

Embedded Systems Course

Laboratory Practical

MPLAB SIM &

TEAM:

DURATION:

DOC REF:

1. Introduction ..

1.1. Rules ..

1.2. Code Handin ..

2. Activities ..

2.1. Connecting up and creating a project

2.2. Simple simulated program

2.3. Flashing LEDs program

2.4. Final task – making a change to Hello1

A. Appendix ..

1. Introduction
This practical involves writing a simple program for the PIC microcontroller and getting it to run on the

PICkit3 evaluation kit.

Make sure that your Pitkit3 has both the programmer device, its red USB cable, and the PICkit board.

Please read the following points first before continuing

Important: connect the PICkit3 development board to the PICkit3 programmer first, BEFORE connecting the

USB cable to your computer’s USB port. You can happily

development board while the programmer is connected to the computer (but this will obviously cause the

board to shut down unless it has a supplementary power source).

Make sure that the resources for the PICkit3 ha

Programs � Microchip � MPLAB IDE v8.36

IMPORTANT: HAND IN

Embedded Systems Course

Laboratory Practical 2:

MPLAB SIM & PICkit3

TEAM: Two

DURATION: 3 hours

DOC REF: PRAC2

..

..

..

..

2.1. Connecting up and creating a project ..

..

..

making a change to Hello1 ..

..

involves writing a simple program for the PIC microcontroller and getting it to run on the

Pitkit3 has both the programmer device, its red USB cable, and the PICkit board.

before continuing:

connect the PICkit3 development board to the PICkit3 programmer first, BEFORE connecting the

to your computer’s USB port. You can happily remove the PIKkit3 programmer from the

development board while the programmer is connected to the computer (but this will obviously cause the

board to shut down unless it has a supplementary power source).

PICkit3 have been installed on your workstation. Go to start

MPLAB IDE v8.36.

IMPORTANT: HAND IN code file for this PRAC – see page 7

.. 1

.. 2

... 2

.. 2

.. 2

.. 4

.. 6

.................................... 7

.. 8

involves writing a simple program for the PIC microcontroller and getting it to run on the

Pitkit3 has both the programmer device, its red USB cable, and the PICkit board.

connect the PICkit3 development board to the PICkit3 programmer first, BEFORE connecting the

the PIKkit3 programmer from the

development board while the programmer is connected to the computer (but this will obviously cause the

been installed on your workstation. Go to start � All

EEE3074W: Prac2 S. Winberg (DocRef: Prac2.docx) Page 2 of 8

Some useful resources:
• Information about the PICKit3 from microchip:

 http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en538340

• The academically licensed lite version of the MPLAB C compiler is on forge.ee in the \EEE3074W\Software directory see

MPLAB-C18-Lite-v3_36.zip. You could try using the CCS compiler (which comes with the DVD) as an alternative.

1.1. Rules

The rules for this practical are as follows:

• Arrive at the lab at any time during the assigned practical times. If you have booked a seat, you have

preference to getting a CSB337 and workstation. You are encouraged to arrive when the session starts so

that you will have enough time to complete the practical assignment. You can also work on this prac in

your own time outside of the assigned lab sessions, however help during such times is not guaranteed.

• No PASS sheet is required for this prac; you just need to submit your code using the Vula assignment for

this practical.

• You may be asked from time to time to demonstrate or explain aspects of what you have done, to ensure

that both partners in groups of two are involved, and working on, the assignment. If you work in the

assigned lab slot, this may be done during that slot; otherwise you may be called on at a later stage to

demonstrate aspects of the prac if the lecturer requires it.

• You may work in teams of two, or individually.

• Use class notes and textbooks if you want to. You can also make use of the web; but if you do so, you are

expected to cite references for material used (except for material provided on connect / the textbook).

Such citations should be in the code, report, or PASS (whichever is applicable).

1.2. Code Handin

Either zip or tar and gzip your Prac2 directory. If you worked on only one C file, you can submit just that file

(make sure it includes your name and, if applicable, your lab partners name).

2. Activities

This section explains what you need to do in order to complete this prac.

2.1. Connecting up and creating a project

Start by connecting up the PICKit3 to the USB port using the red USB cable.

Your computer may indicate it found new hardware and is installing drivers for the PICKit3.

It should show that the PICKit3 device was installed.

If there’s a problem adding the device, you may need to call the tutor over to give you administrator access to

add the driver.

Let’s proceed with creating a new project and a simple program…

1. Start by creating a project directory

somewhere on your drive. You

could call it something like

M:\EEE3074W\Prac2.

2. Loading the MPLab IDE (see

Figure 1 on right).

3. From the “Project…” menu, select

 “Project Wizard”. (See Figure 2)

4. Click Next to continue…

5. Select the microcontroller product code PIC18F45K20

(note that the default PIC18F420 will probably still

work, but it would limit some of the code generation

options). Click Next to continue.

6. Change the active toolset to use to Microchip C18

Toolsuite. See Figure 3 below. Click next to continue.

