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11 June 2015

MEMORANDUM

This memo describes anticipated correct responses that the students should provide and the
answers for multiple choice questions.
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Section 1: Short Answers [46 marks]

Question 1.1 [10 marks]

1.1 (a) The student should highlight the design in terms of 8× SPE and 1× Power
Processor Unit. They could go on to elaborate that a usual SMP, which most
multicore PCs use, has a collection of the same processors. Drawbacks of the Cell
processor includes the difficulty of dealing with more that one processor architecture,
having to learn programming pragmas and the like in order to develop programs
for the processor. Advantages over standard SMP include advantages of higher
performance via the configuration facilities the platform provides in terms of the EIC
(element interconnect bus), together with the separate memory controller and IO
controller that offload arbitration and memory transfer needs. [6]

1.1 (b) An ABI, or application binary interface, is a specification regarding the
instruction-level specifics of an interface between software programs. Examples
include function calling convention, low-level data types, in which register(s) the
return values are stored, etc. It ensures compatibility of code generators and
portability of code.

Examples of ABIs for the cell processor are: IMB SPE ABI and Linux Cell ABI. [2]

1.1 (c) An API, or application programmer’s interface, is a selection of function prototypes
that an application programmer can use to make use of library and operating system
functionality. The low-level specifics are hidden in abstraction.

An ABI refers specifically to the low-level specifics. [2]
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Question 1.2 [12 marks]

1.2 (a) (i) Contiguous
(ii) Interleaved / Cyclic / Block cyclic (the diagram does not make it clear whether

it’s pixel-cyclic or block-cyclic)
(iii) Partitioned / Block partitioned
(iv) Interlaced [4]

1.2 (b) This is somewhat open-ended and depends on the argument of the student.

Using a block cyclic approach, with some overlap, would be effective, or block
partitioned (cutting the data into two separate images with a 1-pixel overlap at the
borders). This would allow the cores to work largely independently, except at the
overlapping boundary regions. A mutex isn’t required, as it is using separate input
and output memory. Interlaced could also work, where one output line is written but
3 lines are read.

A single-pixel interleaved approach is irrelevant, also interlaced would not work
unless there was it was three lines at a time with much overlap.

The block cyclic and block partitioned approaches are scalable regardless of
the image size. Interleaved scalability would depend on the size of the image:
interleaved with each core going across one row of the image may end up with
cores being underutilized if there are more processors than rows of pixels.

Typically the data will be partitioned such that each partition fits into a Cx×Cy block.
The larger the image, the more blocks (and partitions) will be used. [5]

1.2 (c) It is a highly coarse-grained, since there is little dependence between distant data
elements. A new pixel value is only impacted by the values of its immediate
neighbouring pixels.

This is in contrast to a fine-grained operation where each pixel may depend on pixels
further away or (in an extremely fine-grained case) each new pixel being dependent
on every other pixel. [3]
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Question 1.3 [12 marks]

1.3 (a) Each MathBOO contains 2 Mib of memory. This is enough to store
65 536 single-precision floating point numbers. Therefore, if the vectors are smaller
than 32 000 elements each (to leave space for the answer and other temporaries),
and there are lots of such scalar products that must be calculated, it is worth while
to load each MathBOO with one complete scalar product. The MultiMath can then
calculate N2 scalar products at the same time, without the need to access the shared
memory.

If, on the other hand, the vectors are much larger, each MathBOO can only calculate
a portion of the scalar product. In this case, the mutually exclusive access to the
shared memory becomes a bottleneck when the sum of the products must be taken.
I would program as much of the vectors into each MathBoo as possible, so that
communication between cores is minimised. [5]

1.3 (b) For matrices of size M× M, multiplication involve the calculation of M scalar products.
In order to minimise communication with the shared memory, the CPU might load
a complete row of the first and column of the second matrix into each MathBOO
(I’m assuming that N < 32 000, which is a reasonable assumption given modern
technology). This involves significant data duplication, but I believe that the extra
overhead is worth the effort so that communication with the shared memory can be
avoided.

Each MathBOO can then calculate an independent element of the result matrix.

If the memory bandwidth between the MultiMath and the CPU is of a similar
magnitude as the internal memory bandwidth of the MultiMath shared memory, it
is worth it to let the CPU perform the data duplication directly to each MathBOO. If,
on the other hand, the internal MultiMath memory bandwidth is significantly larger,
the CPU can copy the matrices to the shared memory and each MathBOO can
perform the data duplication as required.

The result can remain in the MathBOO, where the CPU can fetch it directly. [5]

1.3 (c) The addition of IPC would likely be of little benefit in this case because it may cause
a bottleneck, whereby one core is waiting for results from another core, or waiting
for another core to complete communication with a different core before it can send
its data on. For example, if core X was gathering from the other cores, it may likely
become a bottleneck, especially since each core is likely to take the same amount
of time in getting through a row • column operation. [2]
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Question 1.4 [12 marks]

1.4 (a) 6, ∀ N > 3 [1]

1.4 (b) Consider the cases for N = 8 below:

M = 2 M = 3 M = 4

6 Links 8 Links 10 Links

A pattern emerges. For the case where M = N/2, the bisection width is N+2. For
every reduction in M, two fewer links cross the bisection line. The general expression
for the bisection width is therefore 2M+2.

The bisection bandwidth is therefore (2M+2)·32bit / 2ns. This may be simplified to
32(M+1) Gb/s. [4]

1.4 (c)

Crossbar Crossbar Crossbar Crossbar

Crossbar Crossbar

Crossbar

[3]

1.4 (d) Per definition of the binary fat tree, the bisection width is N/2. [1]

1.4 (e) Each node must execute:

1. Send element to distant node (2 ns)

2. Receive element from distant node (2 ns)

3. Swap locations in local memory (2 ns)

The bisection bandwidth is sufficient to perform this in parallel without bottleneck, so
the total time is 6 ns. The first two steps are independent due to the fact that links
are half-duplex. Half the nodes must swap the order of the first two steps. The need
for the final step is debatable. [3]
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Section 2: Multiple Choice [34 marks]

Choose one option for each of the questions 2.1 to 2.10 in this section.

