

Digital Systems
EEE4084F

FINAL EXAM

6 June 2011

3 hours

Examination Prepared by:
Simon Winberg

Last Modified: 31-May-2011

REGULATIONS

This is a closed-book exam. Scan through the questions quickly before starting, so that you can plan your
strategy for answering the questions. If you are caught cheating, you will be referred to University Court for
expulsion procedures. Answer on the answer sheets provided. Make sure that you put your student name and
student number, the course code EEE4084F and a title Final Exam on your answer sheet(s). Answer each
section on a separate page.

DO NOT TURN OVER UNTIL YOU ARE TOLD TO

Exam Structure
Marked out of 100 marks. Time per mark = 1min 48sec

EEE4084F Exam 2011 Page 1 of 12

Section 2

Multiple choice
(5x 4-mark questions)

[20 marks]

Pg 4pg 4

Section 2

Multiple choice
(5x 4-mark questions)

[20 marks]

pg 2

Section 1

Short Answers
(3x 12-mark questions)

[36 marks]

Pg 9 Pg 6

Section 3
Long Answers
(3x questions)

Q3.1 [16 marks]
Q3.2 [17 marks]
 Q3.3 [11 marks]

[44 marks]
Pg 9

Appendices

A: Pthread code
B: Formulae
C: Handle C

RULES

• You must write your name and student number on each answer book.
• Write the question numbers attempted on the cover of each book.
• Make sure that you cross out material you do not want marked. Your first attempt at any question will
 be marked if two answers are found.
• Use a part of your script to plan the facts for your written replies to questions, so that you produce a
 carefully constructed responses.
• Answer all questions, and note that the time for each question relates to the marks allocated.

Section 1 : Short Answers [36 marks]
Question 1.1

In the lectures, the design and implementation of parallel programs generally involved seven major steps. These steps
are listed below, which we can informally refer to as the ‘seven steps to parallelization model’:

1. Understand the problem
2. Partitioning
3. Decomposition & Granularity
4. Communications
5. Identify data dependencies
6. Synchronization
7. Load balancing
8. Performance analysis and tuning

The spiral model provides a different perspective on the procedures, showing a more cyclic view. Yet both
models are generally accurate, especially for large system development.

Answer the following:

(a) Briefly describe the spiral model, indicating how it models the progression of development and
mention (at least three) major activities that are commonly iterated in this model. Provide a rough
figure to assist your explanation.[5 marks]

(b) Explain how the seven steps to parallelization model can be positioned within the spiral model.
Indicate for example where each of the seven steps would occur in the spiral model, and which of
these steps might be revisited again and again as the project progresses. [6 marks]

(c) Name one commonly occurring problem in the design of large parallel computing systems. [1 mark]

[12 marks]
Question 1.2

The concept of bisection bandwidth is useful in gauging the performance of networked systems.

(a) Briefly explain the concept of bisectional bandwidth and why it is useful in judging the network
performance design of a high performance computer system. [3 marks]

(b) The three-level crossbar tree network below is a non-uniform configuration. Calculate the bisection
bandwidth for the network, assuming each link is 1Gbps. [3 marks]. (Hint: Appendix B has formulas.)

(c) What change would be needed to make it into a three-level fat tree network? Provide a sketch if you
find it difficult to explain only in text. [3 marks]

(d) If each link in the network is 1Gbps, explain the maximum speed P1 can send data to P8, and P5 can
simultaneously send data to P3. Would additional downlinks in level 2 speed things up? [3 marks]

EEE4084F Exam 2011 Page 2 of 12

Level 3

Level 2

Level 1

P1 P2 P3 P4 P5 P6 P7 P8

[12 marks]
Figure 1 crossbar tree for Q2

Question 1.3

This question relates to FPGAs and RC platforms.
(a) Define what is understood to be a reconfigurable computer, including an explanation of how to discriminate

between a reconfigurable computer and a non-reconfigurable / regular networked computer. [2 marks]

(b) What is a LUT in relation to FPGAs? Why do FPGAs usually have lots of LUTs instead of the more
fundamental logic gates (e.g., AND, OR and NAND gates)? [2 marks]

