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Abstract—The importance of using vectorised notation in
Octave is illustrated by comparing two uses of the rand()
function. The performance of a customised correlation function
is compared with the Octave built-in equivalent. This correlation
function is used to perform an investigation into the phase and
sample-count dependence of the correlation between sinusoids.

I. INTRODUCTION

Correlation [1] is an important tool in algorithm analysis.
The results from an optimised algorithm are often compared
with the results from a so-called golden measure [2]. This
paper reports on the performance of a customised correlation
function.

This new correlation function is used to investigate the
correlation coefficient between two phase-shifted sinusoids.
Various sample sizes are considered as to investigate the
dependence on sample-size, if any.

II. METHODOLOGY

A. Loops vs Vectorisation
The code in listing 1 shows a loop implementation to create

white noise. It creates t seconds of white noise, sampled
at 48 ksps. This implementation was then replaced with the
built-in Octave function, shown in listing 2. The performance
of these two implementations was compared.

B. Correlation
The code extract in listing 3 shows a customised

implementation of Pearson correlation [1]. This was compared
with the built-in Octave cor function. The tests were
performed by means of the code in listing 4. The test data
(white_noise_sound.wav) was generated by means of
the code in listing 2.

C. Sinusoids
1) Large Datasets: Fig. 1 shows the relationship between

two time-shifted sinusoidal signals for various phase-shifts.
Linear correlation tries to fit a straight line to this
relationship [1], where the correlation coefficient is related to
how closely the data resembles a straight line. By inspection of
Fig. 1, one may infer that the correlation coefficient is periodic,
with a period of 360◦.

When the phase shift is 0◦, the correlation will be
1, because the relationship forms a straight line with positive
gradient. When the phase shift is 180◦, the correlation will be
-1, because the relationship forms a straight line with negative
gradient. Following a similar argument, one can see that the
correlation will be 0 when the phase shift is 90◦ or 270◦.

function Output = createwhiten(t)
# Pre-allocate some RAM
N = t * 48e3;
Output = zeros(1, N);

# Run the loop
for n = 1:N
Output(n) = rand()*2 - 1;
end
end

Listing 1. Custom implementation of the white-noise generator

whiten = rand(1, t*48e3)*2 - 1;

Listing 2. Built-in white-noise generator

function r = mycorr(X, Y)
# Precalculate terms that are re-used
N = length(X);
sumX = sum (X);
sumY = sum (Y);

# Calculate correlation
r = (dot(X, Y) - sumX*sumY/N)/...

sqrt((dot(X, X) - sumX*sumX/N)*(dot(Y, Y) - sumY*sumY/N));
end

Listing 3. Custom implementation of the correlator

# Test the case where the signals are equal
x = wavread('white_noise_sound.wav');
y = x;
tic(); r1 = mycorr(x, y); t1 = toc();
tic(); r2 = cor (x, y); t2 = toc();
# Display t1, t2, relative error (abs(r2-r1)/r2) and speed-up (t2/t1)

# Test the case where there are only two samples that are different
y(1) = 2; y(5) = -4;
tic(); r1 = mycorr(x, y); t1 = toc();
tic(); r2 = cor (x, y); t2 = toc();
# Display t1, t2, relative error (abs(r2-r1)/r2) and speed-up (t2/t1)

# Test the case where the signals are uncorrelated
x = rand(1, 1e5); y = rand(1, 1e5);
tic(); r1 = mycorr(x, y); t1 = toc();
tic(); r2 = cor (x, y); t2 = toc();
# Display t1, t2, relative error (abs(r2-r1)/r2) and speed-up (t2/t1)

Listing 4. The code used to compare the mycorr function with the
built-in cor function.

2) Small Datasets: The argument above is only valid for
large samples, so a small-sample data-set (where the number
of samples is less that a period of the sinusoid) should also
be considered. Figure 2 shows the relationship for these test
functions. All the relationships resemble straight lines, so for
small sample sets (relative to the frequency of the sinusoid),
one may infer that the resulting correlation coefficient will be
close to 1 or -1.

