
Digital Systems

EEE4084F

FINAL EXAM

3 June 2016

3 hours

REGULATIONS

This is a closed-book exam. Scan through the questions quickly before starting, so that you can
plan your strategy for answering the questions. If you are caught cheating, you will be referred
to University Court for expulsion procedures. Answer on the answer sheets provided. Make sure
that you put your student name and student number, the course code EEE4084F and a title
Final Exam on your answer sheet(s).

DO NOT TURN OVER UNTIL YOU ARE TOLD TO

Exam Structure
Marked out of 120 marks / 180 minutes. Time per mark = 1 min 30 sec

Section 1

Short Answers
(4 questions)
[48 marks]

pg. 2

Section 2

Multiple Choice
(4×5 mark questions +
5×2 mark true/false q’s)

[30 marks]
pg 5

Section 3

Long Answers
(2 questions)
[42 marks]

pg 8

Appendices

A: Formulae
B: MPI Reference
C: MPI Starting Point
D: Verilog Reference

pg 10

RULES
• You must write your name and student number on each answer book.
• Write the question numbers attempted on the cover of each book.
• Start each section on a new page.
• Make sure that you cross out material you do not want marked. Your first attempt at any

question will be marked if two answers are found.
• Use a part of your script to plan the facts for your written replies to questions, so that you

produce carefully constructed responses.
• Answer all questions, and note that the time for each question relates to the marks allocated.

EEE4084F Exam 2015 Page 1 of 14

Section 1: Short Answers [48 marks]

Question 1.1 [12 marks]

The following questions concern computation approaches.

1.1 (a) Briefly explain the difference between the concepts of temporal and spatial
computation? You can use a diagram to elaborate if you want. [4]

1.1 (b) A particular platform can be supported by multiple ABIs. For example, the IBM Cell
processor is supported by both the commercial IBM SPE ABI and the open-source
Linux Cell ABI; yet the two ABIs are not identical. Explain what the acronym ABI
stands for [1 mark] and what an ABI provides. In particular, how is an ABI is different
from an API [3 marks]? [4]

1.1 (c) The processing done on many reconfigurable computing platforms are centred
around high-performance FPGAs. Provide a brief argument motivating why a CPLD
is sometimes included as a means for configuration and additional I/O routing, with
the CPLD sometimes replaced or supplemented by a micro-controller to provide
further facilities. [4 marks] [4]

Question 1.2 [12 marks]

This question concerns parallel and high performance computing.

1.2 (a) In an important business meeting with clients and your senior engineering
colleagues, you bravely suggest, despite your inner voice berating you for being
a show-off in your new job, that a parallel language should be considered as a way
for quickly building, or at least piloting, a parallel computing solution. A colleague
responds to you saying: “No way, that is too risky! Parallel computing languages
don’t really exist and automatic parallelisation is still useless”. Present an argument
to stand by your statement and illustrate examples confirming that parallel languages
indeed exists – also (to be more of a smart-ass) clarify the current situation of
automatic parallelisation techniques. [6]

1.2 (b) When porting a legacy sequential program into a parallel version, why is it that much
of the code tends to remain sequential, with only a small part of the program actually
made into a parallel form, and this part typically being meticulously hand-crafted
instead of largely automatically generated (e.g. by using pragmas understood by
the compiler)? [4]

1.2 (c) Nowadays, server class machines tend to use SMP architectures. Briefly explain
what an SMP is and what the acronym SMP stands for. [2]

EEE4084F Exam 2015 Page 2 of 14

Question 1.3 [12 marks]

The question concerns parallel computing architectures and networking/interfacing
associated with their use for high performance embedded system processing.

1.3 (a) What does the Von Neumann bottleneck refer to? [3]

1.3 (b) What is meant by synchronous communications? Does the concept ‘blocking
communications’ refer to the same issue? [3]

1.3 (c) What does the acronym ENOB stand for in relation to ADCs? If two 12-bit ADCs
have the same speed, but the one has higher ENOB and the other lower ENOB,
which one would likely be the more accurate and also more expensive one to
purchase – provide a brief argument to support your answer. [6]

Question 1.4 [12 marks]

This question relates to distributed memory and Message Passing. Please see
Appendix B.