(c) The Xilinx Virtex-6 comprises an architecture composed of two types of configuration logic blocks (CLBs),
namely SLICEM and SLICEL blocks. Firstly, what exactly is a CLB – surely it is just the same as a LUT? [2]
Discuss the differences between SLICEL and SLICEM blocks and how different slides can be beneficial in
terms of FPGA manufacture and programming [2]. [4 marks]

(d) Consider the design below. The system comprises two VHDL entities, imported into a schematic editor (such
as the Altera Quartus II block diagram editor). But when the design is synthesized and executed on hardware,
unexpected results occur (see the graphs below) even though data always comes into the system at a much
slower rate than the speed at which the entries operate. Indeed, much of the output from the hardware looks
correct (see right hand graph below) yet doesn’t match the golden measure. The correlation coefficient
between the datasets is 0.834, verifying that something is wrong. Comment on what may be causing this
problem and how it might be solved without having to change the VHDL code of either entity. [4 marks]

[12 marks]

EEE4084F Exam 2011 Page 3 of 12

Section 2: Multiple Choice [20 marks]

Q2.1 Select the most accurate description of a ‘configuration architecture’ for a reconfigurable computer:

(a) A software application used to program a FPGA or PLD on the reconfigurable computer.
(b) ‘Configuration architecture’ simply refers to the general architecture of a reconfigurable computer.
(c) The circuit components of a reconfigurable computer for communication between a PC or back-end

system and the FPGA(s).
(d) Circuitry on a reconfigurable computer that stores configuration data and loads it into the relevant

locations or devices (e.g. FPGAs) on the platform.
(e) The way in which a cluster of computers are networked.

[4 marks]

Q2.2 Which visualization below represents an interleaved partitioning considering that it is an image (e.g. a BMP
file) that is being separated between two processors?

[4 marks]

Q2.3 In terms of processor architectures, what does the acronym SMP stand for?

(a) Synthetic Mico-Processor

(b) Symmetric Multi-Processor

(c) Systematic Microprocessor Production

(d) Silicon-based Multiple Processor

(e) Standard Microprocessor Platform

 [4 marks]

Q2.4 How would you classify a typical nVidia CUDA-enabled GPU architecture on Flynn's taxonomy?
Choose the most appropriate classification below.

 (a) SISD (b) SIMD (c) MISD (d) MIMD (e) None of Flynn's classifications fit.
[4 marks]

EEE4084F Exam 2011 Page 4 of 12

EEE4084F Exam 2011 Page 5 of 12

Q2.5 Answer true of false to each question below (each answer is 1 mark).

 (i) The commonly used HPEC acronym “SWAP” means Stop Wait And Process.
 (ii) VHDL can be used to program FPGAs, but it can’t be used to program CPLDs.
 (iii) Front-end processors tend to be the highest-speed element of a HPEC system.
 (iv) A correlation between two identical data sets returns the value 1.

[4 marks]

Section 3: Long Answers [44 marks]
Question 3.1 [16 marks]

EEE4084F Exam 2011 Page 6 of 12

w:

Consider the template code for a pthread application shown in Appendix A. Your task for this question is to provide a
multi-threaded parallel solution for the vector
scalar product. The formula is shown on the
right. Assume vectors a and b are defined as
global arrays of doubles and x, the result, is
also a double, i.e. using the code belo

here: n = LENGTH of vector

 double a[LENGTH]; // input 1 -- assume all element in arrays are assigned

 double b[LENGTH]; // input 2 -- you can also assume LENGTH is a power of 2, say 16384

 double x; // result

(a) Provide a quick golden measure in C or C++ for this problem, include printing of the result. Use the LENGTH
constant for the vector lengths. The n parameter in the code (i.e., for num. threads) is obviously irrelevant for
this part of the question. [4 marks].

