
Quiz 4: Lectures 14 to 18
EEE4084F
2015-05-12

Instructions:

• Answer on a separate page.
• Make sure that your student number is on all your answer pages.
• There are 5 questions, each divided into sub-questions. Answer all questions.
• Total time: 45 minutes.
• Total marks: 35.

Question 1: Reconfigurable Computing [10 Total]

#1 Briefly explain what is meant by “reconfigurable computing”. [4]

#2 Name one example where you would recommend using FPGA-based reconfigurable
computing, rather than general-purpose GPU, in order to speed up the application.
Explain why you would prefer reconfigurable computing in this example. [6]

Question 2: Portability [6 Total]

#1 Select the most accurate definition of what is meant by “making a program
portable”: [2]

(a) Any executable of the program can run directly on any architecture.

(b) It can be compiled and run, with little or no alteration, on another computer
system.

(c) The program is designed around use for only one architecture.

(d) The platform that the program is designed to run on is designed to be easy to
move about.

#2 Name two advantages and two disadvantages of making use of third-party libraries
in order to gain portability. [4]

1

Question 3: Parallel and Distributed Systems [4 Total]

#1 Consider a parallel computing system with 12 processing nodes. The system is used
to implement an algorithm that has 85% parallelisable code. What is the maximum
achievable benefit of using this 12-processing node system above a purely serial
version. [2]

Amdahl’s Law: P =
1

S + 1−S
N

#2 The following acronyms relate to client / server protocols. Which one is incorrectly
defined? [1]

(a) RPC = Remote Procedure Call

(b) RMI = Request Method Indirectly

(c) SQL = Standard Query Language

#3 Write out the correct definition for it. [1]

#4 Bonus mark: The CORBA software architecture defines a distributed-object
standard, where objects residing on different machines can pass data between each
other. The standard is full of obscure acronyms such as GIOP, IDL, ORB, and the
POA. One of these is especially important, as it is the layer that enables objects on
different platforms to communicate with each other. Which one of these is it? [1]

(a) GIOP (b) IDL (c) ORB (d) POA (e) OBV (f) SSLIOP

2

Question 4: Verilog [10 Total]

Consider the two code extracts below:

// Option A // Option B

reg A, B; reg A, B;

wire C, Clk; wire C, Clk;

always @(posedge Clk) begin always @(posedge Clk) begin

A = B & C; A <= B & C;

B = A | C; B <= A | C;

end end

#1 Draw the circuit (gates and registers, not logic element internals) produced by each
of the options above. [4]

#2 Use your circuits to explain the difference between blocking and non-blocking
assignments (option A is blocking). [2]

#3 Assume that all the registers are initialised to 0. Further assume that the wire C
is connected to an external button that goes high some time between positive clock
edges 2 and 3; and then low again some time between positive clock edges 6 and 7.
Draw the timing diagram, of option B above, for the first 10 clock cycles. Include the
signals A, B, C and Clk. You may assume a slow clock (i.e. neglect timing delays
and requirements). [4]

Question 5: Timing Calculations [5 Total]

Consider the Verilog code extract below:

wire [17:0]a, b, c;

reg [17:0]A, B;

reg [36:0]C, Y;

always @(posedge Clk) begin

A <= a;

B <= b;

C <= {c, {19{c[0]}}};

Y <= A * B + C;

end

The registers have a clock-edge to output-valid delay of 3 ns, a setup requirement
of 2 ns and a hold requirement of 1 ns. The multiplier has a propagation delay of
22 ns and the adder has a propagation delay of 13 ns. What is the maximum clock
frequency that this circuit can run at? You may neglect detail such as clock skew
and other parasitic effects. [5]

3

Verilog Reference

Comments
// One-liner

/* Multiple

lines */

Numeric Constants
// The 8-bit decimal number 106:

8'b_0110_1010 // Binary

8'o_152 // Octal

8'd_106 // Decimal

8'h_6A // Hexadecimal

"j" // ASCII

78'bZ // 78-bit high-impedance

Too short constants are padded with
zeros on the left. Too long constants are
truncated from the left.

Nets and Variables
wire [3:0]w; // Assign outside always blocks

reg [1:7]r; // Assign inside always blocks

reg [7:0]mem[31:0];

integer j; // Compile-time variable

genvar k; // Generate variable

Parameters
parameter N = 8;

localparam State = 2'd3;

Assignments
assign Output = A * B;

assign {C, D} = {D[5:2], C[1:9], E};

Operators
// These are in order of precedence...

// Select

A[N] A[N:M]

// Reduction

&A ~&A |A ~|A ^A ~^A

// Compliment

!A ~A

// Unary

+A -A

// Concatenate

{A, ..., B}

// Replicate

{N{A}}

// Arithmetic

A*B A/B A%B

A+B A-B

// Shift

A<<B A>>B

// Relational

A>B A<B A>=B A<=B

A==B A!=B

// Bit-wise

A&B

A^B A~^B

A|B

// Logical

A&&B

A||B

// Conditional

A ? B : C

Module
module MyModule

#(parameter N = 8) // Optional parameter

(input Reset, Clk,

output [N-1:0]Output);

// Module implementation

endmodule

Module Instantiation
// Override default parameter: setting N = 13

MyModule #(13) MyModule1(Reset, Clk, Result);

4

Case
always @(*) begin

case(Mux)

2'd0: A = 8'd9;

2'd1,

2'd3: A = 8'd103;

2'd2: A = 8'd2;

default:;

endcase

end

always @(*) begin

casex(Decoded)

4'b1xxx: Encoded = 2'd0;

4'b01xx: Encoded = 2'd1;

4'b001x: Encoded = 2'd2;

4'b0001: Encoded = 2'd3;

default: Encoded = 2'd0;

endcase

end

Synchronous
always @(posedge Clk) begin

if(Reset) B <= 0;

else B <= B + 1'b1;

end

Loop
always @(*) begin

Count = 0;

for(j = 0; j < 8; j = j+1)

Count = Count + Input[j];

end

Function
function [6:0]F;

input [3:0]A;

input [2:0]B;

begin

F = {A+1'b1, B+2'd2};

end

endfunction

Generate
genvar j;

wire [12:0]Output[19:0];

generate

for(j = 0; j < 20; j = j+1)

begin: Gen_Modules

MyModule #(13) MyModule_Instance(

Reset, Clk,

Output[j]

);

end

endgenerate

State Machine
reg [1:0]State;

localparam Start = 2'b00;

localparam Idle = 2'b01;

localparam Work = 2'b11;

localparam Done = 2'b10;

reg tReset;

always @(posedge Clk) begin

tReset <= Reset;

if(tReset) begin

State <= Start;

end else begin

case(State)

Start: begin

State <= Idle;

end

Idle: begin

State <= Work;

end

Work: begin

State <= Done;

end

Done: begin

State <= Idle;

end

default:;

endcase

end

end

5

	1 Reconfigurable Computing[10 Total]
	#1 Definition
	#2 Example

	2 Portability[6 Total]
	#1 Portability
	#2 Libraries

	3 Parallel and Distributed Systems[4 Total]
	#1 Amdahl's Law
	#2 Client-Server Protocols
	#3 Corrected Definition
	#4 COBRA

	4 Verilog[10 Total]
	#1 Code to Circuit
	#2 Blocking vs Nonblocking
	#3 Timing Diagrams

	5 Timing Calculations[5 Total]

