
Digital Systems

EEE4084F

Practical 1 – Octave
[30 Marks]

The focus of this task is on using OCTAVE (the free sort-of MATLAB program) and
doing some statistical operations. In later assignments you will make further use of
these statistical functions, and perhaps reuse this code, in comparing and discussing
results obtained in other practicals and projects (for example, correlation can be
used in analysing gold standard results to higher-speed approximation result).

Please don’t use MATLAB for this assignment – the command syntax is slightly
different and part of the point is getting you to use open-source software.

For this assignment you are free to choose where you want to work: a lab computer,
on your laptop, or at home. If working on your own PC I advise obtaining a recent
version of OCTAVE.

What to hand in for Practical 1?

Note that Parts 1 and 2, as well as Part 3 steps #1 and #3 are entirely optional. You
can skip these items.

Hand in a short report (aim for two pages: the page limit
for this assignment is 3) briefly describing your solutions
for Part 3 step #4, as well as Part 4. The callouts show a
submission requirement.

This is an example
callout

Format your report as if it is an article (i.e. don’t follow the same chronology as
the prac-sheet – format it as “Introduction – Method – Results & Discussion –
Conclusion”). In the “Method” section, theorise about what you expect and how
you plan on testing said theory. In the “Results” section, confirm that you obtained
what you expected (or explain why you obtained something unexpected).
Hint: You are trying to answer two questions: 1) “Is my mycorr function better suited
to run correlation tests, in comparison to the built-in equivalent?” and 2) “Are my
theories relating to the correlation of time-shifted sinusoids correct?”

NB: Please hand in your report as per the due date set for Practical 1 in Vula.

1

A hint: Calculating speed-up

Speed-up = Tp1/Tp2

Where Tp1 = Run-time of original / non-optimal program

Tp2 = Run-time of optimised program

For obtaining a repeatable timing value, run each version (i.e. initial version and
optimized version) of your programs more than once and discard the first measured
time. You can, if you want to be complete, indicate what the initial speed up was and
then the average speed up.

Part 1: Starting out in OCTAVE

An introduction to OCTAVE is available at the official GNU home site for the project
at:

http://www.gnu.org/software/octave/doc/interpreter/Introduction.html

But let’s make a simple start if you haven’t used the program before. . .

#1 If you are using a Lab computer, you might as well run Octave under Linux (the
examples in this Prac are from
Windows; but the interface
is exactly the same in both
versions). Start Octave by
typing octave at the Linux
shell prompt, or in Windows
search for the octave icon .

When Octave starts, you
simply get a terminal interface,
as per the image on the right.

2

http://www.gnu.org/software/octave/doc/interpreter/Introduction.html

#2 I always think it’s a good idea to have a particular project directory to keep project
files. So, let’s immediately go ahead and create a project directory. You can simply
use Linux commands (in either Linux or Windows) to do this. You could mount a
flash disk in your computer to keep your work in one place (although things tend to
run faster from the hard-drive). The example below shows how to create a project
directory:

this is a comment - Oh, and incase you wanted to know,

hash is for comments in OCTAVE

cd e: # assuming E: your flash disk. In Linux

you'll need to do cd /media/flash0 or something

mkdir Prac0 # you'll see it says "ans = 1" if things worked OK

cd Prac0 # Now you're in the right directory

pwd # this checks what directory you are in,

should say "ans = e:\Prac0"

ls # let's double check that it is indeed an empty directory

#3 Now let’s create a signal. . . type these
commands to do so:

x going from 0 to 10 in 0.1 increments

x = [0:0.1:10];

y[i] is set to x[i]*x[i]

y = x .* x

plot the graph (should get result

shown on right)

plot(x,y); grid on;

#4 Multiple plots can be added to a single figure.
This is useful for when you want to do
side-by-side plotting to compare the graphs.
The code below shows you how...

subplot (1,2,1);

#two separate plots horizontally together

plot(x,y);

subplot (1,2,2);

#select the second plot

plot(y,x);

#5 This is how we can go about saving the vectors. Save the vectors x and y to a CSV
file:

3

save xvals.mat x # save variable x to file called xvals.mat

save yvals.mat y # save variable y to file called yvals.mat

Also save both x and y to a .csv file as follows:

B = [x' y']; # combine transposed variables

(else it saves as row vectors)

csvwrite("vals.csv",B) # save the B variable

clear B # free the temporary variable

#6 Load up the XLS file in OpenOffice or Microsoft
Excel and graph the data.