(b) Rework the code of function threadfn in Appendix A to provide a parallel pthread implementation for this
problem. Account for 1 to n partitions, i.e. one partition for each thread – so if four threads are specified, all
four thread needs to do some of the work. You don’t need to rewrite the whole program; use the line numbers
to indicate what you would change or where you’d add code. [12 marks]
(Hint: remember to combine the results of the threads, and keep in mind that writing to the same global
variable can cause synchronization problems.)

Question 3.2 [17 marks]

This question concerns writing a hardware module using Handle-C style in order for the code to be converted directly
to VHDL and then used in a digital accelerator to speed-up processing (Appendix C provides Handle-C syntax). The
module you are to develop is called the ‘Period Length Calculator’ (or PLC). The PLC takes three inputs, namely: an
eight-bit data input x that represents a sampled value; newx to indicate (via a positive edge) that the x input has
changed, and reset to clear the device. The module has four outputs: ready indicates the module is ready to receive
more data (i.e. ready for another x value), valid is set high when the other output lines are valid (i.e., when it has
finished computing a result), the period output gives the pulse length of the sampled input which indicates the most
recent number of samples calculated between the last two peaks found, and peak indicates the most recent peak value
found (i.e. the most recent local maximum of x). A prototype for the Handle C function is provided below:

 // C prototype for pulse length calculator (PLC)
 void PLC (_in byte 8 x, // input data byte
 _in bit newx, // positive edge when new data available
 _in bit reset, // set high to clear the
 _out bit ready, // set high when device is ready for more input
 _out bit valid, // high when output is valid
 _out unsigned 16 period, // num samples from one peaks to the next
 _out unsigned 8 peak, // the most recent peak value
);

Implementation notes:

The peak value needs to be calculated based on turning points of the sampled data that is coming in as x values. Take a
look at the graph on the next page. As you may notice, the amplitude of the sampled signal is diminishing yet the PLC
is able to account for this by sensing when the gradient on x values changes. The figure indicates a period of 21 was
calculated, and that after the final x was sent, the peak output remained at the value 160 (i.e., the value of the last peak
in the data). Assume a reset will always be given before x values start being sent. The x input will be valid once the
newx input line goes from a 0 to and 1, and it will remain at 1 for a few nanoseconds before returning to 0 in good
time before the next x value is sent.

Period = 25-5+1 = 21

peak = 160 at end of
 the run

Figure 2: Plot of sampled x values fed into the PLAC module.

What to do for this question (Question 3.2)…

Provide the HandleC implementation for the PLAC function. Duplicate the function prototype in your answerbook,
and if needed you may add additional parameters (and comments explaining why if you do so). Some of the marks are
allocated to use of comments in your answer. Hint: Make sure you use the right datasizes for datatypes.

[17 marks]

Question 3.3 [11 marks]

Consider a hypothetical FPGA with programmable blocks as shown on the next page. The notation used in the
diagram to label gates and describe how multiplexors are configured is explained below.

Gate 9 output is:
(A+B)· (A+B)

1 = Multiplexer top
output linked to output of
gate 1 output

Gate number

5 = Multiplexer bottom
output linked to output of
gate 5 output

Gate number

A = Multiplexer configured to
select input A (the 4th input)

inputs

Essentially, the label in the multiplexor indicates which input is selected to be outputted by the multiplexor.

In the example above, the first multiplexor connects input A to the first OR gate, and similarly first second multiplexor
connects input B to the second multiplexor. The multiplexor on the far right is configured to connect the or gate (gate
1) to the top output of the multiplexor that connects to the top input of gate 9, and similarly the bottom input of gate 9
connects to the inverter output. You can thus work out that the output of gate 9 will end up being the expression:

(A or B) and not (A or B)

In this trivial case the output value is obviously always going to be 0 (according to the axium X and not X = 0).

Now take a look at the configured FPGA on the next page… and answer the questions that follow.

EEE4084F Exam 2011 Page 7 of 12

Output of gate 1
 = A or B Output of gate 9 = (A or B) and not (A or C)

Output of gate 6
 = not(A or C)

Notes re multiplexors: the inputs of all multiplexors in the second column respectively connect to outputs of gates 1-8.
Similarly, each multiplexor in the third column has eight inputs which respectively link to the outputs of gates 9-16.