1.4 (a) What are some of the advantages of distributed memory over shared memory?
Name at least two benefits. [2]

1.4 (b) A starting point MPI program code is given in Appendix C together with a list of
MPI commands in Appendix B for sending messages. Please complete the program
given in order to satisfy the following requirements: [10]

i The master needs to ask the user (in the console) if it must be in mode A or B.
In mode A, it prints out computed x:y(x) pairs. In mode B, it prints each x value
paired with ‘+’, ‘0’ or ‘-’ to indicate if the y(x) values returned is positive, zero
or negative. The master must determine how many processes (world size) are
active. If world size is less than two, the program exits.

ii Each process will calculate the result y(x), where x is the node rank number and
sends the x value and y(x) result back to the master (node 0). The master does
not compute a value. The equation for y(x) is given below:

y(x) = x2 − 12x+ 20

EEE4084F Exam 2015 Page 3 of 14

iii The master must print the x:y(x) pairs sent to it from the other nodes in the
manner described above, depending if it is in mode A or B. (Hint: the x values
don’t need to be in order.)

Example: If the world size is 8 (i.e. 7 threads are spawned), these x values will
be used by threads for y(x):

x: 1,2,3,4,5,6,7

In mode A the following will be displayed (not necessarily in this sequence):

1:9 2:0 3:-7 4:-12 5:-15 6:-16 7:-15

In mode B the following characters will be displayed:

1:+ 2:0 3:- 4:- 5:- 6:- 7:-

Besides indicating local or global variables needed, you only need to write the
lines of text you would add at the point indicated as:

//// CODE BLOCK 1: ADD ADDITIONAL CODE GOES HERE ////

EEE4084F Exam 2015 Page 4 of 14

Section 2: Multiple Choice [30 marks]

Choose one option for each of the questions 2.1 to 2.4 in this section.

2.1 It is important to design OpenCL programs around the notion of workers and groups.
Which option below accurately describes a difference between workers and groups
in OpenCL? [5]

(a) In OpenCL, all the workers can run different program instructions, but they are
all restricted to accessing the same “work-group” of memory – i.e. the ‘group’
refers to the specific group of memory blocks accessible to the workers.

(b) In OpenCL, all the workers run the same code, but they have different IDs
(accessible by means of a special function for each worker); each group is an
array of workers, a subset of the total workers on the GPU chip.

(c) In OpenCL, workers run one at a time, and each one can access the same
or different group of memory blocks but cannot access memory outside that
group.

(d) In OpenCL, ‘workers’ refer to the processes that run in lock-step, and
‘group’ simply refers to the group of workers that are involved in the same
mutex-synchronisation operation.

(e) None of the above.

2.2 Consider the Verilog code for moduleX (see next page). Select the option that best
describes what this module does. [5]

(a) This module returns active 1 or active 0 respectively on whether the module
has been tasked to count up or to count down.

(b) This is an up/down counter with reset, it counts up on every positive clock
when active is high or counts down when active is low.

(c) This is an up counter with reset, it continuously counts up on every positive
clock when rst is low.

(d) This is a down counter, on reset high the initial count is set and held; when
reset is low it starts counting down with every clock until zero is reached at
which point it sets active high.

(e) This module initially sets active high, then counts up from 0 and when the
maximum value is reached it sets active to low.

EEE4084F Exam 2015 Page 5 of 14

// Code for Question 2.2

module moduleX (

output reg [7:0]out, // an output

output active, // another output

input clk, // clock input

input rst // reset input

);

// ------ Implementation -------

always @(posedge clk)

if (rst) begin

out <= 8'b0;

active <= 1'b0;

end else begin

out <= out + 1;

active <= 1'b1;

end

endmodule

2.3 An SMP computer would, according to Flynn’s taxonomy, be classified as which one
of these computer architecture types? [5]

(a) SISD

(b) SIMD

(c) MISD

(d) DIMS

(e) MIMD

2.4 What is meant by handshaking in a communications system? [5]

(a) This is a type of error detection scheme used in high-speed networks.

(b) This refers to initiating an asynchronous data transfer agreement between
machine and the user.

(c) This refers to how two devices initiate communication and ensure successful
exchange of desired information.

(d) This refers to the parts of a computer design where there are bidirectional
data connections.

(e) It merely refers to part of the boot sequence of an operating system whereby
the CPU greets and introduces itself to each peripheral in the computer.

EEE4084F Exam 2015 Page 6 of 14

2.5 Answer true or false to each question below (each answer is 2 marks). [10]

(a) DeepQA is a natural language processing system.

(b) A GPU is only able to process graphics data, in particular two dimensional
matrices, vectors and pixels.

(c) The real-world performance measure is a major telling factor in determining
whether or not it was worth the effort to develop a parallel solution.

(d) A GPU tends to support more threads than a CPU.

(e) Amdahl’s law states that processing speed always doubles when you double
the number of processors.

