
Test 2: Lectures 17 to 22

EEE4084F 2017-06-08

SOLUTIONS!!

Question 1: Thoughts about programmable logic devices and FPGAs [10 Total]

#1 The register X configures the multiplexer to either connect the output of the LUT directly

to the output wire of the CLB (this is unsynchronized behaviour) or to connect the LUT

output via the FF to the output. Since the FF only stores the input value on a clock pulse,

this makes the output of the CLB synchronized to the clock. Thus the combination of the

register X and multiplexer is used to configure the CLB to be synchronized, to the clock, or

unsynchronized. [3]

#2 Indeed it is a simplification, although not necessarily so for earlier (ancient in computing

terms) FPGA devices. Nowadays FPGAs tend to be designed around supporting both DSP /

more complex components and more general logic (e.g. gate structures and LUTs). The more

complex components, such as ‘hardcore’ adders, multipliers and other processing

components are provided as they are more efficient (in surface area) and may operate

significantly faster than attempting to perform equivalent operations using only LUTs or

more basic components. The diagram below illustrates the structure…

#3 A PSM (programmable switch matrix) is essentially constructed using multiplexers and

flipflops (or registers) to store the configuration of the multiplexers which connect one

signal line, of a set of possibilities lines, to the input or output of a CLB or to another set of

lines which are routed further along by another PSM. The diagram on the left below shows

how each switch matrix connectors from one bank of lines to another bank of lines, inside

each switch matrix there are registers that store the configuration of how the banks of lines

are connected. The illustration on the right below shows how the switch matrix connects

lines in the one bank of lines (say bank A) to another bank (say bank B) – this is a simplified

view as these connections would actually be implemented using multiplexers (or a more

optimized switch element). (The switch matrix structure is obviously instrumental to the

flexibility of the FPGA but also to a large extent responsible performance limitations). [3]

Question 2: Thoughts about computing devices [10 Total]

This question concerns Lecture 17 and Chapter 13.

#1 Arithmetic operations typically carry out the main computation needs, such as

performing calculations; often these computations are more complex and could require

more clock cycles than is the case or more general operations, such as swapping values

between registers. It is thus more accurate to base the performance of a DSP processor,

which is likely going to carry out mainly arithmetic operations, based on the processor’s

performance of executing arithmetic operations. It is expected that branch operations and

load/store operations (which could also take a couple of clock cycles) would occur less

frequently than arithmetic operations, e.g. there is likely to be a chain of arithmetic

operations for each input that must be completed within a particular time. [4]

#2

Battery provides 4W for 1h (i.e. 4Wh capacity). This is for the processor operating at its

maximum clock speed of 100MHz at 3.3V. We may likely need to know what the gate

capacitance (C) of the processor is, which we can work out from the formula P=CˑfˑV2 as

follows:

P=CˑfˑV2

4 = C x 100 000 000 x 3.3 x 3.3

C = 4 / (100 000 000 x 10.89)

C = 3.673 x 10-9 = 3.673 nF

The proposed strategy to cut down the power consumption is to reduce the clock rate to

the minimum (that would be setting f to 20MHz) and lowering the volatage also to the

minimum that the processor supports, which would be down to 1.2V. With this

configuration the total power usage would be

P=CˑfˑV2

P=3.673 x 10-9 x 20 x 106 x (1.2)2

P =5.2891 x 10-3 x 20

P = 0.105 W

Wow!! That is a major saving for running at 20MHz at only 1.2V (assuming I got the

calculation right).

Then to calculate how long it would run for…

4Wh / 0.105 W = 38h

Which is hugely longer than the case of operating at full speed.

[6]

Question 3: Thoughts about computing devices [10 marks]

This question relates to ADCs covered in Seminar 6 / Chapter 7.

#1 Explain the difference between Positive Gain Error (PGE) and Negative Gain Error (NGE).
You can use diagram(s) to illustrate your answer.

PGE and NGE are occur when the actual transfer function slope deviates from the ideal

slope. In the case of PGE, the actual transfer slope is successively at a level above the ideal

transfer slope, i.e. giving a digitized output that keeps overshooting what the value should

be. NGE is the reverse, the actual transfer slope is successively at a level below the ideal

transfer slope, i.e. giving a digitized output that keeps undershooting what the value should

be. This is illustrated below (using the relevant figures form the textbook).

