
Solutions for EEE4084F Exam June 2013

Section 1: Short answers

Q1.1.

(a) Hardware solution / Highly specialized hardware: such as using ASIC solutions. Gives

maximum speed but long fabrication times and high expense, especially if ASICs need to

be refabricated to fix mistakes.

Software solution: more flexible, possibly quicker to develop (esp. if the application is a

complex one), provides options of remedying bugs by changing the software instead of

refabricating the hardware. Advantage of software upgrades being able to keep the

physical product operational and useful for longer. Drawback is in parallelizability – if

only one CPU this may significantly limit the speed and scope of developing parallel

solutions using the platform.

 Reconfigurable solution: offers advantages both of speed from custom hardware,

flexibility of reconfigurability (and possibility of further prolonging the lifetime of the

system), and use of software for part of the solution being software based and also

provision of upgrades and bugfixing without refabing. But disadvantage is the lengthy

learning curve and variety of tools needed. [6]

(b) Answer: a reconfigurable computing platform is a computer system that can change

part of its hardware according to the computation it is to performed. Microprocessor

reconfiguration happens more at the macro scale, connecting processing nodes,

whereas FPGA-based reconfigurable is more at the micro scale of gates and constructing

combinational logic circuits. [4]

Q1.2.

This question is largely marked based on the student’s description and meaningful argument.

Suitable example(s) of what we many expect of cloud computing in the years to come will count

for a few marks. I would expect disadvantages to include issues such as reliance on network

connectivity, issues related to risk and security (such as trusting someone else to keep your

work secure). Other disadvantages may be limits on the software available, such as not being

able to install your own applications as is so easy to do when you have your own computer

running something like Windows. Advantages of cloud computing are listed in the slides,

including things that were highlighted in the video clip about cloud computing such as needing

a smaller in-house IT maintenance team and less need for frequent updates and upgrades of

individuals’ office computers – which could save both costs and the environment.

Q1.3.

(a) 1950

(b)

Clutter mitigation (M) Back-end

Pulse compression (P) Front-end

Sampling ADCs (S) Front-end

Convolvers or FIR filtering (C) Front-end

Database processing (D) Back-end

(c)

A measure for complexity is measuring the lines of code that is developed for a HPEC system;

the usual unit is SLOC (source lines of code). Other measures of complexity are the number of

software modules. The size of a FPGA bit image. The number of interconnects between

hardware modules, or between software modules. [4]

Measures of performance include Dhrystone, which describes how fast a processor can loops

though a specific set of signal processing operations; the unit of measure is the DMIPS

(Dhrystone MIPS). Whetstone is another performance measure like Dhrystone. This question has

been left fairly open because the student should be able to think of many ways to measure

performance and complexity as these issues were discussed in detail in the lectures and seminars.

Q1.4.

(a) Answer: Temporal computation is sequential, doing one thing at a time. Spatial

computation is expressed in as a space, dependencies and linkages between parts of the

computation, which is not related to a time-based sequence of steps. Spatial

computation algorithms are well suited for implementation as on parallel processor or

as hardware because multiple tasks could overlap in time.

(b) Answer: (only one of the differences listed below is needed):

 A CPLD contains considerably less programmable logic elements (Les) in comparison

to an FPGA. CPLDs contain a few tens of 1000s LEs; whereas FGPAs typically

comprise millions of LEs.

 CPLDs are cheaper than FPGAs, and in terms of configuration arch there is not as

much need for so many LEs as per used in application-specific hardware the FPGAs

are programmed with (i.e. no need to use an expensive FPGA for config arch where a

cheaper CPLD would do).

 CPLDs are generally used as configuration glue logic instead of FPGAs because the

configuration architecture is generally much simpler, taking considerably less LEs than does the

application-specific hardware implemented in the FPGA(s) (which the configuration

architecture programs). Accordingly, to save cost and complexity of the RC platform, CPLDs are

used for the configuration architecture.

(c) Answer: ABI stands for Application Binary Interface, and is a means by which two

applications (or software programs) connect with one another – usually ABI refers to a

connection between an application program and an operating system running on a

computer platform. ABI are generally formulated according to a specification, rather

than purely hardware constraints, for specified methods of passing information from

one program to another. Thus a platform may support operating system A which has an

ABI that explains that parameters are passed via the stack; and the same platform may

be supported by operating system B that passes parameters via a particular CPU

register.

Section 2: Multiple choice answers

Q2.1 (d)

Q2.2 (b)

Q2.3 (c)

Q2.4 (b)

Q2.5 (c)

Q2.6

(i) False

(ii) True

(iii) False

(iv) False

Section 3: Long answers

3.1 Solution for up_down_counter [14 marks]

module up_down_counter (

 count , // 8-bit output for the counter module

 up_down , // up_down – 1 for up, 0 for down

 clk , // clock input

 reset // reset input (keeps count set to 0)

);

//----------Output Ports--------------

reg output [7:0] count;

//------------Input Ports--------------

input up_down, clk, reset;

//-------------Code Starts Here-------

always @(posedge clk)

if (reset) begin // active high reset

 count <= 8'b0 ;

end else if (up_down) begin

 count <= count + 1;

end else begin

 count <= count - 1;

end

endmodule

3.2 Solutions [21 marks]

(a)

// MiniMicro code to calculate and output X:

IN 0xF0

SWP B

IN 0xF1

OR B

SWP G // G = inB OR inC

// added code as required for the answer:

IN 0xF2

SWP D

IN 0xF3

AND D

CPY A,H // H = inD AND inE

AND G // A = H AND G

OUT 0xF4 // output result to X

// the values of B,C,D,E are already in registers

Comments for

interface

Comments for reset

Other comments for interface

(i.e. 3 marks for comments)

// Calculating Y:

CPY B,A

 AND C

AND H

 CPY A,H // H = A and C and D and E

CPY D,A

OR E

OR H // H = (A and C and D and E) OR (D OR E)

NOT

OUT 0xF5 // output result to Y

[7 marks]

(b)

There are 21 instructions above. Each instruction takes 1/100,000,000 s to run = 10ns. A total of 21

instructions = 210ns.

(c) Routing the non-optimized expression :

B+C

D•E

(B+C)•(D•E)

B•C

D+E

B•C•
D•E

B•C•
D•E+
D+E

Clearly the expressions for Y can be optimized

 Y = NOR(AND(B,C,D,E), OR(D,E))

 Y = NOT(BCDE+D+E)

 Y = NOT (BC+D+E)

Whereas X can stay as is:

 X = DE(B+C)

The optimized diagram is shown below:

B+C

B•C

B•C•
D•E

Y = NOT (BC+D+E)

D•E

(D•E)
•(B+C)

D+E

B•C+
D+E

(d) Propagation delay:

Non-optimized:

Longest path is NOT -> OR -> AND -> AND

Gates # Gates in path Delay/Gate Delay

NOT 1 15ns 15ns

OR 1 20ns 20ns

AND 2 22ns 44

 79ns

The propagation delay for the non-optimized version is 79ns

For the optimized version, there is one less AND in the path, so it is just 57ns

Speedup of hardware over software:

210ns / 79ns = 2.66 for non-optimal solution, or

3.64 for optimal solution.

End of Solutions