EEE4084F Exam 2015 Page 7 of 14

Section 3: Long Answers [42 marks]

You are tasked to implement a system with the following characteristics:

1. There are 7 input channels of fast analogue to digital (ADC) data, which are
handled separately at this point. This data comes from a data-acquisition card
that slots into the PCI bus of the computer. This data must be split into frames
of constant length (512 samples, in this case). There are some component of
house-keeping that must be performed to control the ADC hardware.

2. For each of the input channels, each frame must pass through an FFT.

3. The results from these FFTs are analysed by comparing the relative phases
(i.e. subtract the phases element-wise) and comparing the amplitudes (also
element-wise) with some constant threshold.

4. The results are displayed to the user by means of a GUI.

5. The GUI contains an interactive graph.

Question 3.1 [22 marks]

Speed is of utmost importance, but your hardware is limited to an 8-core Intel CPU
and a single nVidia GPU. For each of the questions below, explain your reasoning.

3.1 (a) How would you split the work across the hardware in order to obtain the optimal
performance? [10]

3.1 (b) For each of the processing stages, which synchronisation method would you use
(for example ‘barrier’, ‘mutex’, etc.)? [8]

3.1 (c) What programming model (for example ‘message-passing’, ‘shared memory’, etc.)
would you use for each of the processing stages? [4]

EEE4084F Exam 2015 Page 8 of 14

Question 3.2 [20 marks]

Say, for argument sake, that the initial prototype (on the hardware above) proves the
principle well enough that you are provided with a much larger budget (money, time
and man-power) in order to implement the next generation of the system. You want
to maximise profits for your company, so you’ll need to make some engineering
compromises (between performance, ease-of-maintenance and flexibility of the
hardware, for instance). In each of the following questions, provide an argument
for your design decisions.

3.2 (a) What hardware would you use? Would you consider an FPGA or ASIC, for instance,
or even a Xeon Phi? Or would you stick to the CPU / GPU above? Would you
make the system free-standing and feed results to a PC over the network, or keep
everything in the PC (as above). [10]

3.2 (b) Provide a rough overview of how you would implement the system on your choice of
hardware. A block diagram would help. [10]

END OF EXAMINATION

EEE4084F Exam 2015 Page 9 of 14

Appendix A: Formulae

Formulae for Crossbar Tree Networks

Uniform General

Processors dq
q∏

i=1

di

Bisection Width (links) duq−1

2

dq
2

q−1∏
i=1

ui

I/O Links uq

q∏
i=1

ui

Switches
dq − uq

d− u

q∑
k=1

Uq−k−1Dk,

Uj =

∏j
i=1 ui

uj

, Dj =

∏j
i=1 di
uj

Adapted from page 291 of Martinez, Bond and Vai 2008

EEE4084F Exam 2015 Page 10 of 14

Appendix B: MPI Reference Sheet

Summary of Message Passing Functions - Interface Quick Reference in C

#include <mpi.h>

// The MPI_Status struct is defined as follows

typedef struct MPI_Status {

int count; //

int cancelled;

int MPI_SOURCE; // the sender

int MPI_TAG; // tag that can be set to indicate message type ID

int MPI_ERROR; // non-zero if error

} MPI_Status;

// Note: For MPI_Comm you can just use MPI_COMM_WORLD.

// For datatype you can simply use the most generic option MPI_BYTE for elements of buf

// Blocking Point-to-Point message passing functions

// Send a message to one process

int MPI_Send (void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm);

// Receive a message from one process

int MPI_Recv (void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status);

// Count received data elements

int MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *count);

// Wait for message arrival.

int MPI_Probe (int source, int tag, MPI_Comm comm, MPI_Status *status);

// Non-blocking Point-to-Point message passing functions

// Begin to receive a message

int MPI_Irecv (void *buf, int count, MPI_Datatype, int source, int tag, MPI_Comm comm, MPI_Request *request);

// Complete a non-blocking operation

int MPI_Wait (MPI_Request *request, MPI_Status *status);

// Check or complete a non-blocking operation

int MPI_Test (MPI_Request *request, int *flag, MPI_Status *status);

// Check message arrival

int MPI_Iprobe (int source, int tag, MPI_Comm comm, int *flag, MPI_Status *status);

Based on full reference sheet available from

http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/mpi-quick-ref.pdf

EEE4084F Exam 2015 Page 11 of 14

http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2006/mpi-quick-ref.pdf

Appendix C: MPI Starting Point Code

/**

Hello MPI - a simple starting point for MPI programmes

***/

#include <mpi.h>

#include <stdio.h>

/***/

int main(int argc, char** argv) {

// Initialize MPI environment

MPI_Init(NULL, NULL);

// Determine number of processes started

int world_size;

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of this process

int world_rank;

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Get the name of this processor

char processor_name[MPI_MAX_PROCESSOR_NAME];

int name_len;

MPI_Get_processor_name(processor_name, &name_len);

//// CODE BLOCK: ADD ADDITIONAL CODE GOES HERE ////

// Finalize the MPI environment.