What to do for Question 3.3…

(a) Provide a logical expression (or VHDL statement) that specifies the outputs of X and Y in terms of the inputs
A, B, C and D. This is fairly straightforward: I’ve shown how you can determine the intermediate results of
independent gates (i.e., gates 1, 6 and 9) according to how the multiplexors are configured. [6 marks] 1

(b) If each multiplexor has a propagation delay of 8ns, and the AND, OR and NOT gates all have a 10ns
propagation delay, what can you say about the overall propagation delay from a change in the input signals to
a subsequent change of the X or Y output lines? [5 marks]
(hint: you can focus your insights on the minimum and maximum propagation delays.)

END OF EXAMINATION

EEE4084F Exam 2011 Page 8 of 12

1 Bonus marks (up to 4 marks) may be awarded to you depending on the quality of your answer, and if you are able to simplify the
Boolean logic formulae describing the X and Y outputs. No need to hand in this page as I don’t need to see your working.

EEE4084F Exam 2011 Page 9 of 12

Appendix A: Pthread C Code Template
01 /* pthreads_template.cpp ---- A simple program using pthreads.
02 * Compiles under Linux / Cygwin using gcc */
03 #include <iostream>
04 #include <stdlib.h>
05 #include <sys/types.h>
06 #include <pthread.h>
07 #include <string>
08 using namespace std;
09 #define MAX_THREADS 1000 // For safety, define max num threads allowed
10
11 int n; // global holding num threads specified (see main function)
12
13 typedef struct { // Define struct for passing parameters to the threadfn thread
14 int id;
15 string text;
16 } Params_threadfn;
17
18 // Define a thread function:
19 void *threadfn (void *arg) {
20 Params_threadfn& p= *((Params_threadfn *)arg);
21 cout << "Node " << p.id << " activated and says " << p.text << endl;
22 return 0; // The thread stops at this point
23 }
24
25 // Entry point to the application:
26 int main(int argc, char* argv[]) {
27 int i; // a counter
28 pthread_t *threads; // array of threads
29 pthread_attr_t pthread_custom_attr; // same attribute used for all threads
30 Params_threadfn *p; // the parameters to pass to the threads
31 // Check that command line parameter was given
32 if (argc < 2) {
33 cout << "Command syntax: \n";
34 cout << " " << argv[0] << " where n = number threads to create\n";
35 return -1;
36 }
37 // read the first command line param and convert into an integer
38 n=atoi(argv[1]);
39 if ((n < 1) || (n > MAX_THREADS)) {
40 cout << "Please specify num threads between 1 and " << MAX_THREADS << endl;
41 return -1;
42 }
43
44 // create the threads and parameters
45 threads=new pthread_t[n];
46 pthread_attr_init(&pthread_custom_attr);
47 p = new Params_threadfn[n];
48
49 //start the threads
50 for (i=0; i<n; i++) {
51 char s[16];
52 p[i].id=i;
53 sprintf(s,"hello%d",i);
54 p[i].text = (string)s;
55 pthread_create(&threads[i], &pthread_custom_attr, threadfn, (void *)&p[i]);
56 }
57 // Synchronize completion of all thread.
58 for (i=0; i<n; i++) pthread_join(threads[i],NULL);
59 // free the allocated memory
60 delete p;
61 delete threads;
62 return 0; // exit successfully
63 }

Appendix B:

Formulae

Table from pg 291 of Martinez, Bond and Vai 2008

EEE4084F Exam 2011 Page 10 of 12

EEE4084F Exam 2011 Page 11 of 12

Appendix C:

C to VHDL translation tool language specification
(loosely based on the Handle-C syntax)

The C to VHDL translation tool supports a large portion of the ANSI C syntax standard. The supported
datatypes and modifiers are listed in the table below. The bit, byte, and short datatypes are commonly used,
together with the in and out modifiers. As in ANSI C, the unsigned, short and long keywords can be used as
datatypes if used alone (e.g. int ix) or as a modifier if used with another dataype (e.g. unsigned int ux).
Floating point values (e.g. float, double) are not supported.

