
Test 2: Lectures 17 to 22

EEE4084F 2017-06-08

Instructions:

• Answer on separate pages. Verilog cheatsheet provided on last page.

• Make sure that your student number is on all your answer pages.

• There are 4 questions, each divided into sub-questions. Answer all questions.

• Total time: 1 hour.

• Total marks: 50.

Question 1: Thoughts about programmable logic devices and FPGAs [10 Total]

This question concerns Lecture 17 and Chapter 10.

Configurable Logic Blocks (CLBs) and I/O Blocks (IOBs) are major components of a FPGA

design. Figure 1 below illustrates a simplified view of an IOB and CLB.

Figure 1: IOB (left) and CLB (right)

#1 Given the CLB above (module on right), what is the significance of the multiplexer on the

output that is controlled by memory bit register X? Briefly explain what this aspect allows

for and why it proves useful in the design. [3]

#2 The CLB design above is stated as being a ‘simplification’. How so? Surely all FPGA CLBs

follow this design with input lines that control what value a LUT sends to the output. Explain

briefly why this is a simplification and how CLBs can be considerably more complex, you can

(optionally) use a rough diagram to assist your explanation. [4]

#3 Figure 1 shows the IOB input line connected directly to an input line of the CLB. But surely

this is not how it is actually done: You cannot just simply insert a wire into the FPGA to do

this connection. Show how a PSM (programmable switch matrix) is used to make such

programmable links. Provide a rough drawing showing how programmability is provided for

linking the in port of the IOB to an input of the CLB, and what additional memory (if any) is

needed to allow programmability of such a connection (only a little explanatory text or

labelling of the diagram is needed for your answer). [3]

Question 2: Thoughts about computing devices [10 Total]

This question concerns Lecture 17 and Chapter 13.

#1 When quantifying performance of DSP processing it is typically arithmetic operations that

are used in the basis for comparison. Surely other operations such leading from memory

and exchanging values between registers are also critical… but maybe not so critical to DSP.

Provide a brief argument motivating why a basis of arithmetic operations, as opposed to

any operations, is useful in the case of assessing the suitability of a processor architecture

for signal processing. [4]

#2 A DSP processor in a portable device is executing at its maximum clock rate of 100MHz,

at 3.3V. But, the processor is guzzling too much power, drawing on 4W of power which

drains the battery in an hour. According to application requirements, the processor does

not need to be clocked at more than 20MHz and can operate reliably down to 1.2V. Propose

how you could cut down the power consumption. Use the power formula1 for relating clock

speed to Watts to show how much you could cut this down by. Indicate what you would do

to obtain the lowest operational power consumption. Roughly calculate how long the

battery may likely last in this scenario (assume that unlikely case that the rate of discharge

does not impact the total energy delivered by the battery). [6]

Question 3: Thoughts about computing devices [10 marks]

This question relates to ADCs covered in Seminar 6 / Chapter 7.

#1 Explain the difference between Positive Gain Error (PGE) and Negative Gain Error (NGE).

You can use diagram(s) to illustrate your answer. [5]

#2 The ENOB of an ADC can be highly influential in selecting an ADC for an application. If a

12-bit ADC sampling a voltage range -2V to 2V has only an ENOB of 10, would it be able to

detect a voltage differential of at least 0.005V between two consecutive reads of the ADC?2

(Show your working to substantiate your answer! i.e. don’t just give Yes or No.) [5]

Question 4: Of interfacing and HDL [20 marks]

Suppose that you have been hired to develop an HDL module, called PacketRCV, that needs

to read a sequence of 8-bit data bytes that are sent in to the module’s DIN port through an

8-bit bus line (as shown Fig(a) in the diagram below). The received bytes need to be placed

into an internal BRAM array called PKT (which can store up to 1024 bytes). You don’t need

to worry about what is done with the received packet (the development company that hired

you will take the module further to do some sort of secret processing on it). The process of

receiving a packet and what is needed for the implementation is described below, illustrated
by the waveform diagram in Fig (b) below.

Receiving packet and other required behaviour of PacketRCV:

 When a new packet is about to be sent to PacketRCV, the SOP (start of packet) line will be

pulsed (raising edge indicates when transfer process starts, which involves sending in a

sequence of bytes on DIN). The packet PKT array index (PIDX) reg must be set to 0. Output

CSYNC set to 1 (and must be set back to 0 right after the next RDY posedge or in any

1 In case you forgot, you should be thinking P=CˑfˑV2
2 Assuming of course that the electronics are set up to map -2V  2V to the full range of the ADC.

error/reset condition if a RDY doesn’t arrive). PTO (packet transfer over) and AHP must be

set to 0 also.