Figure 3: Change the active toolset to CCS C Computer.

Figure 1: Starting MPLab IDE

Figure 2: Starting Project Wizard

7. Specify a new project folder (i.e.,

select the folder that you created in

step 1). Click Next to proceed.

8. Don’t add any existing files to the project at this stage. Just press Next to skip adding files.

9. The final page of the wizard shows a summary of the settings. Press Finish to create the project and to

save the new workspace.

2.2. Simple simulated program

Now it’s time to create a barebones C program. Do this by creating a new file (i.e., File->New) and write the

obvious starting point (you could copy and paste the text below). Please put your names and student numbers

in the comment at the top.

/*

Prac2

This is a simple program for the PIC18.

Authors: <Your Names and

Student Numbers>

*/

#include <stdio.h>

int debug_stage = 0;

 // indicates how far this are

int x; // a global

void main (void)

{

 debug_stage = 1;

 printf("HELLO!\n\r");

 x = 0;

 debug_stage = 2;

 while (1) x = x + 1;

}

When you save the file, click the checkbox at the

bottom of the save prompt to add the new file to your

project. (If you forget to add the file to the project you

can use Project � Add Files to Project).

Wait! You’re not quite ready to build yet… you need to first set the configuration is correctly specified. Do the

check below for the micro we’re using as follows:

1. Select menu option Configure � Select Device. It should all be fine, but make sure that it looks similar to

Figure 5.

2. Select menu option Configure � Configuration Bits. Ensure that checkbox for Configuration Bits set in

code (i.e., it must be unchecked).

3. Disable the Watch Dog timer (at address 30003 bit value 1F). To do this, click the string “Watchdog

Figure 4: Specify project

Figure 5: Select Device dialog should look like this.

Timer”; click the string Enabled (you may need to use the scrollbar to scroll right to these options); this

causes a list of two options to pop up. Choose the Disabled option. You can ignore the timeout setting for

the watchdog.

4. Just close the configuration bits dialog and it will save

the changes.

5. Save the workspace.

6. Before trying to get the physical hardware to work, it’s a

good idea to try the simulator, which makes it much

easier to test and diagnose regular C problems (once it

comes to using peripherals properly, you don’t have much

option besides using the physical chip). Select the

simulator using Debugger � Select Tool � MPLAB

Sim as shown in Figure 6.

7. You need to change the debugger settings to get your

program to run. Select Debugger � Settings. Select

the tab UART1 IO, and set an input file and set output

to appear on a window. See Figure 7. Click OK to save

the changes.

8. Now compile the new code file you created. Do

this by right-clicking the main.c file as shown in

Figure 8. This should involve the compiler and the

output dialog should show eventually show a

success message as illustrated.

9. If the file compiled successfully, make the project.

Select Project � Make. Again, if it all works

successfully a BUILD SUCCESS message should

be visible.

10. Now you should be ready to

run the program. Press the blue

RUN button on the toolbar. As

you may expect, you’ll get

some simple text output as

shown in Figure 9.

11. Press PAUSE (the parallel blue

bars on the toolbar at the top of

the window) to pause the

program. This will cause the

editor window to shown a

green arrow indicating which

line the program stopped on.

12. Take a look at the x and debug_stage global variables in the program. You can do this using View �

Watch. In the Watch window, next to Add Symbol, type in x and then press the Add Symbol button. The

variable x will now be added, and its value shown (as a 16-bit hex value). Note that debug_stage can be

used instead of printf, because printf is ignored when running on the actual hardware (see next page).

13. End the debugging session by pressing the Reset button in the toolbar (it’s the second last button, next to

the red B).

14. Remove the entries in the watch window.

Figure 8: Compile the file.

Figure 7: Debugger settings for MPLAB Sim.

Figure 9: Running the program in the simulator.

Figure 6: Select simulator to start with.

2.3. Flashing LEDs program

Now, let’s run it on the hardware…

1. Change the debugger to use to PICKit3. In

MPLAB use Debugger � Select Tool and choose

PICKit3.

2. It should indicate that the device was found

successfully. It may need new firmware may

need to be added. If so, allow this to be done (i.e.,

click OK). See Figure 10.

3. An error message may indicate that “you must

connect to a target device”, or that the target is

not found, or that it does not have power.

4. Go into the Debugger � Settings. Change

to the Power tab. Select the checkbox

“Power target circuit from PICKit3”. Select

3.25V. Press Apply. Figure 11 shows what

the screen should look like. If you need to

do this step. Then go to the “Status” tab and

select “Refresh Voltage”; it should now

show between 3.1V and 3.5V.

5. Once the debugger has been connected

properly, you should see a response similar to Figure 10.

6. Push the Erase Flash Device button to clear the flash memory. (see Figure 12).

7. Next press the Program flash button to write the program. At this

stage, you may be asked to change configuration settings; select

OK to do so. You should get the message “Programming...