Support for sized arrays but not for pointers or unsized arrays
Please note pointers are not supported as either parameters or as variable declarations. Arrays are however supported.
Examples: SUPPORTED NOT SUPPORTED
 void test (int p [10]); void test (int* p); OR void test (int p[]);
 int array1[10]; int* array1; OR int array1[];

Datatype sizing
Int and unsigned (or unsigned int) datatypes can have their their size (in number of bits) modified. All other datatypes (bit,
bool, nibble, byte, char, unsigned char, llint, ulint, etc) cannot have their size modified.

The syntax for arbitrary sized declaration is as follows:

 type size name;

 Type: the datatype, namely: int, unsigned or unsigned int
 Size: a positive integer (between 1 and 128)
 Name: name of the variable

Examples: SUPPORTED NOT SUPPORTED
 int 8 signedbyte; char 8 signedbyte;
 int 8 signedbyte; char 8 signedbyte;
 int 6 intarray[10]; int* 6 intarray;
 unsigned 11 xu; unsigned char 11 xu;
 int 7 xu; byte 7 xu;

Arbitrary sized integers/unsigned variables can be used as are normal integers / unsigned values. Only the least significant
bits are processed/copied; for example (int 2 x = 4; // x is set to 0 as the two least significant bits of integer 4 are both 0.)
Example:
 unsigned int 7 x = 20;
 int y = 10;
 x += 1; // x changed to 21
 x = x + y; // x changed to 31
 y = x; // y set to 31

See the next page for list of datatypes.

EEE4084F Exam 2011 Page 12 of 12

Datatypes
C -> VHDL Translator
datatype/modifier

Default
size

ANSI-C Standard
equivalent keyword

Comments

_in N/A Indicate input parameter (use only with function
parameters)

_out N/A Indicate output parameter (use only with function
parameters)

enum 1 to 4 bits enum Translator limited enums limited to sets of 16 items

bram N/A Use as datatype or as modifier (e.g. bram int x = 10;)
Forces data into block RAM. “bram” without type =>
“bram int”

sram N/A Use as datatype or as modifier (e.g. sram int x = 10;)
Forces data into SRAM if available; otherwise into
BRAM. “sram” without type equates to “sram int”

dram N/A Use as datatype or as modifier (e.g. dram int x = 10;)
Forces data into DRAM or external ram if available;
else into BRAM. “dram” without type equates to “dram
int”

ext N/A Use as datatype or as modifier (e.g. ext int x = 10;)
Forces data into external memory if available;
otherwise into BRAM. “ext” without type equates to
“ext int”

rom N/A Use as datatype or as modifier (e.g. rom int x = 10;)
Forces data into read only memory if available;
otherwise into BRAM. “rom” without type equates to
“rom int”. Do not confuse keyword “rom” with ASNI
keyword “const” -- const a variable cannot be changed
(e.g., “const bram y = 5;” means y is located in BRAM
but cannot be changed by the C program)

int 32-bit int Signed 32-bit value

short 16-bit short Signed 16-bit value

unsigned 32-bit unsigned Unsigned 32-bit value

unsigned short 16-bit unsigned short Unsigned 16-bit value

char 8-bit char Signed 8-bit value (-128 to +127)

unsigned char 8-bit unsigned char Unsigned 8-bit value (0 to 255)

byte 8-bit unsigned char Unsigned 8-bit value (0 to 255)

nibble 4-bit N/A Unsigned 4-bit value (0 to 15)

bit 1-bits N/A Single bit (0 to 1)

bool 1-bit N/A Single bit (0 to 1) equivalent to bit

long 32-bit long Signed 32-bit value

unsigned long 32-bit unsigned long Unsigned 32-bit value

long long 64-bit long long Signed 64-bit value

unsigned long long 64-bit unsigned long long Unsigned 64-bit value

llint 64-bit long long Signed 64-bit value

ulint 64-bit Unsigned long long Unsigned 64-bit value

	Section 1 : Short Answers [36 marks]
	Section 2: Multiple Choice [20 marks]
	Section 3: Long Answers [44 marks]

