (although more than 5 pages is excessive and marking is not

guaranteed to be done after the 5th page), but try to keep it below about 3 pages. Submit
your report to the Vula Assignment for this practical.

http://www.rrsg.ee.uct.ac.za/courses/EEE4084F/Resources/Practicals/Prac3B/Source.zip
http://www.rrsg.ee.uct.ac.za/courses/EEE4084F/Practicals.html

MARKING SCHEDULE

The table below indicates the marking guide for how the tasks will be marked.

Task Marks

Task#2:
device
characteristics 10

Should have some introductory text leading in to this. Should
indicate how info was obtained. Quality of the display awarded,
working, neatness of figures, use of captions, etc. get more marks

Task#3: Perf.
analy. of CPU vs
GPU 10

Suitable reporting of analysis. Code snippets desirable (of
relevant parts). Graphs and some brief explanation in the text for
this.

Task#4 code for
factor count
program 5

Code snippets. Logic of code. Suitable comments in kernel. Will
look mainly at the kernel, the other components of the code less
important.

Task#4 reporting 5

Report on performance of the golden measure verses other
implementations (e.g. compare to C sequential version if you did
one, this is optional) compare to OpenCL version (this is not
optional).

Total 30

END OF ASSIGNMENT