Programming/Verify complete” shown in the output window. You

may need to select Debugger � Reconnect and then Debugger �

Program again if it’s the first time you’re using the debugger for

this run of MPLAB.

8. Press the blue RUN button.

9. Your program will start, but you won’t see anything. Click on Pause. It will just to the while(1) line. Go

to the watch window and add debug_stage.

Now, that you know how to use a simple program and the debugger, let’s get the LEDs to flash…

1. Close your workspace (but you don’t need to exit MPLab).

2. Download the provided program Hello1.zip. Extract it into your working directory.

3. Open the Workspace called Hello1.mcw.

You may be asked if you want to reset the programmer and upload the different program. Press OK.

In may ask you to specify where the compiler and linker is located. It should shown two choices;

select the choices on C:\ drive (assuming that your computer has the compilers installed on C:\).

You may get error messages about things not being found. Fix this by right-clicking on the file

concerned (it shown ‘file missing’ in the files window) and then select “locate missing file”. On the

dialog that pops up, find the file – it is probably either in the folder you just extracted, or on the C:

drive in the C:\MCC18\lib directory or M:\MCC18\h or one of the others (you could use the

Windows Find tool to locate the file).

Figure 12: Flash programming buttons

Figure 11: Power setup.

Figure 10: Response to selecting PICKit3 as debugger

Erase flash
Read flash
Program flash

EEE3074W: Prac2 S. Winberg (DocRef: Prac2.docx) Page 7 of 8

Note that this workspace is configured to use the PICkit3 in programmer mode instead of debug

mode (leave it that way – it seems to give fewer errors; but it does work in debug mode as well).

A copy of the main.c file used in the Hello1 workspace is shown on page 8 in case you want to

recreate the workspace and go through the setup wizard again.

4. Now Rebuild the project (to make sure it will build for you).

5. Again it may complain of missing files. You’ll need to change the library paths. This can be found in

Project � Built Options � Project. Select the Directories tab. Select the “Library Search Path” drop-

down option. Click on directory shown (probably M:\MCC18\lib) and change it to C:\MCC18\lib or

wherever your MCC18 tools are installed. Try Rebuild all again if you changed the library paths.

6. With luck it should now compile successfully.

7. Now run the program on the target hardware by selecting Programmer � Program.

8. If it’s all worked successfully, you should see LED6 and LED7 alternating between on and off.

2.4. Final task – making a change to Hello1

Now for the final task, where you do a change to main.c. Use the Hello1 workspace that you probably still

have open.

Start by backing up your Hello1 project. Do this by making a zip file archive of the entire Hello1 folder. Call

it something like Hello1_backup1.zip. This can allow you to revert to an earlier working version quickly.

All you need to do is modify the main.c file to achieve the following requirements:

• Change the Hello1 program so that LEDs 0 to 6 count up in binary from 1 to 127 (i.e., all 6 LEDs on)

and then counts back down to 0 (all LEDs off), and then repeats. The cycle should repeat about every

half minute.

All you need to do is submit main.c file using Vula. Note that if you’ve for any reason decided to make any

changes to other project settings you can zip the entire Hello1 folder and hand it in.

TOTAL TIME ESTIMATE: 180 minutes

EEE3074W: Prac2 S. Winberg (DocRef: Prac2.docx) Page 8 of 8

A. Appendix

//**

// This is an adapted version of Microchip's PICKit3 Lesson 1

// titled "PIC18F46K20 Starter Kit Lesson 1 - Hello LED".

// ***

// This file is used in EEE3074W Prac2.

// Please refer to the Prac2 tutorial for things to do.

// ***

// The baseline version of this program swaps between turning on

// LED 7 and LED 6 on/off on the demo board.

// ***

/** C O N F I G U R A T I O N B I T S ******************************/

#pragma config FOSC = INTIO67

#pragma config WDTEN = OFF, LVP = OFF, MCLRE = OFF

/** I N C L U D E S **/

#include "p18f45k20.h"

/** DECLARATIONS AND FUNCTIONS ***************************************/

void wait (void)

// Cause a short delay

{

 int i,j = 0;

 for (i = 0; i<5000; i++) j++;

}

void main (void)

// The entry point to the program

{

 // Configure tristate PIO D

 TRISD = 0b00000001; // PORTD bit 1 to 7 to as output (0); bit 0 as input (1)

 LATDbits.LATD1 = 1; // Set LAT registers to turn on 2nd LED

 wait();

 LATDbits.LATD1 = 0; // Set LAT registers to turn off 2nd LED

 // swap between LED6 and LED7

 while (1) {

 wait();

 LATDbits.LATD7 = 0; // Clear LAT register bit 7 to turn off LED

 LATDbits.LATD6 = 1; // Set LAT registers to turn on LEDs

 wait();

 LATDbits.LATD7 = 1; // Clear LAT register bit 7 to turn on LED

 LATDbits.LATD6 = 0; // Set LAT registers to turn on LEDs

 }

}