MPI_Finalize();

}

EEE4084F Exam 2015 Page 12 of 14

Appendix D: Verilog Reference

Comments
// One-liner

/* Multiple

lines */

Numeric Constants
// The 8-bit decimal number 106:

8'b_0110_1010 // Binary

8'o_152 // Octal

8'd_106 // Decimal

8'h_6A // Hexadecimal

"j" // ASCII

78'bZ // 78-bit high-impedance

Too short constants are padded with
zeros on the left. Too long constants are
truncated from the left.

Nets and Variables
wire [3:0]w; // Assign outside always blocks

reg [1:7]r; // Assign inside always blocks

reg [7:0]mem[31:0];

integer j; // Compile-time variable

genvar k; // Generate variable

Parameters
parameter N = 8;

localparam State = 2'd3;

Assignments
assign Output = A * B;

assign {C, D} = {D[5:2], C[1:9], E};

Operators
// These are in order of precedence...

// Select

A[N] A[N:M]

// Reduction

&A ~&A |A ~|A ^A ~^A

// Compliment

!A ~A

// Unary

+A -A

// Concatenate

{A, ..., B}

// Replicate

{N{A}}

// Arithmetic

A*B A/B A%B

A+B A-B

// Shift

A<<B A>>B

// Relational

A>B A<B A>=B A<=B

A==B A!=B

// Bit-wise

A&B

A^B A~^B

A|B

// Logical

A&&B

A||B

// Conditional

A ? B : C

Module
module MyModule

#(parameter N = 8) // Optional parameter

(input Reset, Clk,

output [N-1:0]Output);

// Module implementation

endmodule

Module Instantiation
// Override default parameter: setting N = 13

MyModule #(13) MyModule1(Reset, Clk, Result);

EEE4084F Exam 2015 Page 13 of 14

Case
always @(*) begin

case(Mux)

2'd0: A = 8'd9;

2'd1,

2'd3: A = 8'd103;

2'd2: A = 8'd2;

default:;

endcase

end

always @(*) begin

casex(Decoded)

4'b1xxx: Encoded = 2'd0;

4'b01xx: Encoded = 2'd1;

4'b001x: Encoded = 2'd2;

4'b0001: Encoded = 2'd3;

default: Encoded = 2'd0;

endcase

end

Synchronous
always @(posedge Clk) begin

if(Reset) B <= 0;

else B <= B + 1'b1;

end

Loop
always @(*) begin

Count = 0;

for(j = 0; j < 8; j = j+1)

Count = Count + Input[j];

end

Function
function [6:0]F;

input [3:0]A;

input [2:0]B;

begin

F = {A+1'b1, B+2'd2};

end

endfunction

Generate
genvar j;

wire [12:0]Output[19:0];

generate

for(j = 0; j < 20; j = j+1)

begin: Gen_Modules

MyModule #(13) MyModule_Instance(

Reset, Clk,

Output[j]

);

end

endgenerate

State Machine
reg [1:0]State;

localparam Start = 2'b00;

localparam Idle = 2'b01;

localparam Work = 2'b11;

localparam Done = 2'b10;

reg tReset;

always @(posedge Clk) begin

tReset <= Reset;

if(tReset) begin

State <= Start;

end else begin

case(State)

Start: begin

State <= Idle;

end

Idle: begin

State <= Work;

end

Work: begin

State <= Done;

end

Done: begin

State <= Idle;

end

default:;

endcase

end

end

EEE4084F Exam 2015 Page 14 of 14

	1 Short Answers
	1.1 Computation Approaches
	(a) temp vs spatial
	(b) ABIs
	(c) Motivation for CPLD

	1.2 High Performance Computing
	(a) Architecture
	(b) Porting
	(c) SMP

	1.3 Communication
	(a) Von Neumann
	(b) Synchronous Communication
	(c) ENOB

	1.4 MPIComms
	(a) Advantages
	(b) CodeCompletion

	2 Multiple Choice
	2.1 OpenCL
	2.2 Verilog
	2.3 Flynn's taxonomy
	2.4 Handshaking
	2.5 True / False

	3 Long Answers
	3.1 Prototype
	(a) Work Partitioning
	(b) Data Partitioning
	(c) Programming Model

	3.2 Alternatives
	(a) Hardware
	(b) System

	A Formulae
	B MPI Reference Sheet
	C MPI Starting Point Code
	D Verilog Reference