You should be able to get a similar graph
displayed in the spreadsheet application. It’s
probably a good idea to disable the markers so
as not to display such thick lines.

Part 2: Working with files

#1 Now access the Practical 1 assignment on Vula and download the example write.m

attachment. Place the file into your Prac0 directory you made earlier.

#2 Open the example write.m file in a text editor. You can do this in OCTAVE by typing
in:

edit example_write.m

All that this program does, as you can see in the file, write the text 100 + 50/2 and
its answer to a file.

#3 Run the program:
example_write.m

View the resultant test1.txt file.

#4 Copy the example write.m to a new file called pretty table.m. Implement the new
program pretty table so that it accepts a parameter X that is a 2-D array and writes
it to a text file so that each value shows 2-digit precision and looks pretty. Note you
don’t need to hand anything in for this part – this is just to familiarize yourself with
OCTAVE. An example pretty output is shown below:

4

| 1.00 | 0.00 | 0.00 |

| 0.00 | 1.00 | 0.00 |

| 0.00 | 0.00 | 1.00 |

5

Part 3: Measuring execution time with tic and toc

#1 White noise is often generated with GNU Octave’s random number generator
rand(), which generates uniformly distributed random values in the interval [0,1).
To create a sound wave of the white noise, the wavwrite() function in Octave is
used. The wavwrite() function expects values in [-1.0, 1.0), so the rand() output
must be multiplied by 2 and shifted down by 1. To generate 10 seconds white noise
sampled at 48 kHz, the following instruction are called:

white = rand(48000*10,1)*2-1;

And to generate a wave file for this noise, we use the wavwrite() function as follows:

wavwrite(white, 48000, 16, 'white_noise_sound.wav');

Alternatively one could plot the noise using Octave plot(...) or hist(...), but first
let’s test this noise creation technique by doing the following:

Generate a 100 and 1000 seconds white noise sampled at 48 kHz. Play it back
using Ubuntu’s Movie Player or any audio player of your choice. Notice the sound.

#2 Write a function in a new script called createwhiten.m that implements a function
with a for loop that generates a white noise signal comprising N duration in seconds.
Assume that N will always be positive and a multiple of 10. The white noise must be
sampled at either 48 kHz or 8 kHz. Name your function createwhiten(...). You
need to use the rand() function without arguments so that it will generate a single
random value, and the main task is figuring out how to scale so that you create a
suitable input to wavwrite(...) as explained above. Call the function and check
output size as follows:

whiten = createwhiten(1000);

size(whiten);

should return:

ans = 48000000 1

Check that the resulting wave / sound file gives the same sound as the
white noise sound.wav generated above by generating the new sound file named
white noise sound2.wav and playing it back.

wavwrite(whiten, 48000, 16, 'white_noise_sound2.wav');

6

#3 Confirm that you’ve created the sample
correctly. Since it’s a big signal, let’s just look
at the first 100 samples by plotting using a
histogram function as follows:

hist(whiten, 100, 1);

should give image as shown on right.

#4 Time how long it took to execute the script. Use the tic and toc functions as follows.
Note that I always put the call to tic on the same line just
before the function I want to time because this tends to
have less delay between the start of the timer and starting
the function. Of course, it is good practice to put it all in a
script file.

This goes in your
report
[5 marks]

tic; white = rand(48000*1000, 1)*2 - 1; runtime = toc();

disp(strcat("It took: ", num2str(runtime*1000), " ms to run"));

I got the result:

It took: 1963.2 ms to run

Call the createwhiten(...) you created in step #2 that does the same thing as the
white = rand(48000*1000,1)*2 - 1; statement that generate the white noise.

Measure the time it took for your createwhiten(...) function to run and show the
timing difference (in milliseconds) and discuss the speed-up you have achieved (if
any).