D. White Noise

The correlation coefficient of time-shifted versions of the
same white noise signal is expected to be an impulse, in
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Fig. 1. Relationship between two time-shifted sinusoids. The frequency
is 0.005 periods per sample, the sample-size 10 000 samples and the
time-shift 0◦ (red), 20◦ (green), 90◦ (blue), 160◦ (cyan), 180◦ (magenta),
320◦ (black)
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Fig. 2. Relationship between two time-shifted sinusoids. The frequency
is 0.002 periods per sample, the sample-size 100 samples and the
time-shift 0◦ (red), 20◦ (green), 90◦ (blue), 160◦ (cyan), 180◦ (magenta),
320◦ (black)

the ideal case. This is due to the two signals being perfectly
correlated only at a time-shift of 0, and nowhere else.

III. RESULTS

A. Loops vs Vectorisation

Table I shows the results from the comparison test on
listings 1 and 2.

The built-in Octave rand function is much faster than the
loop implementation. The memory is pre-allocated by means
of the zeros function, so the problem does not relate to the
Octave implementation of variable-length arrays.

According to the Octave website [3], Octave is a “high-level
interpreted language”. This implies that the script is not
compiled to machine-code, but rather interpreted. Dynamic
interpretation is a computationally expensive process. The vast
drop in performance may therefore be attributed to the body
of the loop being re-interpreted during every iteration.

The built-in rand function has been pre-compiled to
machine code, thereby avoiding the cost of dynamic
interpretation within the function, which explains the
improvement in performance.

B. Correlation

The results from the mycorr function in listing 3 was
compared with the results from the built-in cor function,

TABLE I
PERFORMANCE COMPARISON BETWEEN LOOP AND BUILT-IN
IMPLEMENTATIONS

Sample createwhiten() rand() Speed-up
size [s] runtime [ms] runtime [ms]

10 6734 20.517 328
20 13429 34.524 389
50 33644 84.546 398

100 67295 171.124 393

showing less than 10−15 relative error for datasets ranging
from 100 to 10 000 samples. Table II shows the performance
results of the two functions.

The customised function executes faster than the built-in
function. As sample-size becomes very large, the relationship
tends towards unity, which might indicate that the built-in
function has overhead that is independent of sample-size.

Another interesting observation is that for large
samples, both algorithms have a time-complexity of O(N ),
where N is the sample size. At small sample sizes (less
than 10 000 samples), both algorithms have the same
time-complexity. This is most likely related to the function
calling overhead of the Octave system.

C. Correlation Between Time-Shifted Signals

The hypothesis presented in section II-C1 was tested
by plotting correlation coefficient vs phase shift, which is
presented in Fig. 3. The correlation coefficient is a periodic
function of phase shift and resembles a cosine function, as
expected.

The small data-set consideration of section II-C2 was tested
by finding the correlation coefficient as a function of sample
size. It was calculated for a phase shift of 90◦. The result is
presented in Fig. 4.

As can be seen from Fig. 4, a correlation coefficient of 0 is
obtained only for large sample sizes. For small sample sizes,
the correlation coefficient is close to 1, as expected.

As a final test, the correlation coefficient was calculated for
various time-shifts of a white noise signal. This is presented
in Fig. 5. The correlation coefficient resembles an impulse at
the origin, as expected.

IV. CONCLUSION

This paper showed that vectorised notation in Octave
execute much faster than loop-based code. Interestingly
enough, the custom-implemented correlation function is faster
than the built-in function, which could be attributed to the
fact that the built-in function is general-purpose, whereas the
customised function is application-specific.

The correlation coefficient of time-shifted signals was
investigated. Time-shifted sinusoidal signals result in a
sinusoidal correlation trend. Time-shifted white-noise signals
results in an impulse-like correlation trend.



TABLE II
PERFORMANCE COMPARISON BETWEEN MYCORR AND BUILT-IN
IMPLEMENTATIONS

Sample cor() mycorr() Speed-up
size [s] runtime [ms] runtime [ms]

100 0.505 0.512 0.986
1000 0.501 0.500 1.002

10000 1.001 0.500 2.002
100000 3.002 1.003 2.993

1000000 23.020 17.019 1.353
10000000 222.158 165.118 1.345
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Fig. 3. Correlation as a function of phase shift of sinusoidal signals. The
frequency is 0.01 periods per sample and the sample-size 10 000 samples
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Fig. 4. Correlation as a function of sample size. The frequency is
0.0005 periods per sample and the phase shift 90◦
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Fig. 5. Correlation as a function of time shift for a white noise signal.
The data-set has 1000 samples.
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