2.1 (d) [3]

2.2 (c) [3]

2.3 (d) [3]

2.4 (a) [3]

2.5 (b) [3]

2.6 (b) [3]

2.7 (d) [3]

2.8 (b) [3]

2.9 (c) [3]

2.10 (d) [3]

2.11 True / False questions: [4]
(a) False

(b) True

(c) True

(d) False
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Section 3: Long Answers [40 marks]

Question 3.1 [8 marks]

3.1 (a) All the transfer links have 10% overhead (the DDR has a refresh state and the PCIe
has headers, etc.). The transfer rate can therefore be compared based on the link
bandwidth exclusively.

Link Transfer rate
DDR3 1600 800 MHz · 2 · 128 b = 204.8 Gb/s
PCIe 1.0 = 4.0 Gb/s
LPDDR2 320 MHz 320 MHz · 2 · 32 b = 20.48 Gb/s

The PCIe link is the bottleneck. [3]

3.1 (b) The CPU will take 1283·5 = 10 485 760 instructions to complete. There are
4 cores, each processing instructions at a rate of 25·3GHz = 75 GIPS. The CPU
will therefore take 34.95 µs to encrypt each block, resulting is an encryption rate of
28 610 blocks/s. [5]

Question 3.2 [10 marks]

3.2 (a) To read and write will take the same amount of time. To read:
10 / 320MHz + 4096b / 320MHz / 2 / 32b = 231.25 ns. To copy is twice
this: 462.5 ns. [3]

3.2 (b) Ignoring the refresh state will imply that the maximum rate is
1 / 462.5ns = 2 162 162 blocks/s. The refresh state removes 10%, resulting
in 1 945 946 blocks/s. [3]

3.2 (c) Each processing pipeline processes blocks at a rate of 1 block every
4 096 / 10MHz = 409.6 µs, which implies 2 441 blocks/s. By using the
memory performance calculated in the previous question, one can deduce
that the maximum number of processing pipelines the DRAM supports is
1 945 946 blocks/s / 2 441 blocks/s = 797. [4]
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Question 3.3 [22 marks]

3.3 (a) We need to consider each step individually:

Step Time
1 10 ns
2 4 096N / (4 Gb/s·0.9)
3 1 ns
4 8 192 / (4 Gb/s·0.9)
6 10 ns
7 4 096N / (4 Gb/s·0.9)
8 1 ns

By taking the sum, we obtain (N+1)·2.276µs + 22ns. [6]

3.3 (b) When N ≤ 100, all the pipelines only have one block in them. The processing
therefore takes 20 480/10 MHz = 2.048 ms, independent of N . To transfer the
data to and from the FGPA DRAM takes N ·462.5 ns. For N ≤ 100, this is 2.26%
of the processing time and can therefore not be ignored. The 1 ns overhead for
the interrupt can be ignored. The time it takes to process N blocks is therefore
N ·462.5ns + 2.048ms.

When N� 100, all the pipelines are full. The overhead involved because
the pipelines are not full for the first 400 blocks, or the last 400 blocks,
can be ignored as a small effect (for large enough N ). The DRAM transfer
can also be ignored. The time it takes to process N blocks is therefore
4 096N / 10MHz / 100 = N ·4.096 µs. [8]

3.3 (c) Let us assume that this occurs when N ≤ 100. The total time it takes
when processed on the FPGA is the sum of all the steps, which can be
approximated as (N+1)·2.276µs + N ·462.5ns + 2.048ms. The CPU takes
N ·34.95µs. By equating these two we obtain N = 63.65. N cannot be
fractional, so we round up. It becomes worth while to use the FPGA
for N ≥ 64. [4]

3.3 (d) For 100 MiB, N = 204 800, which may be considered large. The FPGA
will take (N+1)·2.276µs + N ·4.096µs, which can be simplified (for large N ) to
N ·6.372 µs. The CPU takes N ·34.95 µs. The expected speed-up is therefore
34.95/6.372 = 5.48. [4]

END OF EXAMINATION

EEE4084F Exam 2015 Page 8 of 8


	1  Short Answers
	1.1  Cell processors
	(a) Architecture
	(b) ABI
	(c) ABI vs API

	1.2  Data Partitioning
	(a) Official Names
	(b) Partitioning Design
	(c) Grainularity

	1.3  MultiMath Processor
	(a) Scalar Products
	(b) Matrix Multiplication
	(c) IPC

	1.4  Communication Architectures
	(a) Bisection Bandwidth – 1
	(b) Bisection Bandwidth – 2
	(c) Binary Fat Tree
	(d) BFT Bandwidth
	(e) Vector Flip


	2  Multiple Choice
	2.1  Berkeley Landscape
	2.2  HPEC
	2.3  System Architecture
	2.4  System Architecture
	2.5  Computing Devices
	2.6  ASIC and FPGA
	2.7  ASIC and FPGA
	2.8  ADC
	2.9  Interconnection Fabrics
	2.10  Design Patterns
	2.11  True/False

	3  Long Answers
	3.1  Preliminary Analysis
	(a) Communications Bottleneck
	(b) Golden Measure

	3.2  FPGA Design
	(a) Average Memory Performance
	(b) Total Memory Performance
	(c) Maximum Pipelines

	3.3  Overall Performance
	(a) Data Transfer Overhead
	(b) Processing Time
	(c) Processing Time
	(d) Speed-up