7

Part 4: Implementing a Correlation routine

Correlation is a useful statistical function for comparing two datasets to judge
how similar or different they are. The correlation function returns a correlation
coefficient, r, between -1 and 1. A value of 1 for r implies perfect positive correlation,
i.e. the two datasets are the same. Correlation of 0 implies there is no correlation
(the two datasets behave totally differently). A correlation of -1 indicates a total
opposite - for example if you compare vectors x to −x you get a correlation of -1.
Generally if |r| >= 0.8 there is strong correlation, between 0.5 and 0.8 moderate
weak, less that 0.5 is weak (towards no) correlation.

The Pearson’s correlation is calculated as shown below.
For more details about this formula read up on
http://en.wikipedia.org/wiki/Pearson_

product-moment_correlation_coefficient.

Put your code in the
report
[10 marks]

r =

∑
(XY)−

∑
X
∑

Y

N√√√√(∑ (X2)− (
∑

X)
2

N

)(∑
(Y 2)− (

∑
Y)

2

N

)

#1 Implement the above formula in a new m file, call it mycorr.m. Provide your code in
your report. Marks will be awarded on elegance of your code.

8

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

#2 The cor function in OCTAVE performs a correlation operation. Compare your mycorr
results to the build-in cor function. First read the noise wave file using wavread(...),
then you could, for example, use the following code to test your mycorr(...)

function as compared to Octave’s cor(...):

x = wavread('white_noise_sound.wav');

y = x;

r1 = mycorr(x,y)

r2 = cor(x,y) # note that in some versions, this is called "corr"

disp(r2 - r1);

y(1) = 2; y(5) = -4; # i.e. fudge some of the value

r1 = mycorr(x,y)

r2 = cor(x,y)

disp(r2 - r1);

x = rand(1,10); y = rand(1,10);

r1 = mycorr(x,y)

r2 = cor(x,y)

disp(r2 - r1);

Generate sample sizes of varying sizes: 100, 1000 and
10000 samples. Do a table listing sample sizes vs. mycorr
speed vs. corr speed. Indicate the average speed-up of
corr to mycorr.

Do table of sample
size vs time etc.
requested
[5 marks]

#3 For the last experiment, we want to compare signals shifted in time. Generate sin
curves of varying frequency and sampling sizes (again sample sizes 100, 1000 and
10000 samples). Compare samples of the same sizes that
are shifted in time, e.g. if A uses x[1:100] then B might use
x[11:110], in which case B is shifted in time by 10 samples.

For this step only use cor to save time. In your report,
discuss what you expect the correlation of the identical but
shifted signals would be. Run tests to confirm / verify your
hypothesis. Provide screen shot plots of some signals you
compared.

Show some code
excerpts, correlation
values and
screen-shots to
indicate what you
did.
[10 marks]

9

Here’s an example plot of waveforms you might try. . .

END OF ASSIGNMENT

OCTAVE Libraries to install

When installing on Windows you’ll be asked for certain libraries to include in the
installation. If you have lots of disk space, just install the whole Octave Forge
collection. Otherwise, make sure you install the following ones, otherwise you may
have difficulties in plotting or in running certain functions mentioned in howework
tasks and pracs.

Libraries needed from the Octave Forge collection:

audio ; control ; data-smoothing ; fixed ; ga ; gnuplot ; image ; integration ; oct2mat
; plot ; signal ; sockets ; specfun ; splines ; statistics ; strings

10

	Introduction
	What to hand in for Practical 1?
	1 Starting out in OCTAVE
	#1 Starting Octave
	#2 Project Folder
	#3 Creating a Signal
	#4 Subplots
	#5 Saving Vectors
	#6 Viewing in Excel

	2 Working with files
	#1 Download Example
	#2 Editing Scripts
	#3 Running Scripts
	#4 Pretty-Printing

	3 Measuring execution time with tic and toc
	#1 Generating Noise
	#2 Loop Noise
	#3 Histogram
	#4 Speed-up

	4 Implementing a Correlation routine
	#1 Correlation Implementation
	#2 Speed-up
	#3 Time-Shifted Signals

	OCTAVE Libraries to install