Positive Gain Error (PGE) Negative Gain Error (NGE)

 [5]

#2 For a 10-bit ADC for a voltage range -2V to 2V, or 4V range, the voltage differential
corresponding to a change of the LSB is 4 / 1024 = 0.0039 V. So I can safely conclude that:

 YES, the ADC should deliver the required accuracy.

[5]

Question 4: Of interfacing and HDL [20 marks]

Example available at https://www.edaplayground.com/x/5LaK

PacketRecv.v

// Implementation of the PacketRCV module

module PacketRCV (

 input [7:0]DIN, input RDY, input SOP, input EOP, input RESET, input CLK,

 output reg CSYNC, output reg PTO, output reg AHP

);

 reg startr;

 reg [7:0]PIDX;

 reg [7:0]PKT[1023:0];

 // Handle any reset

 always@(posedge CLK or posedge RESET)

 begin

 if (RESET == 1'b1)

 begin

 $display("RESET!");

 // Clear CSYNC and PTO

 CSYNC = 1'b0;

 PTO = 1'b0;

 AHP = 1'b0;

 startr= 1'b0;

 PIDX = 8'd0;

 AHP = 1'b0;

 end

 end

 // Check for other signals

 always@(posedge SOP)

 begin

 if (startr == 1) AHP = 1'b1; // exception due to

 startr = 1'b1;

 PIDX = 8'd0;

 CSYNC = 1'b1;

 PTO = 1'b0;

 end

 always@(posedge RDY)

 begin

https://www.edaplayground.com/x/5LaK

 if (startr == 0)

 begin

 // unexpected RDY, packet not started

 $display("-- unexpected RDY");

 AHP = 1;

 startr = 1;

 PKT[0] = DIN;

 PIDX = 1;

 end

 else

 begin

 PKT[PIDX] = DIN;

 PIDX = PIDX + 1;

 CSYNC = 0;

 end

 end

 always@(posedge EOP)

 begin

 if (startr == 0)

 begin

 AHP = 1; // unexpected EOP, packet not started

 end

 else

 begin

 startr = 0;

 PTO = 1; // indicate successful end of packet

 end

 end

endmodule

Testbench for PacketRecv

// Testbench for PacketRCV

module PacketRCV_tb;

 // declare registers for the data and control lines

 reg [7:0]DIN;

 reg RDY, SOP, EOP, RESET, CLK;

 wire CSYNC, PTO, AHP;

initial

 begin

 $display("PacketRCV Test!");

 // monitor some of the signals

 $monitor("CLK=%b RESET=%b RDY=%b SOP=%b EOP=%b CSYNC=%b PTO=%b AHP=%b

DIN=%d",CLK,RESET,RDY,SOP,EOP,CSYNC,PTO,AHP,DIN);

 // finish after 100 clocks

 CLK = 0;

 RESET = 1;

 RDY = 0;

 #5 CLK = ~CLK;

 RESET = 0;

 #5 CLK = ~CLK;

 SOP = 1;

 #5 CLK = ~CLK;

 SOP = 0;

 #5 CLK = ~CLK;

 DIN = 100;

 #5 CLK = ~CLK;

 RDY = 1;

 #5 CLK = ~CLK;

 RDY = 0;

 #5 CLK = ~CLK;

 DIN = 101;

 #5 CLK = ~CLK;

 RDY = 1;

 #5 CLK = ~CLK;

 RDY = 0;

 #5 CLK = ~CLK;

 EOP = 1;

 #5 CLK = ~CLK;

 EOP = 0;

 #10

 $display("Test fault..");

 DIN = 99;

 #5 CLK = ~CLK;

 RDY = 1;

 #5 CLK = ~CLK;

 RDY = 0;

 EOP = 1;

 #5 CLK = ~CLK;

 EOP = 0;

 #50 $finish;

 end

 // instantiate the module

 PacketRCV rcv(DIN,RDY,SOP,EOP,RESET,CLK,CSYNC,PTO,AHP);

endmodule

