
Quiz 1: Solutions
EEE4084F
2015-03-05

Question 1: Processing Architectures [20 Total]

#1 Any 4 of:

• Improved hyper-threading
• Faster front-side bus clock
• Better branch prediction
• Out-of-order execution
• Instruction-level parallelism
• Larger cache
• Cleaver cache that pre-empts fetches and writes with better prediction [4]

#2 Each of the four options should have one pro and one con (8 marks). The other two
marks are for clarity, relevance to embedded systems, small explanations, examples,
more pro’s and con’s, etc. Pro’s (left) and con’s (right) include (among others):

ASIC:
• Fast
• Fully customisable during

design
• Inexpensive when

mass-produced
• Heavily optimised for the task to

be performed
• Good for parallelisable

applications

• Expensive to prototype
• Long development cycles
• Fixed-function
• Difficult to design
• Static (when a bug is

discovered, the IC must be
re-manufactured)

FPGA:
• Reconfigurable on both

hardware and software level
• Fully customisable hardware

(and software)
• Relatively inexpensive

prototyping
• Heavily optimised for the task to

be performed
• Good for parallelisable

applications

• Little cost gain when
mass-producing the final
product

• Slow clock-rate (compared to
ASIC and processor)

• Challenging to develop code for
• Often over-kill for the target

application

1

Microcontroller:
• Very inexpensive
• Low power consumption
• Convenient peripherals come

on-chip
• Good for small embedded

application (such as
garage-door openers)

• Easy to develop code for
• Easy to use

• Low performance
• Single-thread serial execution
• Small and light-weight

applications only

Processor:
• Multiple very powerful cores
• Good library support
• Good operating system support
• Good for multitasking

• Limited number of cores
• Large power consumption
• Inefficient for course-grained

parallel applications

[10]

#3 Local execution on the CPU does not involve costly memory transfers over the
PCI-Express bus. A CPU generally contains a small number of powerful cores and is
good for execution of a small number of vastly different tasks (multitasking operating
system applications, for instance). It is inefficient for course-grained parallel tasks
due to the limited number of threads.

Coprocessor execution involves costly memory transfers between the host (CPU)
and the coprocessor memory. It generally contains a large number of light-weight
cores, which are inefficient at executing serial-like code. It is therefore suited mostly
for course-grained parallel tasks with little cross-thread communication. It also
leaves the CPU free to do other things while it is busy, which is often useful.

The phrase “small is beautiful” refers to the idea of using many small cores, rather
than a few powerful ones. The idea is that one can obtain many more instructions
per second (and instructions per unit of power) by using many small cores instead
of few large cores. This approach is not well suited to all tasks, however. Not all
applications can be parallelised. The coprocessor follows the ”small is beautiful”
approach, whereas the general-purpose CPU does not. [6]

Question 2: Memory Architectures [15 Total]

#1 Shared memory architectures allow easier and faster inter-process communication,
easier memory coherence and easier source distribution (as only a single copy
is required). Problems include serial memory access, where multiple processes
fight over memory bandwidth limitations (this is partially solved by caching), and the
need for mutually exclusive locks when modifying shared memory areas, effectively
blocking the other threads from execution.

2

Distributed memory requires expensive inter-process communication schemes,
there is no automatic coherence between copies of the data and multiple copies
of source data is required. Advantages include isolation (each process works
independently from the others and therefore does not need to wait for them or share
memory bandwidth), and there is no need for mutually exclusive locks. [5]

#2 Memory locks are used to ensure memory validity when multiple processes can
potentially read and modify the same memory location at the same time. Mutually
exclusive locks ensure that only one thread can enter a so-called critical region and
modify that memory location.

Potential dangers include dead-lock, especially where more than one lock is used.
Thread A could, for instance, lock memory location X, while thread B locks memory
location Y. If thread B is then dependent on also locking memory location X, and
thread A is also dependent on locking memory location Y, both threads wait for each
other. Careful thought must therefore be given to locking schemes and how mutually
exclusive locks are used. [5]

#3 The memory wall refers to a limitation in memory bandwith and latency, in
conjunction with many processor cores accessing the memory over the same bus.
The processors can process data much faster than the memory can provide (or
store) it.

Caching schemes often include a caching hierarchy. Each processor IC has an
on-chip cache that attempts to reduce memory latency by storing data that will most
likely be used next in memory that is physically closer to the processor cores. This
cache often has higher bandwidth as well.

The next level in the hierarchy involves a separate cache for each core within the
processor. This attempts to mimic a distributed memory architecture, so that each
core can access the memory concurrently, without waiting for neighbouring cores
to finish using the memory. Cleverly implemented caching schemes also perform
prediction, in which data is pre-fetched while the processing core is busy processing
other data. This greatly reduce memory latency and bandwidth issues. [5]

3

Question 3: UML [15 Total]

#1 [12]

Robot
Segment

Non-
Controller

Controller
Segment

Power
Segment

Sniffer
Segment

Bendy
Segment

Puller
Segment

Segmented
WormsRobot

Nss=ss63s-sN_POWSs-
N_SNISs-sN_BENS

C
on

tr
ol

sm
es

sa
ge

Sen
ds

sd
at

a

Sen
ds

sd
at

a

Ack
no

wle
dg

e

Ack
nowledge

R
el

ay

B
en

ds
le

ft,
fr

ee
ze

be
nd

sr
ig

ht
,

1

1..3

0..4

0..16

0..N

#2 The whole system runs off the same voltage, so we only need to work with current.
The total current drawn by the given configuration is be given by:

POWS: 50 mA
BENS : 2× 200 mA
PULS : 2× 500 mA
CONS: 100 mA
SNIS : 100 mA
Total : 1 650 mA

The power supply provides 2 Ah. If the device needs to last 2 hours, it may not draw
more than 1 A. The given configuration will therefore not last 2 hours. [3]

4

	1 Processing Architectures[20 Total]
	#1 CPUs
	#2 Embedded Processors
	#3 Coprocessors

	2 Memory Architectures[15 Total]
	#1 Memory
	#2 Locks
	#3 Memory Wall

	3 UML[15 Total]
	#1 Segmented Worm Robot
	#2 Power Consumption