 The sending module then sets the bits of DIN with the data to be sent in and sends a pulse

on the RDY (ready) line once it is sure the data bits are stable. Immediately at the rising

edge of RDY the data needs to be put into the PKT array at index PIDX and then PIDX

incremented, also if the AHP is high it must be set to 0 at this point.

 The EOP (end of packet) line is used to signal, at the raising edge, that the complete packet

of bytes has been sent and the transfer is complete. At this point the PTO (packet transfer

over) line must be raised and then set back to 0 after two (raising edge) clock pulses.

 [optional:] If a RDY line or EOP signal is not received after 12 clock pulses (while receiving a

packet) then the AHP (Abnormal or Halted Packet) line must be set high and the module

must go back to waiting for a SOP (it is extremely important that PIDX is not set to 0 at this

point as there may be important data in the array, but as mentioned before PIDX should

still be set to 0 after a SOP pulse). Similarly if a SOP is received mid-way while handling a

packet AHP needs to be raised, but the rest of the operation must proceed as described to

start receiving a new packet. [NB: up to 2 bonus marks for doing this part!!]

Fig (a) Diagram of the PacketRCV module Fig (b) Waveform traces of the input lines to PacketRCV showing the

sending of a data packet to the module.

There is furthermore a clock line that is sent to PacketRCV. This line operates at 100Mhz

(about 10 times faster than pulses on the RDY line).

TODO: For this question you need to implement PacketRCV the module as described above.

You can use either Verilog or VHDL to do this. You do not need to include any libraries (e.g.

the tedious lines like “library ieee; use ieee.std_logic_1164.all;” you don’t need to bother

with). There is a Verilog cheat sheet on the last page.

(Q4 marking will be quite lenient as it might be tricky to implement this all in the time available)

END OF TEST

…

PKT

VERILOG CHEAT SHEET

Numbers and constants

Example: 4-bit constant 10 in binary, hex and in

decimal: 4’b1010 == 4’ha -- 4’d10

(numbers are unsigned by default)

Concatenation of bits using {}

4’b1011 == {2’b10 , 2’b11}

Constants are declared using parameter:

parameter myparam = 51

Operators

Arithmetic: and (+), subtract (-), multiply (*),

divide (/) and modulus (%) all provided.

Shift: left (<<), shift right (>>)

Relational ops: equal (==), not-equal (!=), less-

than (<), less-than or equal (<=), greater-than

(>), greater-than or equal (>=).

Bitwise ops: and (&), or (|), xor (ˆ), not (˜)

Logical operators: and (&&) or (||) not (!) note

that these work as in C, e.g. (2 && 1) == 1

Bit reduction operators: [n] n=bit to extract

Conditional operator: ? to multiplex result

Example: (a==1)? funcif1 : funcif0

The above is equivalent to:

 ((a==1) && funcif1)

 || ((a!=1) && funcif0)

Registers and wires

Declaring a 4 bit wire with index starting at 0:

wire [3:0] w;

Declaring an 8 bit register:

reg [7:0] r;

Declaring a 32 element memory 8 bits wide:

reg [7:0] mem [0:31]

Bit extract example:

r[5:2] returns 4 bits between pos 2 to 5

inclusive

Assignment

Assignment to wires uses the assign primitive

outside an always block, e.g.:

assign mywire = a & b

Registers are assigned to inside an always block

which specifies where the clock comes from,

e.g.:

always@(posedge myclock)

 cnt = cnt + 1;

Blocking/unblocking assignment <= vs. =

The <= assignment operator is non-blocking

(i.e. if use in an always@(posedge) it will be

performed on every positive edge. If you have

many non-blocking assignments they will all

updated in parallel. The <= operator must be

used inside an always block – you can’t use it in

an assign statement.

The blocking assignment operator = can be used

in either an assign block or an always block. But

it causes assignments to be performed in

sequential order. This tends to result in slower

circuits, so avoid using it (especially for

synthesized circuits) unless you have to.

Case and if statements

Case and if statements are used inside an always

block to conditionally update state. e.g.:

always @(posedge clock)

 if (add1 && add2) r <= r+3;

 else if (add2) r <= r+2;

 else if(add1) r <= r+1;

Note that we don’t need to specify what happens

when add1 and add2 are both false since the

default behavior is that r will not be updated.

Equivalent function using a case statement:

always @(posedge clock)

 case({add2,add1})

 2’b11 : r <= r+3;

 2’b10 : r <= r+2;

 2’b01 : r <= r+1;

 default: r <= r;

endcase

Module declarations

Modules pass inputs, outputs as wires by

default.

module ModName (

 output reg [3:0] result, // register output

 input [1:0] bitsin, input clk);

 … code …

endmodule

Verilog Simulation / ISIM commands

$display ("a string to display");

$monitor ("like printf. Vals: %d %b", decv,bitv);

#100 // wait 100ns or simulation moments

$finish // end simulation

