
Test 2: Lectures 6 to 17
EEE4084F
2016-05-10

Instructions:

• Answer on a separate page.
• Make sure that your student number is on all your answer pages.
• There are 4 questions, each divided into sub-questions. Answer all questions.
• Total time: 35 minutes.
• Total marks: 35.

Question 1: CPU Architectures [8 Total]

(a) What are some of the advantages of distributed memory over shared memory?
Name at least two benefits. [2]

(b) Briefly explain what is meant by instruction level parallelism (ILP). [2]

(c) What is meant by the concept of super-pipelining in regards to ILP? Indicate
two potential challenges of designing a processor architecture to support
super-pipelining. [4]

Question 2: Reconfigurable Computing [10 Total]

(a) Briefly define what is meant by a digital accelerator (i.e. the type of thing we are
trying to prototype in the YODA project). [2]

(b) Discuss at least two advantages and two disadvantages of using an FPGA-based
reconfigurable computing approach to implement a digital accelerator, instead of a
more standardised multi-processor CPU-based approach (eg. using a cluster of
Intel PC’s running MPI)? [5]

(c) Briefly explain the difference between a PLA, a CPLD and an FPGA. Don’t go
into too much detail regarding the internal circuitry – a brief overview of the main
differences, in three sentences, is sufficient. [3]

(d) Bonus mark: Which company manufactures the small-package and low-power
IGLOO FPGA. [1]

1

Question 3: Cell Processors [4 Total]

(a) What is the difference between the PPE and the SPE in a cell processor? [1]

(b) Are there more of the one than the other? [1]

(c) Would you say the interconnection bus is statically configured in connecting the
SPE’s, or more controllable? Briefly elaborate. [2]

Question 4: Verilog [13 Total]

(a) Draw the circuit described by the Verilog code below. Don’t draw the full gate-level
circuit – rather make use of multi-bit registers, multi-bit multiplexers and high-level
blocks such as Add one or Shift right . [8]

module Shifter(input Clk, input Reset, input [3:0]Data, input Polarity, output reg Tx);

reg [3:0]Data_1; reg [1:0]Count;

always @(*) Tx <= Data_1[0] ^ Polarity;

always @(posedge Clk) begin

if(Reset) begin

Count <= 0;

end else begin

Count <= Count + 1'b1;

if(|Count) Data_1 <= {1'b0, Data_1[3:1]};

else Data_1 <= Data;

end

end

endmodule

(b) Draw the timing diagram of all the signals in the Verilog above. Use the timing
diagram skeleton below (i.e. draw on the question paper). Use X to mean
“unknown”. [5]

Clk

Reset

Data

Polarity

Count

Data_1

Tx

01101011 1010 1101 0101

2

Verilog Reference

Comments
// One-liner

/* Multiple

lines */

Numeric Constants
// The 8-bit decimal number 106:

8'b_0110_1010 // Binary

8'o_152 // Octal

8'd_106 // Decimal

8'h_6A // Hexadecimal

"j" // ASCII

78'bZ // 78-bit high-impedance

Too short constants are padded with
zeros on the left. Too long constants are
truncated from the left.

Nets and Variables
wire [3:0]w; // Assign outside always blocks

reg [1:7]r; // Assign inside always blocks

reg [7:0]mem[31:0];

integer j; // Compile-time variable

genvar k; // Generate variable

Parameters
parameter N = 8;

localparam State = 2'd3;

Assignments
assign Output = A * B;

assign {C, D} = {D[5:2], C[1:9], E};

Operators
// These are in order of precedence...

// Select

A[N] A[N:M]

// Reduction

&A ~&A |A ~|A ^A ~^A

// Compliment

!A ~A

// Unary

+A -A

// Concatenate

{A, ..., B}

// Replicate

{N{A}}

// Arithmetic

A*B A/B A%B

A+B A-B

// Shift

A<<B A>>B

// Relational

A>B A<B A>=B A<=B

A==B A!=B

// Bit-wise

A&B

A^B A~^B

A|B

// Logical

A&&B

A||B

// Conditional

A ? B : C

Module
module MyModule

#(parameter N = 8) // Optional parameter

(input Reset, Clk,

output [N-1:0]Output);

// Module implementation

endmodule

Module Instantiation
// Override default parameter: setting N = 13

MyModule #(13) MyModule1(Reset, Clk, Result);

3

Case
always @(*) begin

case(Mux)

2'd0: A = 8'd9;

2'd1,

2'd3: A = 8'd103;

2'd2: A = 8'd2;

default:;

endcase

end

always @(*) begin

casex(Decoded)

4'b1xxx: Encoded = 2'd0;

4'b01xx: Encoded = 2'd1;

4'b001x: Encoded = 2'd2;

4'b0001: Encoded = 2'd3;

default: Encoded = 2'd0;

endcase

end

Synchronous
always @(posedge Clk) begin

if(Reset) B <= 0;

else B <= B + 1'b1;

end

Loop
always @(*) begin

Count = 0;

for(j = 0; j < 8; j = j+1)

Count = Count + Input[j];

end

Function
function [6:0]F;

input [3:0]A;

input [2:0]B;

begin

F = {A+1'b1, B+2'd2};

end

endfunction

Generate
genvar j;

wire [12:0]Output[19:0];

generate

for(j = 0; j < 20; j = j+1)

begin: Gen_Modules

MyModule #(13) MyModule_Instance(

Reset, Clk,

Output[j]

);

end

endgenerate

State Machine
reg [1:0]State;

localparam Start = 2'b00;

localparam Idle = 2'b01;

localparam Work = 2'b11;

localparam Done = 2'b10;

reg tReset;

always @(posedge Clk) begin

tReset <= Reset;

if(tReset) begin

State <= Start;

end else begin

case(State)

Start: begin

State <= Idle;

end

Idle: begin

State <= Work;

end

Work: begin

State <= Done;

end

Done: begin

State <= Idle;

end

default:;

endcase

end

end

4

	1 CPU Architectures[8 Total]
	(a) Memory Models
	(b) ILP
	(c) Super-Pipelining

	2 Reconfigurable Computing[10 Total]
	(a) YODA
	(b) FPGA vs. MPI Cluster
	(c) PLA vs. CPLD vs. FPGA
	(d) Bonus Mark

	3 Cell Processors[4 Total]
	(a) PPE vs. SPE (a)
	(b) PPE vs. SPE (b)
	(c) PPE vs. SPE (c)

	4 Verilog[13 Total]
	(a) Circuit
	(b) Circuit

